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ABSTRACT 

We have developed a general first-order theory of coupled motion between the 

transverse phase planes in single-pass static magnetic beam transport systems. The 

results are expressed in terms of the projected emittances in the z and y transverse 

planes at any point s along the optical axis of the system. 
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I. INTRODUCTION 

One of the possible consequences of coupled motion in a beam transport sys- 

tem is an increase in the emittance projected onto the transverse planes at points 

downstream. To evaluate the magnitude of this effect we use the symplectic condi- 

tion imposed upon the system by Hamiltonian mechanics to minimize the number 

of free parameters needed to describe the coupled motion. We then calculate a 

four-dimensional monoenergetic beam envelope (a matrix) at any position s along 

the optic axis of the transport line and from this determine the emittance projected 

onto the I(: and y transverse phase planes. The results are expressed in terms of 

a 4x4 linear transformation matrix R and its 2x2 submatrices A, B, C, D. An 

important result is that if the determinant of any one of the 2x2 submatrices be- 

comes negative, then the projected emittance can become large, depending upon 

the magnitudes of the absolute values of the submatrix determinants. 

The calculations are applicable to any single-pass charged particle beam trans- 

port system constructed from static-magnetic optical elements. 

II. NOTATION 

For this report we use the definitions and notation of the TRANSPORT1j2 pro- 

gram where the monoenergetic linear transformation in a beam transport system 

is expressed in the following matrix form: 

(1) 

- 

R is a 4 x4 linear transformation matrix and, to first-order, the coordinates x, x’ , 

y, and y’ form a set of canonical variables. 
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i 
For static magnetic systems, Liouville’s theorem of phase space conservation 

requires that det R = 1. If R has the form 

R= (2) 

where A and D are 2 x2 submatrices, then the x- and y-plane optics are decoupled 

and are independent of each other, in which case 

detA = detD = 1 . (3) 

Thus, six independent parameters are needed to determine the uncoupled R matrix, 

three for the x plane and three for the y plane. 

In the more general case, where the motion between the x and y phase planes 

is coupled, the R-matrix has the form: 

R= (4) 

where R is a 4x4 matrix and A, B, C and D are 2x2 submatrices. B is a matrix 

coupling the y-plane to the x-plane and C is a matrix coupling the x-plane to the 

y-plane. 

As will be shown in Section III, there are six independent symplectic conditions 

imposed upon R from Hamiltonian mechanics. Therefore there are (sixteen minus 

six = ) ten independent parameters needed to uniquely determine the matrix 

elements of the coupled R matrix. 
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III. THE SYMPLECTIC CONDITION AND ITS CONSEQUENCES 

The role of the symplectic condition for coupled motion in particle accelerators 

has been previously addressed by Courant and Snyder3 and Teng5 among others. 

For our purpose we begin with a derivation of the symplectic condition and develop 

from this the implications to our particular problem. 

Let us consider motion in three dimensional space and denote the coordinates 

by Q = (~1, qz,q3). As is well known, the motion of particles can be described by 

the Hamiltonian equations 

dH 
ii=ap; , 

dH 
Pi=-% ) (5) 

where pi are the conjugate momenta of the variables qi, and H is the Hamiltonian 

describing the system. 

The transformation & = Q(q, p, t), P = P(q, p, t) is canonical when there exists 

a function K(Q, P, t) ( a new Hamiltonian) such that the variables Q, P satisfy the 

equations: 

Qi=~ , pi=-?5 . 
I 8Qi (6) 

According to Hamiltonian mechanics the functions Q and P satisfy the follow- 

ing conditions: 

[Qi,Qjl=O 7 [pi, pj] = 0 7 [Qi, Pi] = 6.. ,3 ) 

where [F, G] is th e P oisson bracket of F, G  defined as: 

wl=~(gg-gg) * 
j 3 
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8Pi dPk a?% 8Pk ----- = 
&jO dPj0 aPj0 dqj0 

o 
7 

Given initial conditions for the variables qi and the momenta pi, a solution exists 

which can be written in the form: 

Qi = Qi(qiO,piO, t) 7 Pi = Pi(QiO,piO, t) - (7) 

This transformation, from the initial conditions to the values at time t, is a canon- 

ical transformation. Thus the functions qi and pi satisfy the relations: 

[Qi7 qjl = 0 7 [pi,Pjl =O 7 [Qi,Pjl = bj 7 
- 

or explicitly: 

(8) 

Let us now consider the six-dimensional vector 

u = hPl~Qa,Pa,Qa,Pa) 

and the Jacobian of the transformation (7) defined as: 

M= 

Then the conditions (8) can be expressed in terms of the matrix A4 as follows: 

iizs% l = s (9) 



where S is the matrix: 

- 
and M is the transpose of M. Equation (9) is called the symplectic condition. All 

solutions to Hamiltonian equations must satisfy this condition. Conversely, if a 

transform (7) satisfies the conditions (9), then there exists locally a Hamiltonian 

and a set of associated Hamiltonian equations to which (7) is a solution. 

‘0 1 0 0 0 0 

-10 0 0 0 0 

000100 

0 0 -10 0 0 

000001 

.o 0 0 0 -1 0 

As shown in Appendix B, to first-order, the coordinates x, IC’, y, and y’ form 

a set of canonical variables. Therefore the symplectic condition also applies to the 

4x4 R matrix, defined in Eq. (l), as follows: 

iiSR = S, 

where E means the transpose of R and 

S is now a 4x4 symplectic matrix defined as 

s= 

0 1 0 0 

-1 0 0 0 

0 0 0 1 

0 0 -1 0 

. 

4x4 

(10) 

(11) 

(12) 

- 

Note that SS = -I (where I is the unity matrix). 
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We now define the kympkectic conjugate, ?i’, of the 2x2 submatrix, A, as: 

XC-- [-y ;) Ji (-Y ;] = (-Z;; -y ; (13) 

from. which it follows that 

Ax = ZA = 
detA 0 

0 I detA * 
(14) 

Similarly, the symplectic conjugate of the 4x4 R-matrix is defined as: 

77 = -sky = ?i:E i 1 B D 4x4 - 
Such that 

(15) 

(16) RR = -SkS’R = -SS = I . 

As a consequence, it follows that: 

j&R-l . (17) 

We now expand the matrix products RR and XR in terms of their 2x2 sub- 

matrices. 

RX= [; I] [; ;] , (18) 

from which 

- 

Az+BB 
RR = 

Cz+ DB 
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From Eqs. (14)and (19), it follows that 

detA+detB 0 I I 
1 

ZA+BB= 
0 detA+detB 2x2 = 0 

and 

1 
cC+i?D= 

detC+detD 0 

= 0 detC+detD 

1 
2x2 

I 
0 

0 1 (21) 
1 2x2 

0 

1 1 2x2 

(22) 

Similar results may be obtained from Eq. (20). 

From Eq. (19) we conclude that the symplectic condition imposes the following 

constraints upon the coupled R-matrix. 

detA+detB = 1, detC+detD = 1, 

Ac+BD=O, Cz+DB=O; 

and from Eq. (20) we have the alternate form 

detB+detD = 1, detA+detC = 1, 

Z~+zli~=o, BA+??C=O. 

It can be shown that Eqs. (23) and (24) are two different, but equivalent, ways 

of expressing the symplectic constraint. We will use both forms in this report, 

- 
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but first we show that the set of Eqs. (24) re p resent only six independent condi- 

tions. The first two are: 

detA+detC = 1 , 

(25) 
det B+ det D = 1 . 

Now we show that the last of Eqs. (24) p ro d uces four additional conditions. 

Given: 

BA+i% = 0 , (26) 

BA = 

BA = 

where we define 

A11 &2 A12 &2 

A21 B22 A22 B22 

A11 &I A12 &I - - 
A21 B21 A22 B21 

41 
A21 

f?iI = det [ ::: ::I] . . . 

Similarly, 

(27) 

, (28) 

2x2 

(29) 

DC = 
t -;;I -;;; ] ( ;; :;I] ) (30) 
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or 
/ / 

Cl1 Cl1 012 012 

c21 c21 022 022 
DC = DC = 

Cl1 Cl1 Dll Dll 
- - - - 

c21 c21 D21 D21 
\ \ 

Cl2 

c22 

Cl2 

c22 

\ 

D12 

022 

Dll 

Da1 
J 2x2 

(31) 

Adding Eqs. (28) and (31), we conclude that Eq. (26) is equivalent to the 

following set of four equations: 

All Bll Cl1 Dll 
+ = 

A21 B21 c21 D21 
0 7 

All B12 Cl1 D12 
-t = 

A21 B22 c21 022 
0 9 

(32) 

A12 Bll Cl2 Dll 
+ = 

A22 B21 c22 D21 
0 7 

42 B12 Cl2 012 

A22 B22 +c22 = 
0 . 

D22 

It can be shown that expanding the matrix equation 

F~B+CD=O, 

from Eqs. (24) yields the same set of four Eqs. (32). Thus there are only six 

independent relations imposed by the symplectic condition. These results may be 

summarized as follows: 
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Define the “sum of determinants” of any two columns of the matrix R as the 

sum of the two determinants formed by rows 1 and 2 and rows 3 and 4. There 

are six such combinations. The above six symplectic conditions represent all of 

the combinations of the columns (;,j). If (;,j) = (1,2) or (3,4), then the sum of 

the determinants is equal to 1, which is equivalent to Eqs. (25). For the remaining 

combinations of columns, such as (1,3), th e sum of the determinants is equal to 

zero, which is equivalent to Eqs. (32). It is readily deduced from Eqs. (25) and 

(32) that if all of the matrix elements of B are identically equal to zero, then the 

same is true for the matrix elements of C. 

If one interchanges the words, rows, and columns in the above paragraph, then 

the resulting statement applies to the set of Eqs. (23). From this one can show that 

Eqs. (23) and (24) are equivalent ways of expressing the six symplectic constraints. 

IV. CALCULATION OF THE PROJECTED BEAM EMITTANCE 

We are now in a position to define and calculate the projected emittances in 

the z and y transverse planes of a beam as it passes through a coupled system. 

Let 0 be a 4x4 symmetric, positive definite, beam envelope mat&r as defined 

and used in TRANSPORT.2 

UX t 
CT= I 1 LTy ' 

(33) 

- 

where gx and gY are 2x2 symmetric, positive definite, matrices representing the z 

and y projections of the beam, and the 2x2 matrix t describes the 2-y coupling 

present in the beam. 

11 



. 
The relation between: the beam matrices at a position 0 and at a position 1 is 

given by the equation: 

01 = RaoR ) (34) 

or explicitly 

[; J = (a fJ [; ;I01 [; g] (35) 

Aax + Atoii + Broii + BayoE AaxoE + AtoE + BFoE + Boy05 
= 

Caxoi+ CtoZi + DToii + Dayoii Caxoi? + CtoZi + Droe + Day06 

(36) 
Thus 

c”l = Aaxo i+Atoi+ B~oi+Ba,o~ , 

OYl = coxo ~+Cto6+D~o~+Da,oZ) , (37) 

tl = Aaxo e+AtoE+ Bt,c+ Bay0 5 . 

If we assume that the initial beam is uncoupled, i.e., to = 0, then 

OX1 = Ao~,A”+Bo~~~~ , 

OYl = Coxo i? + Day0 2i . 

The projected emittances at position 0 are defined1y2 as: 

“9, = CM (“x&2 , 

go = det ho)2x2 ’ 

(38) 

(39) 
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and at position 1 as: 

“3, = det (0x1)2x2 , 
(40) 

from which: 

2 
eY1 = det (%)2x2 ’ 

“5, = det 
( 

Aaxo A” + Bay0 g 
> 

2x2 , 

2 
% 

= det 
( 

Cuxo C+ DayoL) 2x2 
> 

. 
(41) 

In order to evaluate the above expressions, we use the following matrix identity 

for the determinant of the sum of two 2x2 matrices M and IV: 

det(M+N) = det M+det N +det (Z;; 211 +det [ 2: 2) * (42) 

To further simplify the calculation, we assume that the initial uncoupled beam is 

represented, in both the x and y planes, by upright beam ellipses, i.e., that 

I 011 0 I I 033 0 
0x0 = ’ OY(-J = 0 

022 0 044 
1 . (43) 

Then it follows from Eq. (39) that 

&Z. = 011 022 , 

(44) 
2 

&YO = 033 044 * 

This simplification does not restrict the generality of the result since it is easily 

demonstrated that, given any uncoupled beam, there always exists at least one 

- 

symplectic, uncoupled transformation which transforms the beam to an uncoupled, 

upright ellipse in both the x and y phase planes. The proof of this statement is 

readily obtained from Eq. (3.7) in Ref. 4. 
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. After some algebraic manipulation, the following expressions evolve from Eq. (41): 

E& = det ox1 = det (Aox 2) + det (Boy0 B) 

+ 011 a33 

+ 022 033 

All &I 
A21 B21 

2 

+ QllO44 

A12 &I 
2 

A22 B21 
+ 022 044 

and 

2 
5 

= det flyI = det (Ccrxo C) + det (Doyo “> 

Cl1 Dll 
2 

+ 011 033 
C 

+ Cl1 g44 
21 D21 

Cl2 Dll 
2 

+ 022 033 
c22 D21 

-I- 022 044 

All B12 

A21 B22 

A12 B12 

A22 B22 

Cl1 D12 

c21 022 

Cl2 012 

c22 D22 

2 

(45) 

2 

, 

2 

(46) 

2 

7 

where 1 1 means the determinant of the enclosed matrix. 

Using the expanded form Eqs. (32) of the symplectic condition (26), the ex- 

pression (+ - $,) can be written as follows: 

(+E:l)=e( x0) ( YO) ( x0) ( YO) * d t Aa 2 +det Bo 5 -det Ca e -det Da 5 

(47) 
Now using the symplectic conditions: 

- 

detA = detD, detB = detC, and detA+det C = det D+det B = 1 , 

(48) 
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i 
we conclude that: 

(E& -E:,) = (ezo -cio) (det A - det C) , 

= (~2, -s,) (1 -2detC) . 

Two important conclusions may be extracted from Eq. (49). 

(49) 

1) If a beam is uncoupled at the beginning of a system, and the initial x and 

y emittances are equal, i.e., if cxo = Eye, then at all points downstream, the 

projected emittances cxl and &yl will also be equal to each other. 

- 

2) If at any point downstream the determinant of any one of the submatrices 

A, B, C, or D is equal to l/2,, then it follows from the symplectic condi- 

tions, (48), that all of the submatrix determinants will be equal to l/2; i.e., 

det A = det B = det C = det D = l/2. At such a location the projected 

emittances in the x and y planes will be equal, i.e., &xl = Ebb, independent 

of the ratio, ~~~~~~~~ of the initial uncoupled x and y emittances at the 

starting point. 

We now wish to explore the magnitude of the projected emittances under vari- 

ous circumstances. First of all, we consider the special case where, at the beginning 

of a system, the x emittance is finite but the y emittance is set equal to zero. This, 

for example, is the situation when one is launching betutron oscillations in the x 

plane and observing the resultant coupling into the y plane. This corresponds to 

the following: 

&x0 f- 0 but &yo = 0 . (50) 

- 
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From Eqs. (41), it follows that 

E$ = det crxl = det (Aox ;i> = Ezo(det A)2 , 

2 
% 

= det gY1 = det (C~xo 2;) = Ezo(detC)2 . 

or 

&Xl = &x0 IdetA = cxo 11 -detCI , 

&y1 = &x0 ldet Cl . 

- where now I . . . 1 means the “&solute value o$” 

At this point, it should be noted that the determinants of the submatrices A 

and D or B and C can become negative !! 

We now explore the implications of Eqs. (52) for both positive and negative 

values of the 2x2 submatrices. If all of the submatrix determinants are positive, 

which is equivalent to 

O<detC<l, 

then we readily conclude from Eqs. (52) that 

&Xl + Eyl = Exe ; 

(53) 

(54) 

that is, the sum of the projected x and y emittances at position 1 is bounded by 

the magnitude of the initial emittance cxo. 

However, if either the det A = det D is negative or the det B = det C is nega- 

tive, which is equivalent to 

det C > 1 or detC < 0 , (55) 

- 
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. 
then it follows from Eqs.. (52) that 

I+ - ql1 I = &x0 ; (56) 

that is, the diflerence between the projected x and y emittances at position 1 

is equal to the initial x emittance at the beginning of the system. Under these 

circumstances the projected emittances, ~=r and ,syl, are unbounded and as a 

consequence can become very large depending upon the magnitude of the absolute 

values of the submatrix determinants. The consequences of both Eqs. (54) and 

(56) are illustrated in Fig. 1. 

Next we consider the case of a beam propagating through a single-pass trans- 

port system where both of the initial, uncoupled x and y emittances have finite 

values; i.e., when 

cxo # 0 and cYo # 0 . (57) 

We may then write the following expressions for the projected emittances: 

&xl 2 “xo IdetAl+Eyo IdetBI , 

(58) 
~~~ 2 ~~~ ldet Cl + eye ldet DI . 

A formal proof of the validity of these inequalities is given in Appendix A. 

Using the symplectic conditions, as stated in Eq. (48), the above inequalities 

may be written as a function of the determinant of any one of the submatrices 

A, B, C or D. For example, if we choose the det C as the variable, then: 

cxl 2 cxo 11 -detCl +eyo IdetCI , 

(59) 
cyl 2 &xo 1 det Cl + cyo 11 - det Cl . 

- 
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cs 1 

Yl =EXo 

/ det C < 0 or det C >I 
I x1 I u: 

Fig 1. An illustration of the effect on projected emittances of positive and negative 

values of the submatrix determinants when &zO is finite and .zyo = 0. 
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From Eq. (59) ‘t 1 is observed that at any position, s, where x-y coupling is present, 

. 

the sum of the projected x and y emittances will always be equal to or greater 

than the sum of the initial, uncoupled x and y emittances. 

We now wish to explore the physical meanings of the equal sign and of the 

inequality sign in the above expressions. It is sufficient to study the implications 

in the x-plane as the interpretation will be the same for the y-plane. 

Suppose we rewrite the first of Eqs. (38) as follows: 

- 

uxl = (AUxo;i)+ (B*yog) = aA+aB 7 

where UA and Og are 2x2 beam matrices, a~ is that portion of the projected beam 

matrix ox1 that originates from the initial phase space in the x-plane and fYg is 

that portion which arises from the y-plane, but is projected onto the x-plane at 

position 1. 0~ and ag each represent beam phase ellipses, and cxl is the matrix 

sum of these two ellipses, both of which lie in the (xc, x’) phase plane at position 1. 

There are two distinct possibilities regarding the relationship between aA and 

fYg. We first consider the case where ug represents an ellipse that is similar to and 

has the same orientation as the ellipse represented by fYA, as illustrated in Fig. 2(a). 

This situation is expressed mathematically by the following matrix equation: 

OB = IbA = 
[: i] (1:: :;;]A ’ 

where I< is a scaling matrix relating aA to Crg. Then 

(61) 

- 

*x1 = d~+Ug = (I+K)UA = ‘;’ l:k] (:;; :;;]A * (62) 
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. 

YO 

- x contribution 

(W 

x contribution 

- 

& =Total Projected 
xl Emittance’ 

E x, =&ddet Al +Eyoldet BI 

& =Total Projected 
xl Emittance 

E,, >E,ddet Al +Eyoldet BI 

10-68 
6168A2 

Fig 2. An illustration of the projected emittance in the x plane as a function of 

the relative orientation and similarity of the x and y contributions. 
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If we now calculate the projected emittance at position 1, we have 

&zl = det uxl = det (*A -I- ug) = det[(I + K)uA] , 

from which 

&Xl = (1 + k) (det uA)li2 = (det 0~)~‘~ + k (det 0~)~‘~ 

= (det uA)1'2 + (det uB)1'2 , 

- 
or 

&Xl = &x0 IdetAl+Eyo IdetBl . 

(63) 

9 
(64) 

(65) 

Thus, the equal sign in expressions (58) and (59) applies when the two projected 

ellipses UA and ug are similar to each other and have the same orientation. 

Next we consider the case when UA and Ug are not similar and/or do not have 

the same orientation, as is illustrated in Fig. 2(b). In this case, the inequality sign 

applies, i.e., 

czl > &xo IdetAl+Eyo IdetBl . (66) 

V. EXAMPLES 

We now wish to explore the implications of Eq. (49) and of the inequalities 

(58) and (59) for both positive and negative values of the submatrix determinants. 

We first consider the case where the initial, uncoupled emittances are equal in the 

x and y planes, i.e., when 

Exe = ey(-J =‘&o ; 

- 
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then from Eq. (49), it f o 11 ows that, at all points downstream, the projected x and 
. 

y emittances are equal, i.e., 

&Xl = ey1 =.51 . 

From (58) and (59), we conclude that 

- ~1 /eo 2 IdetCI+ IdetDl , 

or 

, 

~1 /co 2 IdetCI+ 11 -detCl . (67) 

Consider now the case when all of the submatrix determinants are positive; 

i.e., when 

O<detC<l. 

From Eq. (67) we conclude that the projected emittance at any position down- 

stream will be equal to or greater than the initial, uncoupled emittance at the 

beginning of the system; i.e., 

El 2 &o * (68) 

- 

Note that the inequality sign may still be applicable when the det C = 0 unless all 

of the matrix elements of C are zero, in which case there is no cross-plane coupling 

present in the system. 
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However, if any of the submatrix determinants become negative, which is equiv- 

_ . 

alent to 

det C > 1 or det C < 0 , (69) 

then the projected emittances will definitely grow in magnitude. For example, if 

d&C = -1 or -I2 ; 

then 

El > 3&O . 

As another example, if 

then 

detC = -2 or +3 , 

El 2 5&O . 

(71) 

(72) 

Thus we see that when any of the submatrix determinants become negative and 

large, the projected emittances at that position will be larger than the initial, 

uncoupled emittance at the beginning of the transport system. 

The situation can become even more serious if the incoming x and y emit- 

tances are not equal, as can been seen from substitution of typical values into the 

- 

inequalities (58) or (59). 
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VI. CONCLUSIONS AND SUMMARY 

A general first-order theory has been derived for coupled motion in a single-pass 

static magnetic beam transport system. The emphasis has been on determining 

the projected emittances onto the x and y transverse planes at any position s along 

the beam line. The theory is expressed in terms of a monoenergetic 4x4 linear 

TRANSPORT matrix R and its 2x2 submatrices A, B, C, D. Some conclusions 

that can be extracted from the theory are the following: 

- 
1. For linear optics, x-y cross-plane coupling may occur whenever the subma- 

trices B and C possess any nonzero matrix elements. However if, at any 

point in the system, all of the matrix elements of the submatrix B are equal 

to zero, then the symplectic condition requires that the same be true for the 

matrix C. At such a location ‘an initially uncoupled beam will have no x-y 

coupling. 

2. If the initial emittances in the x and y planes at the beginning of a system 

are uncoupled and are equal to each other then at any point downstream the 

projected x and y emittances will always be equal to each other, independent 

of the magnitude of the x-y coupling at that point. Their magnitudes may, 

however, be equal to or greater than the values of the initial, uncoupled 

emittances. 

3. If the initial emittances are equal and uncoupled, and if at any point down- 

stream B and C have some nonzero matrix elements, and if all of the deter- 

minants of the submatrices A, B, C, and D are positive, i.e., in the range of 0 

to $1, then the projected x and y emittances will be equal and coupled and 

may become larger than the initial emittance. Under these circumstances, 

- 
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the emittance growth will usually not become excessively large. If, on the 

other hand, any of the determinants of the submatrices A, El, C, D become 

negative at a position s, then the projected x and y emittances at s will 

be equal and coupled but, in addition, will become larger than the initial, 

uncoupled emittances. The magnitude of the growth is determined by the 

absolute values of the submatrix determinants. 

4. If the initial x and y emittances are uncoupled but are unequal in magni- 

tude then, in general, the projected x and y emittances at any position s - 

downstream will also be unequal. The one exception to this is when the 

determinant of one of the submatrices is equal to l/2. Then all of the sub- 

matrix determinants will equal l/2 and the projected x and y emittances 

will, although coupled, have the same value. At such a position, the pro- 

jected x and y emittance will be equal to or greater than the average of the 

initial uncoupled x and y emittances. 

- 

5. At any position, s, where x-y coupling is present the sum of the projected 

x and y emittances will always be equal to or greater than the sum of the 

initial, uncoupled x and y emittances. 
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APPENDIX A 

The purpose of this appendix is to derive a formal proof of the inequality 

(58). As we show in detail in the appendix, this amounts to proving the following 

statements: 

1. Given two positive definite matrices, their sum is also a positive definite 

matrix. See auxiliary inequality A4 below. 

2. Given two positive definite matrices, the square root of the determinant of 

the sum matrix is always larger than the sum of the square roots of the determi- 
- 

nants of the given matrices. See inequality Al below. 

3. Equality in the above statement occurs if and only if the two given matrices 

are a scalar multiple of each other. 

1) If 

fY0 = OX0 0 L I 00 ' 

then 

OX1 = Aaxo x , ~2, = ~9, (det A)2 , 

OYl 
= Cnxo 2; , ei, = czo (det C)2 . 

2) If 

0 0 al-J = I 1 0 OYO ’ 

- 
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then 

= Bay0 g , 2 
Ox2 &x2 = 6i0 (det B)2 , 

= Day0 2i , 2 
OY2 &Y2 = &i. (det D)2 . 

3) If 

uo = uXO 0 I I 0 OYO ’ 

then 
- 

O”3 = Aaxo x+ BgYO g , &:3 = det(ax3) , 

= Cuxo c?+ Day06 , 2 
OY3 &Y3 

= det(ay3) . 

Observe that the indices 1, 2 and 3 do not refer to positions along the beamline, 

but characterize the three cases analyzed above. We are now going to prove that 

&x3 2 &Xl + cx2 and eY3 2 &Yl + EY2 * 

To make the proof more readable, we shall use a somewhat simpler notation. 

Aax A is a 2x2 symmetric positive definite matrix. Let us denote it as 

with 

u>O, b>O ub-m2>0 and el = &GrF. 
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. Bgyo g is also a 2x2 symmetric positive definite matrix which we denote as 

c n I 1 n d 

with 

c>o, d > 0 cd-n2 > 0 and ~2 = A/=. 

Then ox3 can be written as 

a+c m+n 
0x3 = 1 m+n b+d ’ 

~3 = d(u+c)(b+d)-(m+n)2 . 

We want to prove that 

J(u + c)(b+ d) - (m + .), 2 J/- + dn . (Al) 

28 



. AI. Auxiliary Inequdities 

-JZ<m<z/a7; , - -cd 2 nl & , 

so 

ud+bc-2mn 2 (dq2+ (&)2-2m ) 

2 &Lhi2>0 
( > - 7 

(AZ) 

- - 
and 

( , 

(A9 
2 &Lhi220. ( > 

Note also that ax3 is positive definite. 

(u+c)(b+d)-(m+n)2 = ub-m2+cd-n2+ud+bc-2mn , 

(A4) 
= $+Ei+ud+bc-2mn > 0 

as a consequence of the first auxiliary inequality A2. 

Inequality (A4) also proves that 

&; 2 ET + &; . (A5) 

Note that inequality (A5) is weaker than inequality (Al). 
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A II. M a i n  P roof  
. 

E 3  >  E l +  E S  W  (is equ i va len t to )  

u  & ; 2  & f +  & ; +  2 & l & 2  , 

or  

- u  & ; - & ; - & ; 2  2 ‘5 1 e a  ; 

e  ( u + c ) ( b + d ) - ( m + n ) 2  - u b + m 2 - c d + n 2  2  2  4  (ub -m2) (cd -n2 )  , 

e  a d  +  b c - 2 m n  > _  2  
4  (ub -m2) (cd  -n2 )  . 

B o th  s ides a r e  >  0  b e c a u s e  o f ( A 2 ) , so  w e  m a y  s q u a r e : 

e  u 2 d 2 + b 2 c 2 + 4 m 2 n 2 + 2 u d b c - 4 m n ( u d + b c )  2  4  ( u b c d  -  u b n 2  -  c d m 2  +  m 2 n 2 )  ; 

+ = = s  ( a d  -  bc )2  -  4 m n ( u d  +  bc)  +  4 ( u b n 2  +  c d m 2 )  2  0  ; 

u  ( a d  -  bc )2  -  4 m n ( u d  +  bc)  +  4 ( 6 n  -  & m ) 2  +  8 @ m n  2  0  ; 

u  ( a d  -  bc )2  - 4 m n ( &  -  & ) 2  + 4 ( & n  -  x & m ) ’ 2  0  ; 

* ( & Z - & ) 2 ( & Z + & ) 2 - 4 m n ( & i - & ) 2 + 4 ( & i n - & Z m ) 2  >  0  ; 

e  ( & Z - & ) 2 [(& Z + & ) 2 - 4 m n ]+ 4 ( fin - & m ) 2  2  0  . 

T h e  last inequal i ty  is t rue by  v ir tue o f ( A 3 ) . This  p roves  th e  s e c o n d  sta te m e n t 

c o n ta i n e d  in  th e  in t roduct ion o f th is  a p p e n d i x . 
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AIII. Conditions for Equality 

Equality in (Al) would hold only if 

&j = & and n&=m& , (A6) 

or if 

4mn = (&ii + &$2 and n&=m&. WY 

- Note that (A6) implies 

c = ku, d=kb, n = km ; 

that is, the two ellipses axI and ax2 are similar. 

We show now that (A7) never occurs. Consider conditions (A7) and let 

a, b, c, d be chosen arbitrarily; n and m are obtained as follows: 

a n = m fi and 4m2 = (rn+dQ2 6 
a 7 

or 

m  = (Gy) pj ) 

n = (My)) g .  

- 

We now prove that ub - m2 and cd - n2 are both negative, which contradicts our 

assumption that both beam matrices are positive definite. 
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. 

ub-m2 = ub- 
(rn+dq2 

4 

(&q2 - (&g2 -2&z] , 

Similarly, 
- 

cd -n2 = -&g p&q2 < 0 . 

So, equality in (Al) h Id 7 o s 2 an only if the two ellipses are similar. This proves d 

statement 3 of the introduction to this appendix. 
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APPENDIX B 

The purpose of this appendix is to establish that, to first-order, the TRANS- 

PORT coordinates x, x’, y, and y’ form a set of canonical variables. 

IJet x7 Px, Y, Py, z and p, be a set of canonical coordinates. If the system 

is conservative, we may define the relative momenta as x’ =px/p, y’=p,/p and 

z’ =pz /p, where 

P= J p: +p”y +Pz 1 

- 

then the set x, x’, y, y’, z, and z’ is also a canonical set of coordinates. 

We now need to establish the physical interpretation of x’ and y’. If the 

transverse momenta px and p, are small compared to p and pz then 

x’ = (PXIPZ) 

J1 + (PxlPJ2 + (py/pz)2 
N (PxlPz) [l - 1/2[(px/pz)2 + (py/pz)2]] 

. 

So, to second-order we conclude that 

2’ = px fp N px/pz = tan 0 , 

where 8 is the angle between the central trajectory and the projection of the 

arbitrary trajectory onto the local x-z coordinate plane of the transport system. 

A similar result holds for y’ . This corresponds to the definitions of x’ and y’ in the 

TRANSPORT1,2 program. So when the computations are limited to first-order, 

the TRANSPORT coordinates x, x’, y, and y’ form a set of canonical coordinates 

and the symplectic condition represented by Eq. (10) is valid. 

- 
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