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INTRODUCTION - - 

Quantum Chromodynamics (&CD) potentially describes all of hadronic and 

nuclear physics in terms of quarks and gluons as fundamental degrees of freedom. 

Many features of the theory are consistent with experiment, especially at large 

momentum transfer where asymptotic freedom allows perturbative predictions. 

However, confrontation with the most significant and intrinsically non-perturbative 

aspects of the theory, its predictions for the spectrum and wavefunctions of hadrons, 

as well as the mechanisms for confinement and jet hadronization, still must wait 

for theoretical solutions. In this talk, the application to QCD in 1 + 1 dimensions 

of a general non-perturbative approach to field theory (‘Discretized Light-Cone 

Quantization (DLCQ)‘) d eve o e in Ref. [l] is presented, and the prospects for 1 p d 

3 + 1 dimensions are discussed. 

SU(N) gauge th eories restricted to one spatial dimension and time have been 

studied extensively, both analytically12’31 and numericallyf4’51 predominantly for the 

case when N is large. There are some special properties of these theories peculiar 

to 1 + 1 dimensions which should be mentioned for the sake of orientation. Because 

there are no transverse directions, the gluons are not dynamical, and (in A+ = 0 

gauge) their presence is felt only by the constraint equation they leave behind. 

Likewise the quarks carry no spin. The fermion field may be represented as a two- 

component spinor, and chirality for massless fermions identifies only the direction 

of motion. The coupling constant g carries the dimension of mass, and for one 

quark flavor of mass m, the relevant parameter is g/m. After the subtraction 

of infinite constants, the theory is finite. Finally, the restriction to one spatial 

dimension produces confinement automatically, even for QEDl+l. The electric 

field is unable to spread out and the energy of a non-singlet state diverges as the 

length of the system. 

In spite of these idiosyncracies, these models possess certain qualities to com- 

--mend their study, not the least being tractability. There are only so many op- 

portunities in a lifetime to solve, albeit numerically, a confining field theory with 
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arbitrary coupling from first principles.- With solutions in hand, conceptual ques- 

tions, points of principle, or approximation schemes which do not depend on the 

dimensionality of the model may be addressed. For example, Krijger has used 

QEDl+l quantized on the light-cone to discuss the numerical treatment of scat- 

tering for bound systems!’ Also, these models provide a test bed for approximation 

schemes and numerical techniques which may prove useful for realistic problems 

and a check on those, such as the large-N expansion, already in use. Ultimately, 

though, the motivation for this study is negative; if these models cannot be solved, 

there is no hope for QCD in 3 + 1 dimensions. 

LIGHT-CONE QUANTIZATION 

Quantization on the light-cone is formally similar to standard canonical equal- 

time quantization, but with a few technical differences which nevertheless make 

life much easier. Given a (Lorentz-invariant) Lagrangian .C(Z~), a new variable 

Z+ z x0 +x3 is defined to play the role of time, along with new spatial variables (in 

four dimensions), x- E x0 - x3 and xl E (x1, x2). Independent degrees of freedom 

are identified by the equations of motion. These are initialized to satisfy canonical 

commutation relations at x + = 0, and the creation and annihilation operators from 

their momentum space expansion define the Fock space. The momenta conjugate 

to x- and ~1, P+ and P_L respectively, are diagonal in this space and conserved 

by interactions. P- acts as a Hamiltonian; in general it is complicated, dependent 

on the coupling constant, and it generates evolution in x+. Diagonalizing it is 

equivalent to solving the equations of motion. 

I 

The mass shell condition, p2 = m2, for individual quanta implies that p- = 

cm2 + PglP+, so that positive (light-cone) energy quanta must also carry positive 

p+. This seemingly innocent detail is actually a very good thing; the positivity of 

p+ combined with its conservation is responsible in large part for the simplicity 

of this approach. First, x+ -ordered perturbation theory becomes calculationally 

--tTiable because a large class of diagrams which appear in the time-ordered ana- 

log vanish!‘] These include any diagram containing a vertex in which quanta are 
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created out of the vacuum; since all p+ are positive, at such a vertex the total 

momentum cannot be conserved. 

More importantly for the work described here, but by essentially the same 

reasoning, the perturbative vacuum is an eigenstate of the full, interacting Hamil- 

tonian, with eigenvalue zero. Pairs of quanta cannot be produced which conserve 

P - +[81 One very desir able feature of this remarkable fact is that not only is the 

ground state trivial, but also that all the quanta occurring in higher states are 

associated with meson and baryon wavefunctions rather than disconnected pieces 

of the vacuum. 

Finally, it greatly simplifies the numerical work, especially in 1 + 1 dimensions!’ 

The system is quantized in a box of length L in the x- direction with appropriate 

boundary conditions so that momenta are discrete and Fock space states denumer- 

able. For the fixed total momentum P +, the relevant dimensionless momentum 

will be K = F&P+. To see how K restricts the space of states, consider K = 3, 

which must be partitioned among the quanta in each state. The only three pos- 

-sibilities are (3), (2, l), and (l,l, 1). C on rast t this with equal-time Fock states of 

definite P’. For equivalent numerical momentum, partitions will include not only 

those enumerated above, but also (4, -l), (104, -lOl), (5,5,3,1, -1, -lo), and so 

on. To keep the number of states finite, an additional cut-off in momentum must 

be introduced, whereas this is not necessary in the light-cone case. 

Not only does a fixed I( act implicitly as a momentum cut-off, it also severely 

limits both the total number of states of definite momentum and the number of 

quanta in each individual state, as the example above demonstrates. I( serves one 

more role. The continuum limit L + 00 is equivalent to Ii’ --) 00 as the physical 

momentum P+ remains fixed. The size of I< determines the physical size of the 

system, or equivalently, the fineness of the momentum space grid. 
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SU(N),+, DO - 

An SU(N) gauge theory is defined by the Lagrangian 

F;v is the field strength tensor Fiv = apA: - &A; - sfabcA~A~ and the covariant 

. derivative is defined as iD, = ia, - gA;T”. In two dimensions, the fermion field 

(in a representation in which y5 is diagonal) 

(2) 

is a two-component spinor in the fundamental representation. L and R indicate 

chirality, which, for massless fermions specifies only direction. 

A useful gauge choice is A + = 0. In this gauge there are neither ghosts nor 

-negatively normed gauge bosons, so the Fock space quanta, and therefore the wave- 

function constituents are physical and positively normed. Also, in 1 + 1 dimensions, 

this gauge choice is Lorentz (but not parity) invariant. The equations of motion 

are then 

id-$L =+ m$JR 
-@A-' =g$fiT'$R E $gj+a 

i&$R = fr gA-“Ta$R + 3 mv,bL 
d+d-A-” =g$LT”$L - 3 gf abca-A-bA-c = i gj-a 

(3) 
(4) 
(5) 
(6) 

Only Eqs. (5) and (6) are dynamical; these will be generated by the Hamiltonian 

P-. Eqs. (3) and (4) are constraints, as they involve only derivatives in x-. At 

each time x+, both $L and A-” may be solved for in terms of $R by inverting 

these derivatives with appropriate Green’s functions. 
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$R is evidently the only independent degree of freedom and as such is the only 

“” field quantized.. The standard canonical commutator 

{$R(x),l, dR(Y)+c2),+=y+ = 6$(x- - Y-> (7) 

may be implemented at x + = 0 by expanding in terms of creation and annihilation 

operators: 

$R(+ = .-i- 2 
Ai= 13 

(bn,ce??x- + d;,++~“-) . 
12=YJ,z,... 

(8) 

The operators which generate translations in xp are derived from the energy 

momentum tensor: 

pp = 3 
J 

dx-O+? (9) 

. 

P+, the momentum conjugate to x-, is diagonal, P+ = C, k$(bkb,,, +dL,,di), 

-while-P-, which generates evolution in x+, is in general complicated and dependent 

on the coupling g. Diagonalizing P- is equivalent to solving the equations of 

motion. 

P- in the space of color singlets may be divided into P- = m2Ho + g2V. 

p2Ho is the free Hamiltonian which assigns an energy m2/k+ to each quark. The 

interacting piece is 

g2V = -$ 
J 

dx-dye/x- - y-lj+“(x-)j+“(y-), (10) 

where the current is normal-ordered: j+a = 2 : ~,!~fZl”t+b~ : . 

The potential Ix- - y- 1 is the result of inverting the constraint equation (4) 

for A-. Finally, the interaction may be divided into a part : V : which is entirely 

?iormal-ordered (Fig. lb ) and a remaining diagonal part Vdiag (Fig. la ) which 

contains a quark mass renormalization. The linear potential in position space 
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7-88 (b) 6065A8 

Figure 1. Interaction Vertices. 

becomes the instantaneous gluon propagator (l/~+)~ in momentum space. Typical 

four-quark interactions in : V : have the form 

L g2 1 ,.j""S"" 

2n Ii- 2 ( c4 Cl 
- S$zf) c ‘;;‘y;;;4 b~b,,,,,d;,,,,d”,‘, . (11) 

ni=l 2 . . . 
2'2' 

-THEi PROGRAM . 

In order to evaluate and diagonalize P- numerically, the system is quantized 

in a box in x- of length 2L and boundary conditions are selected. Consequently, 

the momenta are discrete, denumerable and therefore digestible by the computer. 

To expand $R in a complete set of plane-wave solutions of the free equations of 

motion, anti-periodic boundary conditions are employed. (For periodic conditions 

the term with k+ = 0, needed for completeness, is not a solution of the free equation 

k+k- = m2 except when m is zero.) The field $R expanded in operators with 

discrete momenta is then inserted in Eq. (9) to produce the discretized Hamiltonian 

P-. 

The program is set up to run for arbitrary number of colors N, baryon number 

B, and numerical momentum K = (L/27r)P +. Given these, it constructs the Fock 

-space by-generating all possible distributions of K among quarks in color singlets. 

In general, this construction is over-complete. The inner product matix (i I j) of 
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these states is evaluated and diagonalized; redundant states are identified by zero 

eigenvalues and removed; those remaining are orthonormal and complete. 

The Hamiltonian matrix (;I, H lj) is evaluated in this basis, with the color con- 

tractions performed diagrammatically. Because the light-cone Hamiltonian breaks 

up simply into Ho proportional to m2 and V to g2, the corresponding matrices 

are stored separately. Altering g (or m) involves only multiplying these matrices 

by the new parameter prior to diagonalization, with almost no additional cost in 

time.[121 

7-88 

I I I I, , , , , , 

SU(3) K = 10/z 

50 

25 

‘0 0.2 0.4 0.6 0.8 1.0 

1 l/ (1 +xrn2/g2P2 

60 I- 

0 0.2 0.4 0.6 0.8 1.0 

i/(1 +m?12/g2Y2 

608541 

Figure 2. Spectra for N = 3, baryon number B = 0,l and 2 as a function of y/m; K fixed. 

Setting g/m, combining Ho and V, and diagonalizing produces the full spec- 

trum (Fig. 2 ). Included in the spectra are not only single mesons and baryons 

and their excited states, but also multiple-hadron scattering states. Note the large 

number of massless mesons and baryons in the strong coupling (small mass) limit. 
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WAVEFUNCTIONS - - 

Diagonalization gives not only eigenvalues but also their eigenvectors, or wave- 

functions. Because the perturbative vacuum is also the full interacting vacuum, all 

quanta in the wavefunctions are associated with mesons and baryons, making them 

[la1 simple to interpret and straightforward to employ in calculations. Expressed in 

terms of the Bjorken variable it: G  IC+/.&ztal, they are invariant under longitudinal 

Lorentz boosts, and so, in 1 + 1 are Lorentz-invariant. Parity is more complicated, 

as it is not respected by the quantization scheme. For wavefunctions with two 

particles in 1 + 1, however, it involves only an interchange of x variables. 

Finally, these wavefunctions are universal; they contain all of the information 

about the hadrons. Once computed, masses, form factors and inclusive and exclu- 

sive scattering amplitudes are reduced to computing a few integrals. For example, 

in four dimensions, the ratio 

WQ2) = ( Oete-+hadrons gp+p--+hadrons I > (12) 

is a textbook example of a quantity calculable in QCD when Q2 is large. The 

relevant matrix element, (e2/Q2) tiypu (hadronsl J& IO) is typically squared and 

related to vacuum polarization graphs, which are then computed as an expansion 

in oys( Q2). However, were someone to provide the appropriate hadronic wavefunc- 

tions, this matrix element could be computed directly at any Q2. A feature such 

as the p resonance would then appear as an enhancement in the density of states 

in the 7rr continuum. 

The valence wavefunctions for the lightest N = 3 meson and baryon are dis- 

played in Fig. 3 by means of their quark structure functions. For weak coupling 

(m/g = 1.6) th e quark mass dominates p+ and so momentum peaks around equal 

sharing among constituents (x = 3 and 6 for the meson and baryon, respectively). 

Stronger coupling tends to smear out the distribution. 

Wavefunctions contain in general higher Fock components with additional num- 

bers of quarks. Figs. 4a and b illustrate the contribution to the quark structure 
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8 m/g = 1.6 

0.5 1 

0 m/g =O.l 

- - 
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 

7-M x=k/K x=k/K 6085A2 

Finure 3. \‘a.lence structure functions for N = 3 barvon and meson at m/u = 0.1 and 1.6. 

‘= n 4-y 
-3 

7-w 

3.0 

2.0 

1.0 

0 
SU(3) Baryon 

e m/g=1.6(x104) 
0 m/g = 0.1 (x 107) (4 

d 
0.4 0.6 0.8 1.0 

0 
0.2 

x = k/K x = k/K 

0 0.2 0.4 0.6 0.8 1.0 
x = k/K 

Figure 4. Higher Fock contributions to N = 3 structure functions. a) Lightest meson. 
Lightest baryon, including antiquarks. c) Baryon: contribution from two extra quark pairs. 

b) 

function from the component of the lightest N = 3 meson and baryon wavefunc- 

tion with an additional @ pair. Their contribution is suppressed relative to that 

of the valence wavefunction by from two to four orders of magnitude. Because P+ 

must be distributed among more quanta, the average x is lower. The character- 

istic bump structure may be understood in terms of QQ pairs splitting off of the 

[la1 mlence quarks, at least for weak coupling. Fig. 4b also includes the antiquark 

structure functions and gives an indication of the pion content of the baryon. Fig. 
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4c presents the (negligible) contribution from the Fock state with two extra quark 

pairs. 

SU(3) Meson 
m/g = 1.6 

0.3 I 1 I I I I I I I I I I I I I I I I 

- oq-qq-q (x103) (a) ('4 0 q-qq-q (x102) 

0.2 

0.8 

-I 0.6 

0 0 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1.0 
745 x = k/K 6085A4 

Figwe 5. a-c) First three states in N = 3 meson spectrum for m/g = 1.6, 2K=24. d) Eleventh 
state; 

Of course the spectrum consists of many states beyond the lightest. Because 

the quanta are associated only with the hadron, the wavefunctions need not be 

disentangled from the vacuum and are often relatively simple to interpret. In Fig. 

5, the first three (weakly coupled) meson wavefunctions are clearly the first three 

radial excitations of a predominantly @j state. In fact, in the non- relativistic 

limit these become the momentum transforms of Airy functions!151 In Fig. 5d the 

dominant contribution is from two 44 pairs peaked at x = l/4, with a mass twice 

that of the first state; it clearly represents a pair of the lightest mesons. Fig. 6 

-presents a similar picture for the N = 3 baryons. The pair of baryons in Fig. 6d 

is selected from the B = 2 spectrum. For strong coupling, it is more difficult to 
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- SU(3) Baryon 
m/g = 1.6 

I’ 1 ’ 1 ’ 1 ’ 1 ‘I’ 1 ’ I ’ I ’ 1 ‘I 

t- (4 A 0 q-q-q q-q (x103) 0 q-q-q q-q (x 10 2) 

- - q-q . q-q-q 
I 

I 
3 

2 

1 

0 0 
0 0.2 0.4 0.6 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 

7-88 x = klK 6085A5 

:. Figure 6. a-c) First three states in N = 3 baryon spectrum, 2Ik21. d) First B = 2 state. 

-disentangle states due to the presence of a large number of very light mesons and 

baryons. 

MASSLESS MESONS AND BARYONS IN THE m/g + 0 LIMIT 

The massless hadrons at zero quark mass may be understood by studying the 

momentum space transforms of the SU(N) currents (at x+ = 0) 

L 

v; = ; 
J 

~x-e-i~"-j+"(x-) 

-L 

which satisfy [Vt, r/lb] = ifabcV{+I + 3 ZGabSk+l,o. The currents j+a are defined by 

point splitting along x-; for A+ = 0, the path- ordered exponential included to 

-ensure gauge invariance reduces to one. The algebra may be extended to include 

the U(1) current J ‘+ =- ( j$)i : &+bR : . The transformed operator Vj commutes 
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with the other SU(iV) 1 e emends, and the related operator C.XL - (f )’ ~(k)Vk satisfies 

the free boson- commutation relations [ak, aL] = Sk,,. 

The interacting part of the Hamiltonian is greatly simplified when expressed 

in terms of these operators: 

L 

pj--=-< 
J 

dz-dy-lx- - y-lj+“(z-)j+“(y-) 

-L 

becomes 

(14) 

Because Vt = Q”, the contribution at k = 0 is proportional to the total charge 

Q”Q” and so may be discarded. 

The Vk are color-singlet bilinears in $R, and so may be used to create mesonic- 

like states with momentum P+ = y. In the limit where m/g is zero, the entire 

Hamiltonian is given by Eq. (15). B ecause the Vk commute with the Vg which 

-app.ear in Py, 

(16) 
Not only is the state created by acting with Vk on the vacuum an exactly massless 

eigenstate in this limit, but states formed by repeated applications are also exactly 

massless. Furthermore, acting with Vk on an eigenstate of non-zero mass produces 

a degenerate state of opposite parity. This argument is independent of 

of the numerical momentum K and so gives an exact continuum result. 

Just as the existence and number of massless states is most simply 

the value 

discussed 

in terms of the VK, so also are the wavefunctions of these states. Applying one VK 

to the vacuum 

(17) 

yields a continuum wavefunction of c$(x) = 1 (where n/21( + z). Because 4 is 
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even under the interchange of z and 1 - z, this state is a pseudoscalar. The 

wavefunctions of momentum K created by applying V twice are, for any I < K, 

K-l-; ‘-5 
c c bk~+,d!n,,,b~~nd~,,l lo) . 1 

(18) 

The qij piece is odd; therefore this state is a scalar, as a product of pseudoscalars 

must be. All the massless meson wavefunctions for a given I< may be constructed 

in this manner; parity will alternate with each additional V. 

Were the gauge group U(N) rather than SU(N)[161 the additional term asso- 

ciated with the extra U(l), 

Lg-Q+ -- 
2T 27r k=l ZUkUk7 c (19) 

appears in P-. The Uk satisfy free bosonic commutation relations, and this addi- 

tional interaction is therefore the discrete light-cone Hamiltonian for free bosons 

of mass squared g2/2r. These formerly massless states created by the CX~ are pro- 

moted to the free massive bosons found in the Schwinger model and discussed in 

[17] and [18]. Th e wavefunctions for these states however are unchanged. 

Note that while the entire U(1) spectrum may be built up from these non- 

interacting bosons, [“‘for U(N) or SU(N) they d escribe only part of the spectrum; 

these are the massless mesons for SU(N). I n addition there are massive states 

which include excited qij pairs. 

Similarly, the composite baryon field 

L 

-.I 

.kr - 
BI, E 3 dx-e-‘-i;” ccl ...cN?&l(x-) * * * &yx-) (20) 

-L 
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commutes with the Vku, and, in the limit m/g + 0, with the Hamiltonian P-. As 

in the case for-mesons, this field creates an identically massless baryon. Repeated 

applications on the vacuum produce a massless state with arbitrarily desired baryon 

number. Furthermore, degenerate states with the same baryon number may be 

created by acting with the massless mesonic operators vk in conjunction with the 

Bk. Again, these results are independent of I< and are true in the continuum limit. 

The (unnormalized) wavefunction associated with this massless baryon is 

Bk 10) = ’ C SK,Cnitcl...cNb~ ’ ’ ’ b~,N IO) . 
2(2L)F lzi 

(21) 

Whether this state is a fermion or boson depends on N being odd or even. The 

quark distribution derived from this wavefunction for N = 3 becomes 6(1 - x) in 

the continuum limit; this J: dependence is clearly evident in Fig. [3]. The general 

expression for the quark distribution for a single baryon in the m/g + 0 limit is 

q(x) = N(N - l)(l - x)~-‘. (22) 

For N = 2, q(x) = 2, which apart from the normalization, is identical to the meson 

distribution for all N. 

NUMERICAL ACCURACY 

A great deal of information about solutions in the continuum limit may be 

extracted by restricting the Fock space to a single qij pair. This is a good approx- 

imation to the lightest meson and its radial excitations, but neglects a large part 

of the low-lying spectrum when g/m is large. 

Restricting the eigenvalue equation 

- 
M2 p(P+)) = p--p+ pP+)) (23) 
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to the qij subspace and taking-the limit K -+ co yields the integral equation 1191 

M24(x) = m2 

+; (” -;‘“) ]dy;( y ). 

0 

(24) 

For SU(N), (u = 1, and Q = 0 for U(N). The continuum wavefunction 4(x) is 

defined by 

Iv+)) = j dx 
14wb~E-x)P+d~p+,c IO) * 

o [47rNx(l - x)]” 

This equation incorporates all of the leading order dynamics of the large-N 

approximation!Because it could be derived from the discretized Hamiltonian in 

-the .continuum limit K + 00, it demonstrates that this limit is sensible. Also, it 

shows trivially that, when m = 0, d(x) = 1 is an eigenfunction with Ma = 0 for 

SU(N), g2/2r for U(N). The latter is the well-known Schwinger Model boson. 

More importantly for this work, it shows the error due to discretization as 

that of an integral evaluated numerically on a regularly spaced grid, with spacing 

E = l/K. This is not normally the most efficient method, and this case is not even 

normal. In addition to the typical errors of order en, n 2 2, the principal-value- 

regulated singularity in Eq. (24) d in uces an error of order e. Also, for small x, 

464 0; x”, with a given implicitly by”’ 

1 - a7rcot(a?r \ 
7rm2 

‘) = (26) 

-a ranges .from zero (when m/g = 0) to one (g/m = 0). This non-analytic endpoint 

behavior produces additional u-dependent errors. As a result, a mass, for example 
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measured at finite K behaves-as 

=M(O)+s+& ” +1(2+ &z+-; (27) 

M(0) is the continuum limit. This behavior, as well as Eq. (26) apply as well to M(0) is the continuum limit. This behavior, as well as Eq. (26) apply as well to 

baryons and higher Fock states. baryons and higher Fock states. [lOIICnowing Eq. (27)) [lOIICnowing Eq. (27)) convergence may be improved convergence may be improved 

significantly by Richardson extrapolation: compute Al at n different K, and fit to significantly by Richardson extrapolation: compute Al at n different K, and fit to 

Eq. (27). An estimate of the error in determining M(0) is given by the nth term. Eq. (27). An estimate of the error in determining M(0) is given by the nth term. 
.--... SU(4) .--... SU(4) -- sup) -- sup) .-.- SU(2) .-.- SU(2) 

- (a) Meson Mass - (a) Meson Mass (b) Baryon Mass (b) Baryon Mass 
3- 3- ./ ./ .-. .-. 

/ _ / _ 
. ..* . ..* 

.,-f .,-f 

P P 

0 0.5 1.0 1.5 0 0.5 1.0 1.5 
7-88 m/g m/g cm5A6 

Figure 7. Extrapolated masses for N = 2,3 and 4 meson and baryon. 

This extrapolation has allowed for meaningful numerical results from the rel- 

atively low I< x 10, as well as error estimates. Plots for the lightest meson and 

baryon for N = 2,3 and 4 are presented if Fig. 7; when not visible, the estimated 

error bars are smaller than the data point. The zero masses at m/g = 0 are exact. 

The next two at m/g = .05 and .l are probably not close enough to convergence 

for the assigned errors to be more than rough estimates. 

Finally, these data may be compared with previous calculations. Fig. 8b 

demonstrates the rapid meson mass approach to the large-N limit from Ref. [2] 

-as N increases from two to four. In Fig. 8a, points from the Hamiltonian lattice 

calculationt4’of Hamer -for N = 2 agree well with the light-cone results. This is 
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------ SU(47 --. SU(3) - Large N ---- SU(2) 

l l-lamer: SU(2) Lattice 

I 
I I I I I I 

(a) Meson Mass 

4- 

7-m (27~1N)“~ m/g 6oE.u 

Figure 8. Comparison of N = 2,3 and 4 meson masses with large-N and lattice calculations. 

gratifying in that, while both techniques possess peculiarities, they are peculiar in 

different places. Also, the ratio of lightest meson to baryon masses in the strong- 

coupling limit for N = 2,3 and 4 , are consistent (to within the roughly 10% error) 

with the ratio 2 sin( &) derived by bosonization!” 

LARGE-N APPROXIMATION 

Most previous work on this model employed the large-N approximation to 

leading order. By obtaining numerical solutions at finite N, the validity of this 

approximation for interesting values of N (three, for example) can be tested. From 

Figs. 7 and 8 , for weak coupling (large quark mass) it is quite good. The meson 

mass is already well approximated for N = 2, and, as expected, the baryon masses 

increase proportionally with N. The low-lying states are indeed qij excitations; 

higher Fock contributions are negligible. For strong coupling (small mass), the 

approximation is not as reliable; the effective expansion parameter g2 N/m2 is no 

longer small. Light baryons exist for all finite N and so may not be neglected. 

The low-lying meson spectrum is dominated by states with arbitrary numbers of 

-quarks rather than qij excitations. Finally, the U(N) meson mass (as m/g + 0) of 

g2/27r is neglected in the large-N limit. 
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PROSPECTS IN FOUR BIMENSIONS 

QCD in two dimensions is both manageable and instructive, but the world 

in reality consists of (at least) four. Not surprisingly, the problem becomes much 

more challenging, as introducing transverse directions greatly increases the degrees 

of freedom. Spin for the quarks, and (in A + = 0 gauge) physical, transversely po- 

larized gluons must be included, and both carry transverse momentum, which may 

be discretized on a Cartesian grid, p; = (27r/L&l. The Roy can be negative, and 

will be restricted by the cut-off discussed below. As the Fock space grows roughly 

exponentially with the degrees of freedom, exploiting the remaining symmetries of 

the light-cone Hamiltonian under, for example, isospin, charge conjugation, and 

rotations of 90’ in the transverse plane will be necessary to restrict the space. 

In contrast to 1+ 1 dimensions, QCD3+r requires a non-trivial renormalization. 

This may be implemented directly on the space of states by restricting it to those 

whose invariant mass satisfies 

The cut-off A must be sufficiently larger than the scale of interest, with physics be- 

yond it absorbed into the couplings and masses!13’A s is, this prescription is Lorentz, 

but not gauge, invariant, and likely will need to be improved. Finally, gauge invari- 

ance may be checked by showing, for example, that in the continuum and large-h 

limits matrix elements such as qp (01 jp Iq) vanish, and, for QED, that the photon 

remains massless. 

A crude estimate of the difficulty of this problem may be made by selecting 

minimum appropriate values for A of 1 GeV and 1 fermi for (L1/27r). These 

correspond, by Eq. (28), to x - l/K - l/25 and nl N 5. This allows some hope 

that systems with longitudinal momentum K comparable to that used in 1 + 1 

7limensions combined with the first several transverse modes may begin to provide 

a recognizable picture of hadronic physics. 
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Presently, programs for &#&+I. have been written by A. Tang and H. C. Pauli 

and are under-investigation. Among other things, positronium will be studied for 

various couplings. Initial attacks on &C&+1 will most likely involve purely gluonic 

or heavy qij systems. 
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