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- 1. Introduction 

Affine Kac-Moody algebras PI have made a mark in theoretical physics (for 

a review see reference 2). They are realized in ma,ny two-dimensional conforma’ 

field theories. These theories describe both the critical points of second order phase 

transitions and the basic building blocks of classical string theories. In fact, a string 

theory can only have a local spacetime gauge symmetry if there is a corresponding 

KaE-Moody algebra realized in the conformal field theory on its world sheet. 

The subalgebras of affine KaGMoody algebras are therefore important. Even 

a small subclass of affrne subalgebras, the so-called conformal subalgebras, are re- 

markably useful [3--8l.c f on ormal subalgebras are subalgebras having central charge 

equal to that of the algebra in which they are embedded. Lists of these subalgebras 

have been compiledl” but there is no universally applicable method for calculating 

‘- their- branching rules. Hence all of the conformal branching rules have not been 

worked out. 

In this paper we show there does exist a quite general procedure for calcu- 

lating conformal branching rules. It makes use of the outer automorphisms of 

affine KaE-Moody algebras. The method was first applied to the subalgebras 

s&4 x SAW) c S~lPd in reference S. Here we calculate the branching rules for 

Sii(2) x Sb(M) c s^p(ZN), d emonstrating the general a.pplicability of the outer 

automorphism method. 

The layout of this paper is as follows. The second section contains a short 

review of afline KaE-Moody algebras and conformal subalgebras (serving mainly 

70 establish notation) and a general description of the outer automorphism method. 

Section 3 contains the explicit calculation of the branching rules for the conformal 
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embedding &l(2) x S‘O(N) c $~(2N)j part (a) treats N odd and part (b) N even. 

Finally, section 4 is a short conclusion. 

2. Review and Notation 

Let c denote the affine KaE-Moody algebra that is the central extension of the 

loop algebra of the finite-dimensional Lie algebra ij.#’ The algebra G is 

[J;, J;] = fabc Jzltn + k6abS,+n,0 . cw 

We will often include the value of b E 2 by writing 4 = ik. Setting the integral 

indices m and n in (2.1) t o zero reduces this algebra to the finite one g C 6. 

The Sugawara construction 

1 
L, = 2(k + hV) nEZ Icub : Jh+n Jbn : c 

-6 4s) 
m” 24 ’ 

(2.2) 

associates with 6 the Virasoro algebra 

[Lm,Ln] = (m - n)Lm+n + +$ (m - l)nz(m + 1) Sm+n,O , (2.3) 

with central charge 

Here Icab, h” are the Killing form and dual Coxeter number of ?j, and the normal 

ordering is defined in the usual way. 

: : 
#l In general we use the convention that carets and square brackets denote objects associated 

with affine algebras and bare and round brackets their finite algebra counterparts. 
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The Cartan subalgebra kof 6 contains the Cartan subalgebra ‘i;: of ?j, with 

elements IL; (; I 1, :. . , r) plus the extra element ho. We denote the elements of ?z 

by h, (p = O,l,. . . , T). Dual to these elements, living in the weight space i*, are 

the fundamental weights wp: 

&‘(h,) = St” . (24 

Associated with each h, is a co-root c~i, also living in the weight space &*, so that 

we have 

The dot product is determined from the Cartan matrix A by the-definition of its 

elements: 

A V 
PzJ = ct!p ‘cv, ) 

where a root cyP and its co-root Q; are multiples of each other: 

(2.7) 

There is an extra operator which commutes with the h,; it is LO of (2.3). The 

Cartan subalgebra can be extended to ?ze having elements h, and d = -Lo. We 

denote the weight dual to d by 6 

S(d) = S(-Lo) = 1 , 

and the co-root corresponding to d by A0 

S - A0 = S(d) = 1 . 

(2.8) 

(2.9) 
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With the usual conventions - 

Ao(h;) =&a i= l,...,r, 

ilo s A0 (-Lo) = A0 e A0 = 0 , 

the scalar product on the extended weight space i*’ is Minkowskian. Let 

be the highest root of ?j. The kp”, kvp are known as ma.rks and co-marks, respec- 

tively, with k” E kov E 1. Then if B, C E ?L*~, we write 

B = ,B~w’ + /9&S = [/?iwi = B, k[B], ~61 

c=y/d+ys S = [yiwi = CT k[C17Th] 

where k[B], k[C] are the levels of B and C, respectively, 

k[B] = /3,kvp k[C] = ypkVIL . 

(2.11) 

(2.12) 

Then the dot product on the expanded weight space iz*’ takes the form 

B - C = % ?? + k[B]ys + p,k[C] . (2.13) 

With the above notation, the simple roots and fundamental weights of 4 can be 

written 

CYi = [Ei,O,O] aO = [-GY”Y ‘1 

wa = [ ai,kVi,O] w” = [O,l,O] . 

So the Dynkin diagram of 5 is the extended Dynkin diagra,m of ?j. Outer auto- 

morphisms act as symmetries of the Dynkin c1ia.gra.m of j. The Dynkin diagrams 

of &(2N), S%(2), ,. and SO(N) are shown in Figure 1; their outer automorphisms 

will be discussed later. 
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The highest weight representations-of i are generated from a “vacuum” state 

]A4 >, labeled-by a -dominant weight 

A4 = A$wfi = [ST, AtpI;“,“, o] . (2.14) 

The “vacuum” satisfies 

J,“IAf > = 0 , n > 0 

.$IM > = T$jM > ) 

where Z$ are the matrices representing the generators of ij in t,he finite dimensional 
- 

representation labeled by A!. We will use the notation M = [MoMr . . . Mr] z [Al] 

to denote the weight Al and corresponding highest weight representation. Similarly, 
- 

representations of g will be denoted by A4 = (All A42 . . . AIT) = (M). For unitary 

highest weight representations [Ad] of (2.1), we must require 

k[M] = M,kV’” = k . (2.15) 

The states in [A41 1 laving ‘a fixed eigenvalue of Lo fall into a finite sum of 

irreducible representations of 0. For example, t,he lowest value of Lo is 

Lo = h[&J] - $ = 37. (B+27) * 
2(k + h”) - 24 ’ 

(2.16) 

where 7 is the half-sum of positive roots of ?j. The sta.tes of [Al] with this value of 

Lo fill out the representation % = (Ad). 

The character of a highest weight representation A4 = [Ad] is defined by 
- 



The characters at z = 0 - - 

(2.18) 

are called restricted characters. The modular transformation properties of the 

characters were found in reference 10. Transforming by S : r -+ -l/r reveals the 

asymptotic behavior of the characters: 

as7--t 0, x[M] rv ~[~/I]ewYw'. (2.19) 

The e[M] can be calculated entirely from objects relevant to the finite algebra g : 

[k[M] + h”] -5 n 2 sin ~~~~~~o] . 
[- 

(2.20) 
WEE+ 

Here n+ denotes the set of positive roots, n/r = (A41 . . . A/l,), and F, & a.re, 

respectively, the weight and root lattices of g. 

Knowledge of affine subalgebras of affine algebras is nowhere near as extensive 

as that of finite subalgebras of finite algebras. However, each subalgebra 7 of a Lie 

finite algebra 9 induces a subalgebra 3 of i (see, for example, Ref. 3.One identifying 

feature of a finite subalgebra 3 c s is the index of embedding 0, equal to the ratio 

of the length squared of the highest root of y to that of 7 embedded in 3. The 

affine subalgebra induced by 3” c 3 (obvious notation) is jak c ik. 

All other information concerning a finite subalgebra I” c g is contained in 

--[ll] - . the so-called projection matrix F . F is a (rank 7 = 11) X (rank g = T) matrix 

.relating -weights of s to the weights of I onto which they are projected. If (n/r) = 

( A.fl M2 . - . AL&) is a weight of 9, it is projected onto the weight (A$)p’. 



We can define an affine pTojection-matrix i?, containing F, so that an affine 

weight [M] = [MoMr . . . Mr] is projected onto the weight [M]kT. For our purposes, 

we can assume that 3 is semi-simple, with f simple terms, 7 = C{=, I;, the terms 

having embedding indices ai. Then j will be a (1’ + f) x (r + 1) matrix. The extra 

column is determined by the projection of the weight [loo. . . 0] = LJ’ of G1. Clearly, 

_ ~3’ is projected onto cf, giwpi), where L$‘~) is the 0-th fundamental weight of 3;. 

The extra rows are easily determined by the values ai. 

A special class of affine subalgebras is induced by 7” c s when c(j) = c(g). 

These are the so-called conformal subalgebras and we denote them by ja’ a i”. 

Now this situation is only possible for k = lLgl ,so without loss of generality, we 

_’ 

write ja ai’. The name conforrnal subalgebra is appropriate because the Sugawara 

stress tensors of ifl and j1 are equivalent PI .Complete lists of conformal subalgebras 

have been compiled[“. 

Consider a conformal subalgebra 3” a il. Suppose [AI] is a highest weight 

representation of i satisfying k[M] = 1, i.e., it is a level one representation. Then 

the branching rule for [M] takes the form 

[A/r] -+ c Arm [rn] (2.21) 
k[m]=k 

where 0 5 N, E 2 and the sum is a finite one PI ,over all highest weight represen- 

tations of 5’ satisfying I~[rn] = E. F ur 4 rermore, there is a branching rule for each 

level one representation of i. 

Since the Sugawara stress tensors for jr and 3’ are equivalent, so are their 

lowest moments Lo. Each state in [M] must be represented by a state in one of 

the [m] for which N, # 0, and having the same eigenvalue of Lo. Every state in 



[Ad] has Lo-eigenvalue equal to h[M]-- c/24 of (2.16) mod an integer; and similarly 

for [ml. Therefore every [m] for which N,, # 0 in (2.21) must satisfy the level 

matching condition: 

0 5 h[nz] - h[M] E 2 . 

Clearly, (2.21) implies 

x[Af] = C NrnX[nxI * 
k[nz]=k 

By (2.21), as 7 + 0, this yields the asymptotic constraint 

t[M] = c Nm+2] . 

(2.22) 

(2.23) 

(2.24) 
k[m]=t 

-For many conforms1 subalgebras, asymptotics and level matching are sufficient to 

determine the positive integers N, and therefore the branching rules (2.21) [5,121 . 

But there are many others for which this is not true. 

Note that the outer automorphisms of j map level one representations into each 

other. One can hope to obtain from the branching rule of one representation of $ 

into 5” the branching rule for another level one representation. This will be possible 

when there is an image of the outer automorphism in the outer automorphism of 

the subalgebra 3. In that case there exists a projection matrix k manifesting the 

relation between the algebra and subalgebra automorphism. 

Pieces of each branching rule can be computed simply from finite Lie algebra 

theory. The states with lowest eigenvalue of Lo in the level one representation [Al] 

of jr fill out the represent at ion (M) of S. (A/r) b ranches into several representations 



(m) of the subalgebra 3: - 

CM) + C Nm Cm) 
m 

(2.25) 

These latter retain the lowest eigenvalue of Lo, so they must fill out the lowest 

Lo-level of highest weight representations of 3. The finite branching rules (2.25) 

provide part of the full affine branching rule (2.21). 

The outer automorphisms may be sufficient to generate the full affine branching 

rule from the parts of them just mentioned. This is the case for the infinite series 

of conformal subalgebras S’̂ r-‘@) x S?Y(q) a S^r/(~jq) [81. In the next section we show 

that this conformal subalgebra is not special, by calculating in the same manner 

the branching rules for S?J(2)” x SAO(N)4 a 9~(2N)‘. 

3. Branching Rules for L?p(2AT) D sAU(2)N x SAO(N)4 

The finite subalgebra 

Sp(2iV) > SU(2)" x SO(N)4 (34 

is defined by the branching rule 

55l --+ (w -1, 3) . (3.2) 

The first entry in the brackets is the first fundamental weight of SU(2) and the 

second that of SO(N). Equation (3.2) says that the fundamental 2N-dimensional 

Tepresentation of Sp(2N) b ranches into the direct product of an SU(2) doublet 

with a vector of SO(N). 
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The Sp(2N) - p le resentatiuns at. the lowest eigenvalues of Lo in the highest 

weight representation wp (p = O,l, . ..N) of $JI(‘LN) are the scalar and basic repre- 

sentations, 0,s (i = 1, . .._ iv). Tl le b ranching rules for the la.tter into SU(2) x SO( N) 

are 

[;I 
-i w + C(( i - 2s)w 1, ‘i7” +z-y . (34 

s=o 

Here the W’ on the right hand side is the fundamental weight of SU(2), and the 3 

are weights of SO(N). The definitions of the 17~ differ for N odd and N even. For 

N = 2Q + 1, 
pi = zi (135&-1) 

iTQ = 2i57Q j7O = 0. (3.4) 

The weights with indices larger than the rank Q in (3.3) are handled by duality: 

,2Q+l-j F.i = . (3.5) 

For N = 29, the definitions are 

Fi = zi (15jLQ-2) 

Tp=o #-I = wQ + GQ-l (3.6) 

The symbol $ indicates there are two separate representations in fl. Weights with 

indices larger than Q are again handled by duality: 

$Q-i = pi 7 .I’ > Q- ( w 

Note that (3.3) 1 g a so ives correctly the bra.nching rule for the scalar representation 

-when i = 0. For the reader’s convenience we sketch the derivation of the finite 

branching rules in an appendix. 
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The outer automorphismgof ,?&2N), Sb(2) and 5?O(N) can be explained with 

the help of Figure 1. $p(2N) = en; h as a 22 outer automorphism group generated 

by A: 

en; : AwS = w~-~, O<s<N. (3.8) 

The action of A is illustra.ted in Figure l(a). Sb(2) = -41 also has a 22 outer 

automorphism group. Its generator c1 is depicted in Figure l(b): 

A 

Al: .w" = wl; awl = WO. (3.9) 

Since the root structure of SO(N) d ff i ers for odd N = 2Q + 1, and even 

N = 2Q, we will discuss them separately. 

With N = 2Q + 1, the subalgebra is that shown above. The outer automo’r- 

phism group of kQ is 22, generated by cr: 

awe = w1 ; cuw’ = w” ; aws = ws, s # 0,l. (3.10) 

Figure l(c) illustrates the action of cy. 

There is considerable freedom in the choice of affine projection matrix k’. One 

restriction is that it should contain an acceptable projection matrix F, for the 

finite Lie algebra embedding. F is obtained from k by deleting the rows and 

columns associated with the 0th fundamental wcight,s of the “large” algebra and 

all embedded algebras. For F to be satisfa.ctory for (3.1), it is necessary and 

sufficien-t that it reproduce (3.2). 

An acceptable projection matrix fi is 
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N N-l N-2 

0 1 2 . . 

- - - 

4 3 3 

0 1 0 ** 

0 0 1 

Q+2 Q+l Q Q-1 

Q-1 Q Q+l Q+2 . . . 
- - - - 

3 2 2 3 

0 0 0 0 

0 0 0 0 
*. 

0 0 0 . . . 1 0 0 1 

0 0 0 0 2 2 0 

- 

This matrix makes manifest the relation 

‘. A = ~1x1. 

. . . 

: 

. . . 

2 1 0 

N-2 N-l N 
- - - 

3 3 4 

0 1 0 

1 0 0 

0 0 0 

0 0 0 

(3.12) 

-The finite branching rules give us part of the full affine branching rules. Equa- 

tion (3.3) implies 

[( N-~+2s)w0+(~-2s)w1,vS+v’l-S] +... . (3.13) 
s=o 

where we define the weights vs such that [VP + Y’] is always a level four represen- 

tation Of 6,: 

yp = wp 
7 29&Q-l 

.Q = 2,Q yl = do + w1 
(3.14) 

and also Y’ = 2w ’ . Weights with negative indices in (3.13) are defined by 
- 

yp = v--p. (3.15) 
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Equation (3.13) also implies - 

Q-L:1 UN-p + c [( p + 2s)~’ + (N - /.i - 2s)u1, us - uN-- 1 + . . . . (3.16) s=o 
Using duality 

yN-~-~ = y~+s (3.17) 

and flipping the sign of s we get 

(&p-P 
+ 5 [( ,u-2s)w0+(N-~+2s)w’, u’+u~-~] +... . 

s=[f]-Q 

NOW applying (3.12) to this last equation and adding the result to (3.13) yields 

E 
2 

up -+ g [( N-~+2s)w0+(/J-2%S)Wl, us+u~-s] +,.. . (3.18) 
s=[$]-Q 

To see whether or not (3.18) is th e complete afhne branching rule one can check 

numerically to see if the asymptotic sum rule (2.24) is satisfied. We find that it 

is not; there are representations missing from (3.18). But we find the unique way 

to satisfy the asymptotic sum rule by adding representations obeying the level 

matching condition ( 2.22) is to modify the definition of Y’ to 

yo = 2w” $2J. (3.19) 

Again, the symbol $ indicates Y’ consists of two representations. Then the follow- 

ing are the complete branching rules for the conformal embedding 62Q+l D AfQ+l x 

hi : 

E 
2 

d -4 F [i N-/L+~s)~~+(/L-~s)L& zP+~ll--~] (3.20) 
s=[fl-Q 

with the definitions (3.14) and (3.19). 
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To make the procedure perfectly clear, let us go through a specific example: the 
A 

branching rule of u2 = [OOlOOOOOOO] of Cg into iy x &,“. (3.3) tells us the branching 

rules for the representations w. -2, z7 of the finite Lie algebra Cg i.nto representations 

of A1 x B4: 

w2 + (2 - 0100) + (0 - 2000) 

5j7 + (7 - 0100) + (5 - 1010) + (3 - 0102) + (1 - 0012). 

Each of these tells us part of the corresponding affine branching rule: 

w2 + [72 - 201001 + [90 - 220001 + . . e 

w7 + [27 - 20100] + [45 - llOlO] + [63 - 001021 + [Sl - 000121 + . . . . 

Applying the automorphism (3.12) to the second equation and combining the result 

with the first gives 

w2 i [90 - 22000]+ [72 - 20100] + [54 - llOlO] + [3G - 00102] + [18 - 00012]+. :. . 

The unique way to satisfy (2.24) by adding representations obeying (2.22) is to 

include [72 - 02100]. Th en the result is that dictated by (3.20). 

(b) &Q D iifQ X 6; 

For even N = 2Q in s^p(2N) D s^rr(2)” x S^o(N)‘! the embedding is 6’2~ D 

aTQ x r’$. The outer automorphisms of fin differ for Q odd and even, and can be 

explained using the Dynkin diagram symmetries of Figure l(d). The symmetries 

- ef”Q- 
i: 

eb, ef and p are defined by 

e&do = w1 ; q&d1 = w” ; ebd = WA, x#o,l 

1 =w Q; efwQ = wQ-1 * , efw’ = w’, A#&- 

pwx = wQ-‘, 0 <A < Q. 
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For Q odd there is an outer aiitomorphism 

p’ = pef = ebp 

of period four. For Q even the outer automorphism group is 22 x 22, with gener- 

ators p and 

0 = ebef (3.23) 

Notice g is also an outer automorphism for odd Q, since (p’)” = 0. 

We have found three different affine projection matrices manifesting the outer 

-automorphisms of the embedding AqQ x &$ a i’iu. One is 

- 

N N-l N-2 Q+l Q Q-l 2 1 0 

0 1 2 -.. Q-l Q Q+l +.. N-2 N-l N 

- - - - - - - - - 

4 3 2 2 2 2 2 3 4 

0 1 0 *** 0 0 0 *** 0 1 0 

0 0 1 0 0 0 1 0 0 
a . : 

0 0 0 . . . 1 0 1 . . . 0 0 0 

0 0 0 0 2 0 0 0 0 

. (3.24) 

This matrix shows the branching rules obey (3.12), as in the case when N is odd, 
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discussed above. A second matrix i-s _ 

-N N-l N 

0 1 0 
- - - 

4 3 2 
1 

0 

2 
0 

For Q odd, this manifests 

- while for Q even it realizes 

N-l N 

1. 
- 

1 

1 

1 

0 

0 

0 

0 . . 
- 

0 

0 

2 
. . 

0 
0 
0 

iv 
0 
- 

0 
0 
0 

2 
0 
0 

A = lxp 

A = lx,u. 

N-l N 

0 
- 

0 

0 

0 

0 

2 
2 

N-l N 

1 

- 

0 

0 

0 

0 

1 

3 J 

(3.25) 

(3.26) 

(3.27) 

The third matrix is obtained by interchanging the last two rows of (3.25). So we 

also have 

A = 1 x a/..~’ (3.28) 

for Q odd and 

A = lxap (3.29) 

for Q even, when acting on the affine branching rules. 

- As in section (a), we have A = a x 1. Also, the finite branching rules (3.3) take 

the same form for N odd or even. So we arrive immediately at the result (3.18). 
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However, the Yi of (3.3) are defined differently for N = 29 (compare (3.6) and 

(3.4)), so the corresponding up must also be defined difFerently. 

In fact, comparing (3.26) with (3.28) for Q odd and (3.27) ‘with (3.29) for Q 

even tells us that the affine branching rules must be invariant under cr. This in turn 

means that the affine weights VP in (3.1s) must be redefined to be c invariant. The 

appropriate VP are therefore: 

# = &y > 2<p<Q-2 

u” = 2w0832wl, ul = w"+wl (3.30) 

uQ-l = wQ-l + wQ > .Q = 2wQ-1 Q3 2wQ. 

We have verified numerically (for a large number of cases) that the asymptotic 

sum rule (2.24) is also satisfied by the branching rule (3.20) for N even. Again, 

weights with negative indices are defined by uf‘ = u-p, and the ~1’ satisfy the 

-duality relation (3.17). 

4. Conclusion 

For ease of reference, let us first state that the branching rules for the conformal 

embedding S?J(2)N x Si>(N)4 a Sp(2N) are 

E 
2 

wp + g [( N - p + 2s)~’ + (p - 2s)w1, us + ufi+ ] . 
s=[:l-Q 

The SO(N) weights up are defined differently for N odd or even; for N = 2Q+l the 

definitions are given in (3.14) and (3.19), and for N = 2Q they are those written 

-in (3.30). Weights up with indices p too small or too large are to be understood 

using u -p = up and up = uN-p, respectively. 

18 



Our results demonstrate the general utility of outer automorphisms in the 

calculation of conformal branching rules. 

They also complete the calculation of the conformal branching rules for infinite 

series of nonsimple higher level embeddings. There are four such infinite series of 

conformal subalgebras ‘“‘.S^U(~)“XS^O(N)~~~~~~(~A~) was treated here and S^U(p)Y x 

sAwdp Q SWPY) in reference S. The remaining two are S?J(p)p x S^O(q)P a S^O(pq) 

and Sp(2p)p x Sp(2q)P a S^0(4pq). But their branching rules may be calculated 

using a theorem lr3’ applicable to conformal embeddings 5 a S@(D), when there 

exists a symmetric space S/T of dimension D. 

We believe the use of Ka&-Moody outer automorphisms will allow the calcu- 

lation of all conformal branching rules. 
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APPENDIX 

In this appendix we derive formula (3.3) for tl le b ranching of the basic repre- 

sentation of Sp(2N) into SU(2) x SO(N) representations. 

Sp(2N) is the group of transformations of 2N-dimensional vectors that leaves 

invariant the antisymmetric tensor T with nonzero comonents TM,M+~ = 1 = 

-TM+~,M. The basic representations 3 can be represented by traceless antisym- 

I ,, .-metric tensors of rank i, the traces taken using the invariant a-tensor T. As such, 

they can be represented by Young tableaux consisting of one column of i boxes. 
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Representations of SU(2)- can also be symbolized by Young tableaux. A row of 

m boxes realizes the representation (m). Since SU(2) leaves invariant the c tensor 

of rank 2, a column of two boxes is equivalent by duality to a scalar (0). A column 

of more than two boxes is impossible and must be excluded. 

Totally antisymmetric tensors again correspond to irreducible representations 

of SO(N). Tl le representations are not the basic ones, however. In fact, an anti- 

symmetric tensor of rank i transforms as the representation with highest weight 2 

of (3.4) or (3.6), according to whether N is odd or even. 

Since SO(N) t ransformations preserve determinants, they leave invariant the 

E tensor of rank N. So the concept of dual tensors applies to SO(N) as well. This 

is the origin of the relations (3.5) and (3.7). In the language of Young tableaux, it 

says that a column of j boxes is dual to a column of N - j boxes. 

The embedding Sl1(2N) > SU(2) x SO(N) is defined by the branching rule 

iiT1 --+ (wl, 3). 

This is depicted in Figure 2(a), and allows us to use Young tableaux to find the 

branching rules for (3.3). 

Consider a basic representation ti of Sp(2N). Tl le i boxes of the column tha,t 

is the corresonding Young tableau break up into 2i boxes, i for SU(2) and the 

other i for SO(N). Each of the two sets of i boxes can form a Young tableau of 

any type, but the antisymmetry of the original rank i tensor must be respected. 

This is done by pairing SU( 2) and SO(N) re p resentations such that their Young 

tableaux can be obtained from each other by interchanging rows and columns. 

As an example, the branching of the fourth basic representation L? of Sp(2N) 

is shown in Figure 2(b). If the first Young tableau in each pair on the right hand 
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side is that of SU(2), the first two- pairs are superfluous, since the tableaux do 

not correspond to SU(2) 1 relresentations. It is easy to convince oneself that this 

procedure for any basic representation leads to (3.3). 

For completeness we mention that Young tableaux can be used to find the 

branchings of other Sp(2N) p re resentations, but some care is needed. Consider 

the adjoint representation. It can be represented by a symmetric rank 2 tensor. 

Because of its symmetry, its branching is represented by identical Young tableaux 

for SU(2) and SO(N), as shown in Figure 2(c). But the original Sp(2N) tensor is 

not traceless, since there is no Sp(2N) invariant symmetric tensor with which to 

contract. Therefore, the row of two SO(N) b oxes on the right hand side of Figure 

2(c) represents two representations; 2W1 and a scalar that is essentially the trace 

of the SO(N) t ensor. The adjoint branching rule is therefore 

2w1 + (2w1,2d) + (2w1,0)+ (0,G2). 
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FfGURE -CAPTIONS 

1) The Dynkin diagrams of (a) Sp(2iV) = &JJ, (b) S%(2) = a,, 

(c) S^o(2& + 1) = BQ,’ and (d) Sb(2Q) = fin are shown. The nodes 

are labelled above and the corresponding co-mark Ic”p is written below in 

brackets. Depicted are symmetries of the Dynkin diagrams. As explained in 

the text, these are either outer automorphisms themselves or can be used to 

define them. 

2) Sp(2N) 3 SU(2) x SO(N) branching rules using Young tableaux. 

(a) Depicted is the defining branching rule of the fundamental representation 

-’ -r d+(w ,w ). Branchings of the fourth basic representation and the adjoint 

representation of Sp(2N) are shown in (b) and (c), respectively. 
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