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ABSTRACT 

We discuss the determination of the Z” mass and width from the total 

hadronic cross section with emphasis on radiative corrections and normaliza- 

tion errors. We find that a combined fit of the mass and width, which takes the 

absolute normalization of the cross section into account, significantly reduces the 

errors in these parameters in comparison to the standard procedure of fitting 

only the shape of the resonance without considering the normalization. The im- 

provement is especially important with small data samples; at high statistics the 

methods become equivalent and independent of the size of the overall normaliza- 

tion error. From a Monte Carlo study we propose a simple scanning strategy, and 

also compare in detail several new Monte Carlo programs for e+e- annihilation 

including higher order radiative corrections. 
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I. Introduction 

In the near future e+e- collisions at the 2’ resonance will become available 

and one of the first tasks will be the determination of the mass (Mz) and width 

(rz) of th is resonance. 

The proposed extraction of Mz and l?z from the resonance shape is straight- 

forward [l] : one just measures the p-pair cross section as function of the center 

of mass energy fi and fits the known line shape with Mz, I’2 and C as free 

parameters: 

Cf(b) 
uo = (s - M;)2 + 3$/M; ’ (1) 

Here C is a normalization constant and j(k, ) s is a known radiative correction 

factor which depends on the fractional photon energy k = 2E,/&. We have 

included explicitly the phase-space factor s”/Mg, so I?z is the physical width at 

@=Mz. 

However, there are two problems with this approach: 

a) There is a strong correlation between the parameters, if the normal- 

ization constant C is not known. For example, C and rz are strongly 

correlated if s - Mg is small. To reduce the correlations one needs 

precise measurements both on- and off-resonance. 

b) p-pair final states form only 3.35% of the Z” final states. 

In this note we study the improvementson the determination of the parameter 

MZ and l?z by: 

l including the absolute normalization in the fit. 

l including hadronic final states. 

- 

The advantage of the latter is clear: the hadronic cross section - ahad - is 

about 90% of the visible cross section. The disadvantage is: new physics may 

be contributing to f&d, e.g., top production or hadronic decays of a new lepton. 
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However, if they are contributing at a statistically significant level, it is easy to 
. 

spot the new physics from specific decay signatures. On the other hand, if the 

contribution of the new physics is too small to detect within the given statistics, 

the effect on the parameters is likely to be within errors too. 

Constraining the fit by the knowledge about the absolute normalization dras- 

tically improves the fit stability and parameter errors. This can be understood 

qualitatively as follows. Suppose one has only a few scan points in the neigh- 

borhood of the resonance (see fig. 1). If the errors are large, the shape is not 

well-determined. For example, the dotted line would be an acceptable fit, if only 

the shape is fitted. However, such a large width would give a too low absolute 

peak cross section, since this varies quadratically with the total width. 

In sec. V we will compare quantitatively two fitting methods: 

l A three-parameter fit of C, Mz and l?z to the shape of the resonance. In 

this case one only needs to measure the relative luminosity of the different 

scan points. 

l If one assumes the constant C to be known from the Standard Model, one 

needs only a two-parameter fit of Mz and I?z to the absolute cross section, 

measured as function of center-of-mass energy. In this case one has to 

measure the absolute normalization of the scan points. C depends only on 

the coupling constants between the 2’ and fermions, which are known to 

agree very well with the Standard Model predictions [2]. The systematic 

uncertainties from the luminosity monitor and the Monte Carlo acceptance 

corrections can cause a correlation between the different scan points. The 

effect of such correlations turns out to be small as will be discussed in detail. 

To get the resonance shape and the absolute normalization correct, radiative 

corrections have to be applied. Since these corrections are sizeable, one has to 

include higher orders too. We have made a detailed comparison of several new 

Monte Carlo generators for p-pair production, which include the higher-order 

corrections. 
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II. Standard Model Predictions 

Here we summarize the formulas used in fitting the hadronic cross section. 

The four parameters of the SU(3)c x SU(2)h x U(1) are taken to be: the fine 

structure constant CII = 137.036-l, the Fermi coupling constant GF = 1.16637 

10m5 GeV2, th e s t rong coupling constant cyB and the mass of the Z” gauge boson 

Mz. Present measurements yield for the last two parameters: Mz = 91.8 f 0.9 

GeV [3] (see fig. 2) and cr,(Q2 = 922) = 0.13 f 0.02 [4]. To define the couplings 

of the matter fields with the 2’ it is convenient to introduce the angle sin2 0w, 

which is related to the previous parameters by: 
- 

GF(~ - Ar)Mi = 1 
8&o 16 sin2 8~ cos2 8~ ’ (2) 

Here Ar - 0.07 [3] is a correction term for radiative corrections, for which 

GF has not yet been corrected. The main part of Ar are the O(a) fermion loops 

in the photon and weak gauge boson propagators; an additional small correction 

comes from the vertex and box diagrams. The loop corrections depend on the 

unknown top and Higgs masses; the sensitivity to the top mass becomes large 

if the top mass is larger than 100 GeV and present measurements of Ar require 

the top mass to be less than 200 GeV at the 90% C.L. [5]. The W mass can be 

calculated from the previous parameters: 

Mw = p MzcosOw . (3) 

. 

The p-parameter is 1, if Higgs bosons occur only in doublets. Experimentally 

p = 1.01f0.01 [5], so we will assume p=l in the following. The vector and axial 

vector couplings to the Z” are defined by 

vf = 2(13L + IzR) - 4ef sin2 8~ 

af = 2(IzL - 13R) . 
(4 

Here TaL and 13R are the third-order components of the weak isospin. They have 

been summarized for the various matter fields in table 1. 
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. 
With the couplings defined, the partial and total widths of the Z” gauge 

boson are found to be: 

I-f = Kr@& + u;, (5) 
I’tot = K N, [a; + v,” + a; + $1 + K~QCD f&? + a,“) . (6) 

q=l 

The first part in eq. (6) is the contribution for N, generations of leptons, 

while the second part sums over five quarks assuming the top quark is too heavy 

to contribute. The factor rQCD is given in the MS scheme by 

l+ % f1.41 
2 

+ 64.84 a, 
3 ( )I . 

7r 

The factor 3 on the right-hand side accounts for the color of the quarks. For 

o8 = 0.13 the last two terms hardly contribute, although it 

in the MS renormalization scheme the recently calculated 

tion is more than twice the second-order contributions [6]. 

be defined as: 

or 

Kl = aMZ 
48 sin2 9~ cos2 8~ 

or 

K 
2 

= JZCFM,” 

48~ 

K3 = 
a*Mz 

48 sin2 0$ cos2 8 * ’ W 

should be noted that 

third-order contribu- 

The constant K can 

(8) 

(9) 

(10) 

Here Kl does not include the loop corrections, thus yielding the tree-level 

widths. K2 can be obtained from K1 with eq. (2), if one neglects the radiative 

correction factor (Ar = 0). In this case the value of K yields answers close to the 

complete loop calculations as pointed out by Hollik et al. [ 71. The reason is simple: 
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GF was calculated from muon decay without radiative corrections from the W- 

. 
exchange graph, so GF includes these corrections. Since the loop corrections for 

W- and Z”-exchange are similar, just using K2 in calculating the width yields 

answers very close to the exact answer. K3 uses the running couplings where 

all loop corrections are absorbed in the Q2-dependent coupling constants. The 

“starred” (= running) couplings were calculated by Lynn et al. [8] by summing 

the loop corrections to all orders. At low energies K3 = Kl, while at the Z” 

energies K3 - K2. 

From eqs. (5) and (6) it is clear that the branching ratios I’f/I’tot are indepen- 

dent of the parameterization of K and they are completely specified once sin2 8~ 

is known and the number of generations is known. For the world average [2-51 

of sin2 8~ = 0.230 f 0.005 one finds for three generations (and excluding the top 

quark contribution) : 

be - = 3.35 f 0.01% 
rtot 

r - +j65+ O-04g YlJ 
hot 

. - 0.03 O 

Jk = 70.00 f 0.12% 
hot 

. 

The total hadronic cross section is given by: 

q=l 

a7z _ ~-!*K~QcD 
GXqVeVq 

q=l 
had - 

Mz (s - M;)2 + s21&/M; 

z _ 127FrQCD 
sK2(v,2+u,2) e(v,z +a;) 

Ohad - 
q=l 

M; (s - Mg)2 + s”I’;ot/M; ’ 

(11) 

(13) 

w4 

WC) 
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The 

. 
and 

superscripts indicate the contribution from photon exchange, Z” exchange 

their interference and K is one of the K’s defined in eqs. (8)-(10). The 

sum is taken over five quark flavors, thus assuming the top quark is too heavy. 

Combining eqs. (5) and (14~) one finds the important result that on resonance, 

when s = Mj, 

peak _ l2 7r reerqq 
Ohad -- 

M; rtzot 
(15) 

is independent of K and thus largely independent of uncertainties in the loop 

corrections coming from the unknown top and Higgs masses. 

Choice of K-factor 

The parameters describing the total cross section in eq. (14) are: cy, 08, 

Mz, rz, eet eq,ve, vq, a, uq and, in addition, GF or sin2 8w depending on the 

choice of K-factor [eqs. (S)-(lo)]. Th e most unknown and most interesting pa- 

rameters are Mz and I’z, so one can try to optimize the knowledge on these 

parameters by taking the other parameter values from independent processes. 

For example, Q, ee, eq, a, and uq are well-known; ve and vq are reasonably well- 

known from eq. (4) and the world average of sin2 Bw and the uncertainty of 0.02 

in CY$ yields an uncertainty in the peak cross section of 0.4% only. The remaining 

choice to be made is the K-factor. Experimentally, K2 is most accurately known 

and therefore preferred. Furthermore, by using K2 the radiative corrections are 

smaller and easier to handle. First of all, because the width calculated with K2 is 

very close to the width calculated with the complete radiative corrections. There- 

fore, the shape is correctly described and the initial-state radiative corrections, 

which are rather sensitive to the shape, can be calculated in a straightforward 

way. Secondly, the electroweak loop corrections are small, if one uses K2, since 

K2 and K3 are almost identical in the 2’ resonance region. 

If one uses K3 or Kl instead of K2, one can in principle fit sin2 8w as an 

additional free parameter [the dependence of the cross section on this parameter 

is now much stronger than the dependence via the vector couplings alone as 
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g iven  by  e q . (4)]. 0  n e  c a n  th e n  m a k e  a  test  o f th e  S ta n d a r d  M o d e l  by  c o m p a r i n g  
. th is  va lue  o f s in2  B w  wi th th e  wor ld  a v e r a g e . A n  a l ternat ive test  w o u l d  b e  to  

d e te r m i n e  Mz us ing  K 2 , inser t  its va lue  in to e q . (2)  a n d  c o m p a r e  th e  left- a n d  

r igh t -hand  s ides  in  e q . (2) .  H  o w e v e r , th e s e  tests a re  m o d e l - d e p e n d e n t in  th e  s e n s e  

th a t th e y  d e p e n d  o n  th e  u n k n o w n  to p  a n d  H iggs  m a s s e s : in  case  o f K l o n e  h a s  

to  app ly  th e  rad ia t ive cor rect ions to  th e  d a ta , in  case  o f K 3  o n e  h a s  to  ca lcu la te  

K 3  fo r  a  cer ta in  to p  a n d  H iggs  m a s s  a n d  in  case  o f K 2  o n e  h a s  to  ca lcu la te  A r 

in  e q . (2).  In  th e  fits desc r ibed  in  sec.  V  w e  h a v e  u s e d  th e  p a r a m e tr izat ion wi th 

: G F  (K2) .  

-  T h e  to ta l  c ross sect ion 

F r o m  e q s . (ll), (13 )  a n d  (15)  th e  had ron i c  p e a k  cross sect ion is fo u n d  to  

b e  4 0 .7  n b  a t th e  B o r n  level .  T h e  obse rvab le  p e a k  cross sect ion a fte r  rad ia t ive 

cor rect ions is 0 .7 3 6  x 4 0 .7  =  3 0 .0  n b  (see  n e x t sect ion).  Th is  c ross sect ion de -  

p e n d s  q u a d r a tical ly o n  th e  to ta l  w id th  a n d  is th e r e fo re  sensi t ive to  th e  n u m b e r  

o f n e u tr ino spec ies  wi th m a s s e s  less’th a n  hal f  th e  Z” m a s s . If o n e  exp resses  Ice 

a n d  Iq q  as  f ract ions o f th e  to ta l  w id th  [see e q s . (11)  a n d  (13)],  o n e  fin d s  fo r  th e  

c o n tr ibut ion o f N F e w  n e w  n e u tr inos: 

g ”,“B ” - l2  7 r  ( 0 .0 3 3 5 )  ( 0 .7 0 0 )  
- ? @  (1  +  0 .0 6 6 5  N y n e w ) 2  ’ 

O n e  n e w  n e u tr ino g e n e r a tio n  wi l l  l ower  th e  p e a k  cross sect ion by  1 2 .7 %  inde -  

p e n d e n t o f m t a n d  m H  a n d  th is  shou ld  n o t b e  to o  diff icult to  d e tect: wi th a  5 %  

statist ical e r ror  (imp ly ing  4 0 0  obse rved  2 ’ e v e n ts) a n d  a  5 %  systemat ic  uncer -  

tainty,  th e  one -s i ded  9 0 %  C . L . l ower  lim it w o u l d  b e  1 1 .5 % , wh ich  is still b e l o w  

th e  c h a n g e  e x p e c te d  fo r  o n e  n e w  n e u tr ino g e n e r a tio n . H e r e  w e  a s s u m e d  th a t th e  

m a s s  o f th e  n e w  n e u tr ino is a t least  a  fe w  G e V  b e l o w  hal f  th e  Z” m a s s . M o r e  

q u a n tita t ive resul ts  o n  th e  to ta l  e r ror  o f Ito t wi l l  b e  g i ven  in  sec.  V . 



i III. Radiative Corrections 

In order to measure either the shape or the absolute cross section, one has 

to apply radiative corrections. For hadronic final states these reduce to 

l Initial state radiation from the electrons. Final-state electromagnetic radi- 

ation from the quarks is small since 

a) The Kinoshito-Lee-Nauenberg theorem assures that the procedure of 

summing over all qij final states with an arbitrary number of photons, as 

is done in the detection of multihadronic events, will cancel all leading 

logarithms and the remaining radiative correction is of order 0 (f) M 

0.2%. 

b) Fragmentation of quarks (strong interactions) is fast compared to the 

timescale of electromagnetic radiation. 

l Loop corrections to the gauge boson propagators, which are called vacuum 

polarization corrections in case of the photon and “oblique” corrections 

in case of the weak gauge bosons. These loops depend on the maximum 

Q2 of the gauge boson and can be taken into account by either modifying 

the coupling constants (“running” coupling constants) or by correcting the 

propagators. The size of the loop corrections depends strongly on energy: 

at s = Mi the effect is small, since the K-factors largely cancel out [see 

eq. (15)]. Off- resonance, where (s - Mj)2 > MiTg, the radiative cor- 

rections are Ki/K 12. This factor is approximately 1.14 at fi = 80 GeV, 

where 12.6% comes from the running of cx and the remaining part comes 

from vertex and box diagrams. 

The size of initial state radiative corrections is shown in table 2; the factors 

were calculated with different Monte Carlo generators and from the formulas 

of ref. [9] with the program ZAPPR from G. Burgers. The Born cross section 

has to be multiplied by these factors in order to obtain the corrected cross sec- 

tion. The minimum allowed invariant mass squared of the final state - sl - 
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i was taken to be 1% of s in all calculations. It can -be seen that the first-order 
. corrections change the Born cross sections by factors between 1.9 and 0.7; for 

such large corrections the higher-order corrections are important. Until recently 

these higher-order corrections had been estimated by an approximate procedure, 

called “exponentiation;” recently Berends, Burgers and van Neerven [9] showed 

that these estimates are very close to the exact second-order calculation. Several 

new Monte Carlo generators have become available, which include higher-order, 

initial-state radiative corrections as well as the loop corrections. An overview is 

given in table 3. The ones of interest to hadron production are: 

l MMGE. This is the original Berends-Kleiss-Jadach [lo] p-pair generator 

updated by J. Alexander (11) with the second order calculations of ref. [9]. 

The program has various options: 

Calculate first- (second-) order initial-state radiation with at most one 

(two) photon(s) from initial-state radiation. 

Exponentiate the cross sections to include the effects of multiple soft 

photon emissions (both first and second order). The program does not 

include the loop corrections. 

l YFS. This program from Jadach and Ward [12] follows the exponentiation 

procedure from Yennie, Frautschi and Suura [ 131. It is unique in the sense 

that it calculates higher-order initial state radiation with multiple photons 

generated as real particles, thus taking correctly the kinematics of multiple 

photons into account including a non-zero invariant mass. In the previous 

program MMGE only the remaining energy after radiation was calculated 

and the missing energy was attributed to a single effective, massless photon. 

l EXPOSTAR. This program, developed by Im, Kennedy, Lynn and Stu- 

art [S], takes all the loop corrections into account by calculating the run- 

ning couplings. Higher-order, initial-state radiative corrections are taken 

into account via the structure function approach [14], in which the lon- 

gitudinal momenta of the electron or positron are partially transferred 

- 
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. 
to photons. Since. these photons cannot have transverse momenta, the 

program is not suitable as a Monte Carlo generator, but it is very useful 

to check total cross sections and radiative correction factors. In the pro- 

gram BREMG these transverse components will be reinstated by combining 

the original Berend-Kleiss-Jadach generator (BREM5) with EXPOSTAR. 

However, BREMG has not yet been released. 

Figure 3 shows the effect of higher-order contributions to the differential 

cross section da/dv. Here v = 1 - s’/s, where s and s’ are the invariant masses 

squared of the initial and final state, respectively. In first order v would just be 

the fractional photon energy Er/Ebeam. In second order one cannot speak about 

the photon energy, but s’ is still a well-defined quantity. One observes that higher 

order contributions shift the events towards larger v, as expected since larger v 

corresponds to smaller s’ and more initial state radiation reduces s’. 

Figure 4 shows the ratio between the second order and first order differential 

cross section. One observes a large decrease (20-30010) in the region of soft real 

photons (v + 0), which is only partially compensated by an increase of approxi- 

mately 10% in the region of hard photon radiation (large v). The fact that the 

total cross section still increases by 0.8% is due to the increase in the infrared 

part of the cross section. 

In fig. 5 we compare the differential distributions da/dv for the MMGE and 

YFS Monte Carlo generator with the analytical formula of ref. [9] by plotting the 

Monte Carlo events and weighting each entry with the inverse of the analytical 

formula, so one expects a straight line close to 1. 

One sees that both programs agree well with the analytical formulae. For 

- YFS we plotted the results for two values of the maximum allowed energy of the 

photons, which can be radiated in addition to the first photon. One sees that 

the contribution from two or more hard photons is appreciable. 
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. 
At energies above -the Z” mass both the YFS cand MMGE programs deviate 

appreciably from the results of the EXPOSTAR program. This is due to the fact 

that the latter program includes the loop corrections, which cause a larger width 

of the resonance (EXPOSTAR calculates the width with K3, while the other 

programs use Kl). Simply inserting a larger width in the other programs will 

make the radiative correction factors to become similar, but then the peak cross 

section will be wrong. One has to include correctly the running of the coupling 

constants, since even approximating K3 with K2 does not yield the correct answer 

as seen from the comparison of f$&, and f2Ki in table 2, although the difference 

is less than 1%. 
- 

In table 2 we have also included a column with the total cross section for 

p-pair production after all radiative corrections. The cross section for the other 

channels can be calculated from the relative branching ratios [see eqs. (ll)-(13)] 

and the relative contributions of photon and 2’ exchange [see eq. (14)]. The 

absolute cross section in table 2 is in good agreement with the result calculated 

from the experimental branching ratios [eqs. (ll)-(13)] only if we apply the weak 

vertex corrections consistently to both the running coupling constants in eq. (14) 

and the width. This was not done in EXPOSTAR and ref. [8], so the peak cross 

section is lower in that case by about 20 pb compared to the value in table 2, 

but is closer to a recent calculation by G. Burgers [15] (10 pb lower). 

IV. Fitting Method for Correlated Errors 

The best estimates of Mz and I’z can be extracted from the data via a fitting 

procedure, e.g., minimizing the x2 [16]. Correlated errors between measurements 

can be taken into account in one of the following ways [17]: 

a) Define the x2 via an error correlation matrix: 

x2=ATV-rA . (17) 

- 
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Here A- is a column vector containing the residuals between measure- 

ments (R;) and fitted values (Rfit) and V is the error correlation ma- 

trix: 

Ai = Ri- Rfit 

Vii = E(Ri - Rfit)2 = CJ; + a; 

Vij = E(Ri - Rfit)(Rj - Rfit) = a; . 

(18) 

E indicates that the expectation value has to be calculated, ai is the 

error on R; and on is the overall normalization error, which indicates 

how far the observed value(Ri) can deviate from the true value (Rt), 

soRi=Rt f on. This last expression inserted in the expectation 

values in eq. (18) yields the results for the elements of V. Note that C$ 

is the variance of Rt, so it contains the uncorrelated part of the error, 

which includes both the statistical error and point-to-point system- 

atic error, but excludes’the overall normalization error. For example, 

for two measurements R1 and R2 with statistical errors of 10% and a 

normalization error of 5%, the matrix is: 

v= (0.1 RI)~ + (0.05 RI)~ (0.05 R1R2)2 

(0.05 R1R2)2 (0.1 R2)2 + (0.05 Rz)~ ’ 

The following points are worthwhile noting: 

l This error matrix is N x N for N data points and should not be confused 

with the M x M error matrix for M fitted parameters: the first matrix is 
- 

input to the fit program, the second one output. 

l The importance of systematic errors can be studied by varying the off- 

diagonal elements and observing the influence on the fitted parameters. 
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b) A second method commonly used to take correlated errors into account 

is the following: Define a likelihood function by multiplying the proba- 

bility of each data point with the common probability factor from the 

overall normalization factor f, which is assumed to have a Gaussian 

distribution with mean 1 and r.m.s. on: 

L = 5 ,-(gy’,-qq . (19) 
i=l 

For small event samples the Gaussian event error distribution can be 

replaced by a Poisson distribution. 

One can optimize the likelihood by minimizing 

(fRi - RfitJ2 
w-3)” - 

(20) 

f can either be treated as a free parameter or one integrates over all 

possible f values in the fit. 

Methods a) and b) usually give similar results. However, the first method 

.-- -is more flexible in the sense that it defines a correlation between every pair of 

data points and it does not require a specific error probability distribution as is 

needed in case of the maximum likelihood approach. Therefore we will use the 

first method. 
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V.-Monte Carlo Fit Results 

Before generating MC events one has to decide the number of scan points and 

the distance A between the scan points. To fit eq. (1) to the shape, one needs 

at least three scan points. If one measures the averaged energy for each event, 

one could have as many energy points as events. This can be easily included in 

the fit of the data as a function of energy, but for the moment we will assume 

that we have the equivalent of three data points at three energies separated by a 

distance A. Data point at more energies can only improve the fit, so the results 

present a pessimistic limit. 

Since the mass of the 2’ is not known accurately, one may miss the peak by 

some amount. We therefore generated Monte Carlo events in three energy bins 

each A GeV apart and assumed the central point misses the peak by E GeV, so 

E=<&>-MZ. 

We generated the events first as function of E for different values of A, then 

as function of A for different values of c. Figures 6 and 7 show some typical fit 

results for Mz and l?z as function of E for A = 1.5 and 1 GeV, respectively. Each 

error bar corresponds to a fit for a total luminosity of 3.3 nb-l divided equally 

over three scan points. If the points were centered around the peak, i.e., E = 0, 

this corresponds approximately to 

33 events at 92 GeV, 

25 events at 93 GeV, and 

22 events at 91 GeV. 

One sees from figs. 6 and 7 that the fitted values of Mz and I’z cluster 

around the generated values of 92 and 2.55 GeV, respectively, even if E = fl 
.- 

GeV. For these values of E and A = 1 GeV one measures only on one side of the 

resonance (see the insets in figs. 6a and 7a for scan point positions for E = 1, 0, 

and -1 GeV). In this case the correlation between Mz and I’z becomes large as 

shown in fig. 7c, top and bottom. As soon as one measures on both sides of the 

peak, the correlation becomes reasonably small even if E = flGeV (see fig. 6~). 
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Typical errors are 200-350 MeV, both for Mz and.-I’z. Here we assumed that 

. the luminosity was measured with a total systematic uncertainty of 15010, which 

we assumed to be fully correlated between the data points. The statistical error 

on the luminosity was assumed to be small compared with the systematic error 

and therefore neglected. The effect of larger systematic errors will be discussed 

hereafter. 

Figures 8 to 10 show the typical error on Mz and l?z as function of the scan 

range (defined as 2A) for E = 0, 0.5, and 1 GeV, respectively. The two lower 

curves show the correlations between Mz and l?z and the number of events 

- normalized to the total number of “peak” events Nt, where Nt is the number 

of events expected if all the luminosity was taken at the peak of the resonance. 

This ratio decreases if the scan range increases since the luminosity was kept 

constant. The different symbols correspond to different values of “peak” events. 

If one measures symmetrically around the peak (E = 0, fig. 8), the correlation p is 

small and the smallest errors are obtained for a small scan range, thus optimizing 

the number of events. If the central point misses the peak by 0.5 or 1.0 GeV the 

smallest error in Mz is obtained for a larger scan range (see figs. 9 and lo), while 

the smallest error in I’z is obtained for the scan range optimizing the number of 

events. 

Figure 11 shows the dependence of the expected error in I’z on the scan range 

for different mixtures of statistical and normalization errors. One sees that for a 

luminosity corresponding to 100 “peak” events the results from a two parameter 

fit (Mz and I’z) gives a considerably better result than a three parameter shape 

fit in which the the normalization constant is an additional free parameter. This 

holds even for very large statistics (10’ Z”‘s) and large normalization errors; 

the two parameter fit results shown have normalization errors of 3, 15 and 25%, 

respectively. 

With high statistics and a sufficiently large scan range all fits become similar 

and independent of the normalization error (see fig. 11, top curve). The reason is 
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simple: Mz is best d t e ermined by points on the steeper slope of the resonance, 

while I’z is most sensitive to the peak cross section, where the term (s - Mi) 

is small. One cannot determine one parameter precisely without knowing the 

other, so one needs a certain minimum scan range and the most unbiased way 

of extracting Mz and I’z is a simultaneous fit of both parameters. If the scan 

range is large enough, the normalization error can move all points up and down, 

but this does not change the shape. In this case the shape fit and the fit of the 

absolute cross section become equivalent. Note that the final error on the width 

is determined by the point to point systematic uncertainties, which we assumed 

to be 1% for the curves in fig. 11. Even with lo2 to lo3 events one can get useful 

limits on the number of generations with light neutrinos (masses less than M,7/2), 

since the errors on the total width become comparable to the contribution of a 

new neutrino generation, which is shown as a dashed horizontal line in fig. 11. 

VI. Scanning Strategy 

We assume the first data will be taken at a center-of-mass energy close to the 

expected Z” mass of 92 GeV (see fig. 2). If one takes 1 nb-l (SZ 30 “peak” events) 

and assumes the width to be equal to the predicted value of 2.55 GeV, one can 

calculate from eq. (14~) the relative position of the peak, namely (s - Mi)2. The 

accuracy of the peak position is about 0.4-0.7 GeV, depending on how far one 

misses the peak (see horizontal error bars in fig. 1). The error becomes larger at 

the peak, since the cross section is rather flat near the peak. In the unlikely case 

that one misses the peak by several GeV, the best strategy would be to-find the 
_- peak and one should change the energy by the amount given by the measured 

s-M;. 

Because of the quadratic ambiguity in (s - Mi)2, one does not know in which 

direction to move. We propose to move up in energy, since this has the advantage 

of the larger cross section from the radiative tail. We will not consider any further 
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the pessimistic scenario of missing the peak by several GeV, since this has been 

- worked out before [18]. 

If one misses the peak by 1 GeV or less, one can see from figs. 8-10 that a 

reasonable scan range is 2 GeV, so a good next energy point would be 93 GeV. 

After having two points measured, one can solve the quadratic ambiguity in 

(s - Mg)2 and decide where to take the third point. By comparing the absolute 

value of the minima in figs. 8-10 one sees that the errors on Mz and I’2 are 

almost independent of E, i.e., where the scan points are located on the peak, but 

for every case the optimum scan range has to be choosen with some care. 

VII. Summary 

We have compared two ways of extracting the Z” mass and width from an 

energy scan over the resonance: 

a) In the first case we made a two-parameter fit of Mz and I’2 to the 

- 

absolute total cross section assuming the couplings of the Z” to quarks 

and leptons to be known from the world average of the electroweak 

mixing angle. In this case one relies on the absolute measurement of the 

luminosity, which causes a correlated error between the measurements 

at different energies. Note that we could have used also the constraint 

between the mass Mz and the coupling constants [eq. (2)], in which 

case the only free parameters are Mz and I’z. However, in this case 

one becomes model dependent, namely one has to assume something 

about the Higgs sector and guess some value for the top quark mass 

in order to calculate Ar. Therefore, we have calculated the couplings 

from the world average of sin2 Bw, which is quite well-known now. 

b) In the second method one fits only the shape of the resonance by using 

the overall normalization as an additional free parameter. Then one 

only has to know the relative luminosity between the measurements at 
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different energies and avoids the correlation from the common normal- 

ization error. 

However, it turns out that the first method always gives much more stable fit 

results and smaller errors, even if the normalization error is large. The difference 

is especially important in case of low statistics: with about lo2 events divided 

over three scan points and a common normalization error of 15%, the expected 

errors on the mass and width are as low as 0.25 GeV each. A shape fit alone 

would increase these errors by at least a factor of 2. 

Both methods require knowledge of the radiative corrections and several new 
- Monte Carlo generators including these corrections have been discussed. The 

new Monte Carlo generators were found to be in good agreement with the exact 

second order calculations of ref. [9]. H owever, a precise determination of the 

radiative correction factors requires taking into account the loop corrections, 

since these corrections do not make an overall normalization change, as often 

stated, but they change the shape .of the resonance and therefore change the 

radiative correction factors. These corrections have been implemented in the 

EXPOSTAR program, but this program does not generate transverse momentum 

for the radiated photons. These loop corrections can be incorporated in the other 

programs easily in an approximate way, namely by defining the Born cross section 

and the width both with the parametrization using the Fermi constant [KS in 

eq. (9)]; th is ie y Id s correction factors accurate to about 1% as shown in table 2. 

Higher precision requires the complete loop corrections to be implemented. With 

the proposed fitting procedure we have studied the errors on Mz and Pz as 

function of scan range and a simple scanning strategy has been discussed in the 

previous section in order to minimize the errors on these parameters. 
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Table 1. Summary of couplings for sin2 Bw = 0.23. 

. 

Fermion I3L I3R a V ef 

neutrino l/2 0 1 1 0 
e, fi, 7 lepton -l/2 0 -1 -1 + 4 sin2 6~ = -0.08 -1 
u, c, t quarks l/2 0 1 +l - Sj sin2 6~ = +0.39 +2/3 

d, S, b quarks -l/2 0 -1 -1 + $ sin2 8~ = -0.69 -l/3 
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; Table 2. Initial state radiative correction factors for /.L- 
P 

air production for a maximum 
. v-value of 0.99. The superscript K refers to the K factor see eqs. (8)-(lo)] used to define 

the cross section, so K1 means no loop corrections at all ( a so no loop corrections for the 1 
photon annihilation channel and the interference term [eqs. (14a) and (14b)j; KS means 
the complete loop corrections have been taken into account in all channels. flte. and f2te) 
are the radiative correction factors with at most 1 and 2 photons radiated in the initial 
state, respectively; the subscript e indicates if the exponentiated cross sections were used; 
these factors were calculated with the formulas of ref. [9] using the program ZAPPR from 
G. Burgers. The subscripts MMGE, YFS, and EXPO indicate the programs from which 
these factors were calculated. (rEXp0 gives the absolute cross section in nanobarn for 
Mz=92 GeV, a top mass of 50 GeV, a Higgs mass of 100 GeV, and a maximum v-value 
of 0.99. The precision of the various f’s is typically 0.005 or better. The YFS program 
has not been run at all energies because of its appetite for computer CPU time. The 
following points are worth noting (see text): a)The appreciable difference between fi 
and fre in the neighborhood of the resonance; b) The small differences between fie, 
f2, and fse; c) The appreciable differences between fiipo and fzM,, at the highest 

- energies; d) The reasonable agreement between fE-$po and f2T indicating that the loop 
corrections are small if K2 is used. 

- 

fi fF1 f:l fF1 fE1 fz fzMGE f;+S f$&‘O a&‘O bb) 
20 1.245 1.255 1.255 1.255 1.255 1.252 1.253 1.259 0.299 - 
40 1.259 1.271 1.271 1.271 1.271 1.267 1.262 1.276 0.077 

60 1.247 1.259 1.259 1.259 1..259 1.256 1.244 1.264 0.036 

80 1.025 1.040 1.040 1.041 1.040 1.036 1.032 1.040 0.035 

87 0.793 0.826 0.825 0.824 0.824 0.821 - 0.822 0.104 

88 0.756 0.794 0.793 0.792 0.792 0.789 0.769 0.792 0.149 

89 0.718 0.762 0.762 0.760 0.760 0.757 - 0.759 0.234 

90 0.679 0.730 0.732 0.728 0.730 0.726 0.714 0.729 0.424 

91 0.648 0.706 0.709 0.703 0.708 0.701 - 0.706 0.883 

92 0.688 0.733 0.731 0.730 0.739 0.728 0.725 0.736 1.442 

93 0.906 0.888 0.874 0.886 0.885 0.883 - 0.881 1.049 

94 1.186 1.104 1.087 1.106 1.088 1.102 1.087 1.081 Q.615 

95 1.449 1.322 1.307 1.327 1.294 1.322 - 1.286 0.398 

96 1.682 1.524 1.515 1.534 1.486 1.528 1.527 1.477 0.285 

97 1.884 1.708 1.706 1.722 1.662 1.716 - 1.654 0.217 
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Table 3. MC GENERATORS: e+e-- -+ 72’ --+ p+p- . 

Program Authors Ref. Initial State Final State Loop Corr. Pol. 
Radiation Radiation 

MMG F. A. Berends 
R. Kleiss 10 ok4 + - - 
S. Jadach 

MMGE 

BREM5 

J. Alexander 11 O(a2) + exp. - - - 

R. Kleiss 
B. W. Lynn 8 O(Q) + + + 
R. G. Stuart 

EXPOSTAR C. J. C. Im 8 structure - 
D. Kennedy 

+ + 
functions 

BREMGt BREM5 structure 
EXPOSTAR - functions 

+ + + 

YFS* S. Jadach 12 multiple - - 
B. F. L. Ward photons 

+ 

BHKMUONt F. A. Berends 
W. Hollik - 
R. Kleiss 

ok4 + + - 

t not yet released. 
* A new version, together with Z. Was, will include the loop corrections. 
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FIGURE CAPTI.ONS 

1. The expected number of events as function of center of mass energy for Mz = 92 GeV 

and a luminosity of 1.1 nb-l for each energy point. The vertical error barr indicates 

the statistical error, while the horizontal error bar indicates the expected error on 

Mz, if one calculates MZ from that single energy point assuming the width to be 

. known. 

- 

2. A summary of the present knowledge about MZ from the pj?~ collider experiments UAl 

and UA2, the combined neutral current data2 ( sin2 ew), and the rise in the hadronic 

cross section at PETRA and KEK (R) (calculated from the results described in _ 

ref. [4]). 

3. The u-distribution in first and second order. In first order, v is the photon energy 

- normalized to the beam energy. The solid curves were calculated from the formulae 

in ref. 191. The dots were obtained from the MMGE Monte Carlo generator. 

4. As in Fig. 3 but for the exponentiatied cross sections normalized to the first order 

cross section. 

5. The v-distribution of the MMGE Monte Carlo generators MMGE (a) and YFS (b) 

normalized to the exact second order calculation of ref. [9]. One sees good agreement 

with the expected straight line. In fig. 5b we have also plotted the result, if the 

energy of the photons radiated in addition to the first photon is limited to 3 GeV. 

From the difference one sees that the contribution from two or more hard photons 

is appreciable. These comparisons were done at ,,/Z = 60 GeV; at this energy the 

contribution from hard photon radiation is large in contrast to the radiation from 

the Z” resonance, where the radiation of hard photons is negligible because of the 

_- sharpe decrease in the cross section at lower energies. 

6. The fitted values of MZ and Tz and their correlation p as function of E for three scan 

points separated by A = 1.5 GeV. c is the distance of the central point to the peak, so 

the location of the scan points on the resonance is as indicated on the left in (a) for 

E = 1, 0, and -1 GeV. Each error bar is the result of a fit to Monte Carlo generated 
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events with a total luminosity of 3.3 nb-l equally divided over three energy scan 

points. This luminosity corresponds to 100 events at the peak, but only w 80 and 

60 events, if the luminosity is divided over three scan points with c = 0, and 1 GeV, 

respectively. 

7. As in fig. 6, but for a smaller scan range: A = 1 GeV. In this case the correlation 

between MZ and I’z becomes appreciably larger. 

8. The expected error on MZ and rz and their correlation p as a function of the scan 

range, which is defined as the difference in energy between the highest and lowest 

point. The lower curve shows the decrease in event numbers with increasing scan 

range. The three scan points were taken symmetrically around the peak (E = 0 
GeV). 

9. As fig. 8, but for E = 0.5 GeV. 

10, As fig. 8, but for E = 1.0 GeV. 

11. The expected error on the width for different event samples (expressed in number of 

“peak” events Nt) and different normalization errors (a,), which cause a correlation 

between the different energy points. The crosses indicate the error from the shape 

fit alone, thus disregarding the information from the absolute value of the cross 

section. Note that the fit using the normalization is always better than the shape 

fit, even in case of large normalization errors and high statistics (see text). 
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