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Abstract 

Consider an arbitrary domain of interest in n-dimensional Euclidean space and an unknown 

function of n arguments defined on that domain. Suppose we are given the value of the function 

y (perhaps perturbed with additive noise) at some set of points. The problem is to find a function 

that provides a reasonable approximation to the unknown one over the domain of interest. This 

paper presents a brief review of current methodology aimed at dealing with this problem, and 

presents a; new technique - multivariate adaptive regression splines - that has the potential to 

overcome some of the limitations of previous approaches. 

1.0. Introduction 

Suppose a system under study can be described (over some domain D E I?) by 

where y is a response or dependent variable of interest, ~1, . . . , 2, are a set of explanatory or inde- 

pendent variables, and f is a (deterministic) single valued function of its n-dimensional argument. 

The quantity c is an additive random or stochastic component that (if nonzero) reflects the fact 

that y depends on quantities other than ~1 . . ‘2, that are also varying. We are given a set of 

v~ues {yi,w,---,hi}?, (zli,..-, 2,;) E D, (training sample) and the purpose of the exercise 

is to obtain a function P(x~, * * . , zn) that provides a reasonable approximation to f(zl,. - . , z,). 

Here reasonable usually means accurate since one often wants to use p to approximate f at other 
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points not part of the training sample. If in addition one wants to use fl to try to understand the 

properties of f (and thereby the system that provided the data) then the interpretability of the 

representation of p is important. It is also sometimes important that f be rapidly computable. In 

addition, for some applications it is important that fl be a smooth function of its argument; that 

is, at least its low order derivatives exist everywhere in D. 
In low dimensional settings (n 5 2) successful developments have occurred in two general 

directions: piecewise polynomials and local averaging. The basic idea of piecewise polynomials is 

to approximate f by several generally low order polynomials each defined over a different subregion 
of the domain D. The approximation is required to be continuous, and sometimes have continuous 

.low order derivatives. The tradeoff between smoothness and flexibility of the approximation p is 

controlled by the number of subregions (knots) and the order of the lowest derivative allowed to be 
discontinuous at region boundaries. The most popular piecewise polynomial fitting procedures are 
based on splines. [See deBoor (1978) for a general review of splines and Schumacker (1976), (1984) 
for reviews of some two-dimensional extensions.] 

Local averaging approximations take the form 

where K(s?z’) (called the kernel function) usually has its maximum value at x’ = x with its 

absolute value decreasing as )x - x’] increases. Thus, f(x) is taken to be a weighted average of the 

yi where the weights are larger for those observations that are close or local to x. For n > 1 the 

kernel is usually taken to be a function of the Euclidean distance between the points 

Local averaging procedures have received considerable attention in the statistical literature begin- 

ning with their introduction by Parzen (1962). Stone (1977) has shown that this approach has de- 

sirable asymptotic properties. They have also seen interest from the mathematical approximation 

literature [Shepard (1964), Bozzini and Lenarduzzi (1985)]. Roughness penalty methods [smooth- 

ing (n = 1) and thin plate (n = 2) splines] are closely related to kernel methods based on Euclidean 

distance [see Silverman (1985) and Schumaker (1976)]. 
The direct extension of piecewise polynomials (splines) or local averaging methods to higher 

dimensions (n > 2) is straightforward in principle but difficult in practice. These difficulties are 
related to the so-called “curse-of-dimensionality”, a phrase coined by Bellman (1961) to express 

the fact that exponentially increasing numbers of points are needed to densely populate Euclidean 
spaces of increasing dimension. In the case of spline approximations, extension -to higher dimen- 

sions is accomplished through tensor products of univariate spline functions. These functions are 
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associated with a grid of points defined by the outer product of knot positions on each independent 
variable. For a given number of knots %C on each variable, the size of the grid, and thus the number 

of approximating basis functions, grows as K”. For example, in six dimensions a (tensor product) 

_ cubic spline with only one interior knot in each variable has 15,625 coefficients to be estimated. 
That number in ten dimensions is approximately 10 7. Even though only one interior knot per vari- 
able might be considered a very coarse grid, it still requires a very large number of data points to 

estimate the corresponding spline approximation. Finer grids require many more points. 

Local averaging methods suffer a similar fate as the dimension of the function argument space 

increases. For example, let D be the unit hypercube in Rn and consider a uniform kernel with 

.hypercubical support and bandwidth (edge length) covering 10 percent of the range of each co- 

ordinate. Then, if the data are roughly uniformly distributed in R”, the kernel will (on average) 

contain only (O.l)n of the sample, thereby nearly always being empty for moderate to large n. If, 

on the other hand, one adjusts the size of the neighborhood (bandwidth) to contain 10 percent of 
the sample, it will cover (on average) (0.1) r/n x 100 percent of the range of each variable, resulting 

in a very crude approximation. 

This problem of the inherent sparsity of practical sampling in high dimensions basically limits 

the straightforward application of both piecewise polynomials and local averaging methods in these 

settings. It does not, however, limit theoretical investigation. It is straightforward to imagine 

arbitrarily densely sampling of high dimensional spaces. Asymptotic theoretical calculations can 

then be done. [See Stone (1977) for pioneering work in this area.] The (practical) difficulty lies 

only in obtaining the corresponding large samples required for accurate approximations. It should 

be noted in addition, that local averaging approximations (and to a lesser extent tensor product 

splines) are slow to compute and difficult to interpret. 

The curse-of-dimensionality is fundamental and cannot be directly overcome. If the true un- 

derlying function f(xl,-e-,x,) (1) ex i i s s rong variation of no special structure on all of the h b t t 
variables in every part of the domain D, then accurate approximation with feasible sample sizes 

is not possible. Fortunately, very few functions of interest exhibit behavior quite this dramatic. 

Generally there is some (sometimes known, more often unknown) special structure associated with 

the function that can be exploited by a sufficiently clever algorithm to reduce the complexity and 

thereby achieve more accurate approximation. 

Function approximation in high dimensional settings has been pursued mainly in statistics. 

The principal approach taken there has been to fit an especially simple parametric form to the 
training sample. The most common parameterization is the linear function 

n 1 
f(%"', 2,) = a0 + c CXjXj. 

i=l 

This is not likely to produce a very accurate approximation to very many functions in R”, but 

it has the virtue of requiring relatively few data points, it is easy to interpret, and it is rapidly 
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computable. Also, if the stochastic component c (1) is large compared to f, then the variability of 
the estimate dominates, and the systematic error associated with this simple approximation is not 

the most serious problem. 
Recently, the linear model has been generalized nonparametrically to the so-called additive 

model n 
L 

f(x1,-* , xn) = c f;(G) (5) 
i=l 

[Friedman and Stuetzle (1981), Breiman and Friedman (1985), Hastie and Tibshirani (1986), Fried- 

man and Silverman (1987)]. Here the { fi(x;)}y are each (different) smooth but otherwise arbitrary 

.functions of a single variable. Although additive models are still not able to accurately approxi- 

mate very general functions in R”, they do constitute a much richer class than the simple linear 

approximation (4). They share the high interpretability of the linear model (one can view the uni- 

variate functions fi) and they are not overly difficult to compute. 

Linear and additive approximations lack generality in that they have limited ability to adapt 

to a wide variety of multivariate functions f. Also, as the sample size increases there is a limit 

to the accuracy of the approximation (unless the true underlying function happens to be exactly 

I 
linear or additive over 0). 

Strategies that attempt to approximate general functions in high dimensionality are based on 

adaptive computation. An adaptive computation is one that dynamically adjusts its strategy to 

take into account the behavior of the particular problem to be solved, e.g. the behavior of the 

function to be approximated. Adaptive algorithms have been in long use in numerical quadrature 

[see Lyness (1970); Friedman and Wright (1981).] In statistics, adaptive algorithms for function 
approximation have been developed based on two paradigms, recursive partitioning [Morgan and 

Sonquist (1963), Breiman, Friedman, Olshen, and Stone (1984)], and projection pursuit [Friedman 

/ and St.uetzle (1981), Friedman, Grosse, and Stuetzle (1983), Friedman, (1985)]. 
1 Projection pursuit uses an approximation of the form 

that is, additive functions of linear combinations of the variables. The univariate functions, fm, 

are required to be smooth but are otherwise arbitrary. These functions, and the corresponding co- 
efficients of the linear combinations appearing in their arguments, are jointly optimized to produce 

a good,fit to the data based on some distance (between functions) criterion - usually squared-error 

1ossXt can be shown [see Diaconis and Shahshahani (1984)] that any smooth function of n variables 
can be represented by (6) for large enough M. The effectiveness of the approach lies in the fact that 
even for small to moderate M, many classes of functions can be closely fit by approximations of this 

form[see Donoho and Johnstone (1985).] A no th er advantage of projection pursuit approximations 
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is affine equivariance. That is, the solution is invariant under any nonsingular affine transformation 

(rotation and scaling) of the original explanatory variables. It is the only general method suggested 

for practical use that seems to possess this property. Projection pursuit solutions have some inter- 

-prative value (for small M) in that one can inspect the functions fm and the corresponding linear 

combination vectors. Evaluation of the resulting approximation is computationally fast. Disadvan- 

tages of the projection pursuit approach are that there exist some simple functions that require 

large M for good approximation [see Huber (1985)], it is difficult to separate the additive from the 

interaction effects associated with the variable dependencies, interpretation is difficult for large M, 

and the approximation is computationally time consuming to construct. 

Recursive partitioning approximations take the form 

,. 
f(~l,"',xn)= crc n Zl,"', G$[(Xl,"',GJ E Rm]. (7) 

m=l 

Here I(.) is O/l valued function that indicates the truth of its argument and {R,}y are disjoint 

subregions representing a partition of D. The functions f,,, are generally taken to be of quite simple 
parametric form. The most common is a constant function 

[Morgan and Sunquist (1963) and Breiman, et al. (1984)]. Linear functions (4) have also. been 

proposed [Breiman and Meisel(1976) and Friedman (1979)], but they have not seen much use. The 

partitioning is developed in a recursive manner. At each step, M, all existing subregions {R,}y 
are optimally split into two subregions along one of the variables. The particular split that yields 
the best improvement in the fit is taken to define two new regions and the parent region (that was 

split) is deleted. (The starting region is the entire domain 0.) The number of subregions in the 

partition is thereby increased by one at each step. A backwards stepwise strategy for determining 

the final number of regions is detailed in Breiman, et al. (1984). 

The recursive partitioning approach has the potential to provide acceptable approximations 
in high dimensionalities provided the underlying function has low “local” dimensionality. That is, 

even though the function f (1) may strongly depend on all of the variables, in any local region of 

the domain the dependence is strong on only a few of them. These few variables may be different 

in different regions. Another assumption inherent in the recursive partitioning strategy is that 
interaction effects have marginal consequences. That is, a local intrinsic dependence on several 

variables, when best approximated by an additive function, does not lead to a constant model. 

This% nearly always the case. 

Recursive partitioning using piecewise constant approximations (8) are fairly interpretable 

owing to the fact that they are very simple and can be represented by a binary tree. [See Breiman 

et al. (1984)]. They are also fairly rapid to construct and especially rapid to evaluate. 
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Although recursive partitioning is the most adaptive of the methods for multivariate function 

approximation it suffers from some fairly severe restrictions that limit its effectiveness. Foremost 

among these is that the approximating function is discontinuous at the subregion boundaries. This 

-is more than a cosmetic problem. It severely limits the accuracy of the approximation, especially 

when the true underlying function is continuous. Even imposing continuity only of the function 

(as opposed to derivatives of low order) is usually enough to dramatically increase approximation 

accuracy. 

Another problem with recursive partitioning is that certain types of simple functions are diffi- 

cult to approximate. These include linear functions with more than a few nonzero coefficients [with 
.the piecewise constant approximation (8)] and additive functions (5) in more than a few variables 

(piecewise constant or piecewise linear approximation). In addition, one cannot discern from the 
representation of the model whether the approximating function is close to a simple one, such as 

linear or additive, or whether it involves complex interactions among the variables. 

2.0. Multivariate Adaptive Regression Splines. 

This section describes a new method of adaptive computation for approximating functions in 
high dimensionalities. Although it is an extension of the additive modeling (5) procedure devel- 

oped by Friedman and Silverman (1987), it appears closest in spirit to the adaptive nature of the 
recursive partitioning approach. Unlike recursive partitioning, however, it produces strictly con- 

tinuous approximations (with continuous derivatives if desired), it easily approximates linear and 

additive functions, and it can be represented in a form that permits separate identification of the 

additive and (multiple) interaction effects associated with the variables that enter into the model. 
The approximation takes the form of an expansion in multivariate spline basis functions, 

P(%-- ,xn)= 5 %&&1,***,~n) 
m=O 

(94 

with 

a&l,? GJ = Kfj qxv(k,m)l~km)~ rn> 1. (94 
k=l 

The {a, I,” are the coefficients of the expansion. Each multivariate spline basis function B,, m > 0, 

is a product of univariate spline basis functions b, each of a single variable zV( k,m), characterized 

by a knot at tkm. The subscripts v(!~,m) label the explanatory variables, thereby taking values 

in thyrange 1.5 v(lc,m) 5 n; K, takes values in the same range 1 5 K, 2 n and determines 

the number of factors (univariate spline basis functions) comprising the corresponding B,. The 

multivariate spline basis functions Bk are adaptive in that the number of factorsKm, the variable 

set V(m) = {~(lc,rn)}~~ and the knot set (tkm}pm are all determined by the data. 
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The approximation is developed in a forward/backwards stepwise recursive manner in analogy 

with the recursive partitioning approach. Given (B,}f-’ the Mth term takes the form 

(10) 

with 0 < e 5 M - 1. That is, the next term BM is taken to be the product of a univariate 

spline basis function with one of the previously defined multivariate spline basis functions Be 

(0 2 ! L M - 1). The values for v, t, and .!! are chosen so as to jointly maximize the goodness- 
of-fit of the resulting approximation (see Section 2.2). The defining variable x, for the new basis 

function b(x,(t) is restricted to be one that does not appear in the selected Be, so that the same 

‘variable does not appear more than once in any B, (0 5 m < M). The resulting optimal values 

v*, t*, and e* are then used to form the new multivariate spline basis function 

KM 

BM = n b(xv(k,M) bM) 
k=l 

with KM = Kp + 1, v(KM, M) = V’, tKmM = t*, and the rest of the factors taken from Bp- . 

One of the requirements for this strategy to be computationally feasible is that each univariate 

basis function be defined by the location of a single knot tkm. We therefore use the truncated power 

basis representation for the (univariate) splines 

b(q)(x)t) = (x -t>; (11) 

where q is the order of the spline which controls the degree-of-continuity of the approximation. 
The subscript denotes the non-negative part. (This basis is known to produce numerical problems, 

especially for q > 1, so a great deal of care must be taken in the implementation.) 

This forward stepwise construction of the multivariate spline basis (9) (10) is continued until 

: M = Mm, terms have been entered into the approximation. This process yields a sequence of 

Mm,, models, each with one more term than the previous one in the sequence. Each model in 

the sequence has an associated badness-of-fit score (see Section 2.2). That model with the lowest 

badness-of-fit score is then subjected to a backwards stepwise deletion strategy [see Friedman and 

Silverman (1987), Section 2.11, to obtain the final model. The upper limit Mm,, should be taken to 

be large enough so that the minimizing model is not too close to the end of the sequence. Due to 

the forward stepwise nature of the procedure it is possible for the badness-of-fit to locally increase 

a bit as the sequence proceeds, and then start to decrease again. 

Ifone makes the restriction K, = 1 (9c) for all m (that is, always setting e = 0 rather than 

including it in the optimization) the approximation becomes a sum of functions, each of a single 
variable. This is, of course, an additive model (5) and this strategy reduces to the smoothing and 

additive modeling technique introduced by Friedman and Silverman (1987). The key ingredient 



that advances this approach to general settings is the ability to fit (possibly complex) interactions 

among the variables through the prodrEt terms that are permitted to enter the approximation (9), 

if required by the fit. 

Although originally motivated by the work of Friedman and Silverman (1987) this approxima- 

tion strategy (9)-(11) h as more in common with the recursive partitioning approach (see Section 

1.0) to function approximation (7). There is a correspondence between the terms in (9) and the 
regions in (7). Choosing a previous term for multiplication (10) is analogous to choosing a (pre- 
vious) region to split in (7). The optimization over 2, and t in (10) is quite similar to finding the 

optimal splitting variable and split point for partitioning a region. 

The correspondence between this basic approach and recursive partitioning is most easily seen 

by contrasting the piecewise constant approximation (8) of the latter with the use of Q = 0 splines 

(11) in the former 

iGO) = I(z - t). (12) 

Both methods then produce piecewise-constant approximations in this case, and multiplying (some- 

times with constraints) is strictly equivalent to splitting. The two methods, even though being most 
similar in this setting, do not however produce equivalent approximations. This is basically because 

unlike recursive partitioning, the subregions induced by (9), (lo), (12) are not constrained to be 

disjoint. At-any stage during recursive partitioning, only terminal regions are eligible for splitting, 

i.e. only those regions defined by the intersections of previous splits (terminal nodes on the current 

binary tree). With the MARS strategy all previously defined regions - not just terminal ones - are 

eligible for splitting at any stage of the model building process. The previously defined regions are 

those represented by the internal nodes of the tree and are unions of subsets of current terminal 

regions. 

The strategy associated with the MARS approach has several important advantages. Foremost 

among them is that it allows close approximations to many of the common functions that present 

difficulty to recursive partitioning (e.g. nearly linear or additive functions). Another advantage is its 

interpretability through its ANOVA representation (see below). The most important advantage of 

this approach, however, is that by choosing q > 0 (11) continuous approximations can be achieved. 

This has been one of the most serious limitations of recursive partitioning. Choosing a value for 

q 2 1 causes the approximation to be continuous and to possess continuous derivatives to order 

I 
i. 

cl - 1. 

As with recursive partitioning, this method attempts to use to advantage the fact that inter- 

actioZieffects involving several variables will give rise to non-constant dependencies on at least one 

of those variables individually. This is because in the forward part of the model building strategy, 
additive terms and lower order interactions must enter before the corresponding higher order in- 

teractions. These lower order terms provide information as to where to place knots to capture the 
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corresponding higher order ones, and they may in fact be removed (through the backwards deletion 

process) after the higher order interaction terms-are entered. 

2.1. ANOVA Decomposition. 

The representation of the approximation given by (9), (lo), (11) resulting from construction 

of the model 

(13) 
m=l k=l 

does not provide much insight into the nature of the approximation. By simply rearranging the 
terms, however, it is able to provide considerable insight into the predictive relationship between y 

Ph * - - ,%) = a0 + 
K,=l K,=2 

+ c fijk(%, “j, xk) + - - -. 
Km,=3 

(144 

Here the first sum is over all terms involving only a single variable and represents the purely additive 

component of the model. Each additive function fi(zi) can be computed by collecting together all 

single variable terms involving zi, 

fi(xi) = C k&(zi). 
K,=l 

iEV(m) 

W) 

Here V(m) represents the variable set {v(k, m)}f”’ associated with the mth term. The second sum 

in (14a) is over all terms involving exactly two variables and represents the pure first order (two 

variable) interaction part of the model with 

( 144 

Similarly, the third sum represents second order (three variable) interactions with 

fijk(Zi, zj, xk) = c anBm(%, “j, zk), (144 
K,,,=3 

(i,j,*EV(m) 

I 
and so on. The additive terms can be viewed by plotting ji(zi) against xi as one does with additive 

modeling. The two variable interaction terms fij(zi,xj) can be plotted using either contour or 
perspective mesh plots. Higher order interactions (if present) are of course more difficult to view. 

The corresponding (multivariate) knot locations can, however, provide some insight. We refer to 
(14) as the ANOVA decomposition or representation of the MARS model because of its similarity 

to decompositions provided by the analysis of variance of contingency tables. 
! 
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The ANOVA representation identifies the particular variables that enter into the model, 

whether they enter purely additively or are involved in interactions with other variables, the order 

of the interactions, an-d the other variables that participate in them. 

_ 2.2. Model Selection. 
As in Friedman and Silverman (1987) we use the generalized cross-validation criterion (Craven 

and Wahba, 1979) 

GCV(M) = $ $[yj - &qj, * *. , z,j)]2/ [1 - y] 2 
I=1 

. for model selection where M is the number of terms in (9a) and 

C(M) = (d + l)M + 1. (15b) 

Minimization of this criterion is used to select the knot variable and its location at each forward 

step, the terms to delete in the backwards steps, and the size of the final model. The use of (15b) 

results in a change of (d + 1) “degrees-of-freedom” for each term in the model, one for fitting 

the least-squares coefficient a,, and d for the optimization associated with the knot placement. 

Friedman and Silverman (1987) used d = 2. This was motivated somewhat on theoretical grounds 

but mostly on an empirical basis. This value is too small for generalized MARS modeling since we 

are, in addition, optimizing over the term index 0 5 e 5 M - 1 at each step as well as the knot 

location. This produces increased variance that must be accounted for in the model selection. A 

direct approach would be to estimate an optimal d value for the problem at hand through a sample 

reuse technique such as the 632 bootstrap (Efron, 1983) or cross-validation Stone (1974). 

Another approach is to study the variance directly through a modified bootstrapping technique 

(Hastie and Tibshirani, 1985). Each bootstrap replication consists of replacing each response value 

by a standard normal deviate. By construction the true underlying function f is the constant zero, 

and the mean-squared-prediction error is completely dominated by the variance 

L ^ 

E(f - f~)~ = E& = Var fM 

br equivalently 

E(y - fM)2 = E& + 1. (16) 

Since the GCV score (15a) is intended to be an estimate for (16) one can obtain an estimate for 
C(M) through 

e(M) 2 
E(AS&)/ 1- N [ 1 =E&+l 

or 

e(M)=N l- [ (“:;gy ,“‘I (17). 
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Here the average-squared-residual, ASR M, is the numerator in (15a). The expected values in (17) 

are estimated through repeated bootstrap replications. 
A wide variety of.simulation studies (not detailed here) using this approach indicate the fol- 

_ lowing. 
(1) C(M) is a monotonically increasing function with decreasing slope as M increases. 
(2) Using the linear approximation (15b), with d = 2.5, is fairly effective, if somewhat crude. 

(3) The “best” value for d depends (weakly) on M, N, and the distribution of the covariate vectors. 

(4) Over a wide variety of situations, the best value of d lies in the range 2.0 5 d 5 3.0. 

(5) The actual accuracy of the approximation, in terms of integrated squared error 

ISE = 
/ 

[f(x) - f^(x)12dF(x), 

depends very little on the value chosen for d in the range 2.0 5 d 5 3.0. 

(6) The estimated accuracy 
E[ISE - GCV(M*)12, 

with M* being the minimizer of (15), does show a moderate dependence on the choice of d. 

The consequence of (5) and (6) is that, although how well one is doing with this approach is fairly 

independent of d, how well one thinks he is doing (based on the optimizing GCV score) does 

depend somewhat on the values chosen for d. Therefore, a sample reuse technique should be used 

to estimate the predictive capability of the final model, if it needs to be known fairly precisely. 

2.3. Degree-of-Continuity. 
Another important choice is the degree of continuity to be imposed on the approximating 

function, i.e. the value for q in (11). Th is choice affects the accuracy of the approximation, and 

the speed and numerical stability of the computation. Friedman and Silverman (1987) used q = 1 

in conjunction with the knot placement and model selection strategy. This produces a continuous 
piecewise linear approximation with discontinuous derivatives. Advantages of this approach are 

much more rapid and numerically stable computation compared to higher values of q. Also, it can 

provide more accurate approximations in some situations. The main disadvantage is discontinuous 
first derivatives. 

Friedman and Silverman (1987) provide for derivative smoothing by replacing the basis func- 

tions b(‘)(zlt) (11) by closely related ones with continuous first derivatives: 

0 2 2 t- 
C(xlt-, t, t+) = p(x - t-)2 + T(X - Q3 t- < 2 < t+ 

x-t x 2 t+ 

with t- 5 t 5 t+. Setting 
p =,(2t+ + t- - 3t)/(t+ - t-)2 

T = (2t - t+ - t-)/(t+ - t-)3 

(184 

W) 
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causes these basis functions to be continuous and have continuous first derivatives. This approx- 

imation has discontinuous second derivatives .at -the side knot locations, t- and t+. The central 

knot t, is placed at the corresponding knot location of b(‘)(xlt). The two side knots, t- and t+, are 

-placed at the midpoints between adjacent central knots on the same variable thereby minimizing 

the number of second derivative discontinuities. The (central) knots are placed using the b(‘)(xlt) 

(11) basis, taking advantage of the corresponding speed and numerical stability. The approxima- 

tion with continuous derivatives is accomplished through using the corresponding piecewise cubic 

basis (18). 

The analogue to this approach in the more general setting of MARS modeling is to perform 

.derivative smoothing in the ANOVA representation (14). Each distinct ANOVA function (14b), 

(14c), (W, t e c. is smoothed separately. The side knots are placed at the midpoints between 
the central knot locations as projected onto each variable defining the particular function. For 

the additive ANOVA functions (14b) this of course reduces to the Friedman and Silverman (1987) 

strategy. Replacing each b(‘)(xjt) (11) by its corresponding C(xJt-, t, t+) (18) in the MARS model 

(13) (14) results in a continuous approximation with everywhere continuous derivatives. 

2.4. Knot Optimization. 

A natural strategy would be to make each distinct observation abscissa value on each predictor 
variable a potential location for knot placement. Friedman and Silverman (1987) argue that a 

more effective strategy is to restrict the number of candidate knot locations to very Lth (distinct) 

observation abscissa value, with L given by 

L(P, w = - log2 --+n(l- a) 1 /2.5 (19) 

and 0.05 _< o 5 0.01. The considerations that lead to this result do not change when one considers 

the more general MARS setting. 

2.5. Computational Considerations. 

In order for any method to be practical it must be computationally feasible. If implemented 

in a straightforward manner the approximation strategy we propose would require prohibitive 

computation. A full M + 1 parameter linear least squares fit for he coefficients {u,}f must 

be performed to evaluate the model selection criterion (15). This must be done at every potential 

knot location on every variable for all M (previous) terms at each step M. The only way this can 

be made to be computationally feasible is through updating formulae. That is, given the solution 

fit at one potential knot location, the solution at the next one can be obtained through rapidly 

com@able simple updates of the previous solution. Friedman and Silverman (1987, Section 2.3) 

derived updating formulae for the quantities that enter into the normal equations of the least squares 
fit for the additive modeling case. Analogous updating formulae can be derived for the more 

general case of MARS modeling. Use of these updating formulae reduce the computation from 
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being proportional to M4pN2/L to M3pN/L. As a point of reference, the computation for the 

three examples (Section 3) each required about tivo minutes on a SUN Microsystems model 3/260. 

3.0. Examples. 

This section provides four illustrations of MARS modeling. The data are simulated so that 

the results can be compared with the known (generated) truth. The first and fourth examples are 

purely contrived, whereas the middle two are taken form electrical engineering. In all examples 

the smoothing parameter d (15b) was taken to be d = 2.5. (The software automatically reduces 

it to d a = 0.8d = 2.0 for additive modeling.) The minimum number of observations between knot 

locations was determined by (19). In all examples the explanatory variables were standardized to 

‘aid in numerical stability. (The MARS procedure is, except for numerics, invariant to the predictor 
variable scales.) The response variable was also standardized so that the GCV score would be an 

estimate for the fraction of unaccounted for variance (e2 = 1 - R2). 
3.1. Simple Function of Ten Variables. 

For this example, N = 100 covariate vectors were uniformly generated in a n = 10 dimensional 

unit hypercube. Associated with each such covariate vector is a response value generated as 

yi = 0.02e4z1i+3EZi + 5 sin(nxsi/2) 
i, 

+ 324j + 2z5i + 0 ’ 3&i + 0 ’ 27i + 0 ’ 3&i (20) 

+ 0 ’ Xgi + 0 ’ XlO,i + Cj, 1 2 i 5 100, ‘_ 
with the c; generated from a standard normal distribution. The ratio of standard deviations of the 

signal to the noise is 3.08 so that the true underlying function accounts for 91% of the variance of 

Y- 
The underlying function (20) consists of an interaction in the first two variables, an additive 

nonlinear dependence in the third, and linear dependencies in the fourth and fifth. The last five, 

zg - x10, are pure noise variables independent of the response. 
/ Table 1 displays the results of applying the MARS procedure to these data. Table la shows 

the history of the forward stepwise knot placement. The second column gives the GCV score (15) 
at each iteration M (first column). The third column shows the effective number of parameters in 

the fit C(M) (15b). The fourth and fifth columns give the optimizing knot variable V* and location 

t*, while the last column points to the optimizing previous term (multivariate spline basis function) 

4!* that multiplies the new univariate spline function. This term may in fact point to previous terms 

for its definition. The value .!* = 0 indicates that the previous multiplying term is Bu (9b) so that a 

new purely additive term is being included in the model. The particular factors comprising the Mth 

i multiYariate spline basis function are identified by starting with the Mth row, then preceeding to 
L its parent, then to its parent’s parent and so on, until reaching a parent value of e* = 0. 

Table la shows that the first knot was placed on x1. The second knot was placed on x2, 

multiplying the first term. At this point (M = 2) the model consists of an additive contribution 
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on x1 and an interaction between x1 and x2. The next three iterations include purely additive 

contributions form x3, x4, and 25. The next iteration (M = 6) includes an additive term in x2. 

This is multiplied by a factor involving x1 on the subsequent iteration (M = 7), resulting in two 

bivariate splines characterizing the interaction between x1 and x2. Up to this point the GCV score 

has been monotonically decreasing. 

The eighth iteration places into the model a term involving an interaction between variables zg, 

x2, and xl. Note, however, that the GCV score has increased slightly. As more terms are added, 

the GCV score continues to increase until the present maximum number of terms Mm,, = 17, is 

reached. 
Table lb shows the result of the backwards stepwise term deletion strategy. The first column 

gives the term number, m, the second its least squares coefficient, a, (9a), followed by the knot 
variable, location, and parent as in Table la. A zero coefficient value, a, = 0, means that the 
term has been deleted. Note that in addition to the deletion of all terms beyond M = 7, the 
purely additive contributions of variables zr and 22 (first and sixth terms) have also been deleted. 
This leaves only the two terms (second and seventh) involving pure interactions between these two 
variables. 

Table lc summarizes the ANOVA decomposition of the final model. There are four ANOVA 

functions. The first three are additive functions on variables x3, ~4, and 25 respectively. The fourth 
ANOVA function is bivariate and represents a (pure) interaction between x1 and x2. Table lc also 

gives the GCV score for the fit with the corresponding piecewise cubic basis (18). It is seen to be 

essentially the same as for the piecewise linear basis given in Table lb. 

The second column in Table lc gives the standard deviation of the corresponding ANOVA 
function. This gives one indication of its (relative) importance to the model and is interpreted in a 

manner similar to a (standardized) regression coefficient in a linear model. The third column gives 

another indication of the importance of the corresponding ANOVA function, by providing the GCV 

score for the model with all of the terms corresponding to that particular ANOVA function deleted. 

This can be used to judge whether this ANOVA function is making an important contribution 

to the model, or whether it just slightly improves the global GCV score. In this example all four 

ANOVA functions appear to be important with the third one, involving x5, being the weakest. 

Figure la provides a pictorial representation of the ANOVA decomposition by plotting the 

respective (piecewise-cubic) ANOVA functions. The first three frames plot the respective additive 

functions involving x3, x4, and xs. The fourth frame provides a perspective mesh plot of the 

bivariate ANOVA function involving x1 and x2. Figure lb is an enlargement of the fourth frame 

of Figure la. 

These figures show very nearly linear dependencies on x3, x4, and x5, and a strong nonlinear 

interaction between x1 and x2. It is important to note that Figure lb does not represent a smooth of 

the response y on variables x1 and x2, but rather it shows the contribution of 51 and 22 to a smooth 
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of y on variables x1,. . . , x10. The accuracy of the resulting approximation is fairly remarkable 
considering the high dimensionality, n= 10, and the small sample size, N = 100. Note also that 

the procedure (correctly) did not enter 26, * . . , ~~10 into the model. 

The only shortcoming of the MARS model based on these data is that it did not capture the 
nonlinearity in the additive contribution of x3 (20). Figure lc shows the pictorial representation 

of the ANOVA decomposition corresponding to Figure la when the sample size is increased to 
N = 200. The model looks very similar to that for the smaller (N = 100) sample size (Figure la) 
except that it now gives a better approximation to the contribution of 2s. 

. Tables la - lc and Figures la - lb illustrate the application of the MARS procedure to 

.a single data set (replication) from the particular setting under study (20). They do not give 
information on the average performance of the procedure when applied to this situation. Table ld 

displays the results of a simulation study that addresses this issue. Each row summarizes the results 

of 100 replications of the following procedure. A sample of N ten-dimensional covariate vectors 
were randomly sampled from a uniform distribution in [0, l] lo A sample of N random standard . 
normal deviates were then generated and the corresponding response values (20) were assigned to 

the covariate vectors. The MARS procedure was then applied. A new data set of 5000 observations 

was then generated and used to estimate the normalized integrated squared error 

ISE = 
J 

[f(x) - ~(x)]2d’ox/VarXf(x), (2% 

and the normalized predictive squared error 

PSE = (ISE - Var,j(x) + l)/(vard(x) + 1) 

(fraction of unaccounted for variance) for the piecewise cubic MARS model. 

The second column of Table ld gives the optimizing GCV score averaged over the 100 repli- 

cations, whereas the third and fourth columns give the corresponding average PSE and ISE (21) 
respectively. The quantities in parentheses are the associated standard deviations over the 100 

replications. (The standard deviations of the averages are one tenth these values.) 

Table Id shows results for three sample sizes (N = 50,100,200) and for three sets of constraints 

applied to the MARS model. These constraints involve the maximum number of factors mi that 

are permitted to enter a single multivariate spline basis function. This controls the maximum 
interaction order permitted in the model. Setting mi = 1 restricts the model to be additive in 

the predictor variables, whereas mi = 2 limits the model to interactions involving at most two 

variables, and so on. The value mi = n results in no restriction. Limiting the interaction level of 

the MARS model can improve accuracy (reduce variance) if the true underlying function f is close 
to an f that involves at most low order interactions. If not, such a limitation will introduce some 

bias in exchange for the corresponding variance reduction. In terms of interpretability there is a 
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strong advantage to models with mi = 2, owing to their graphical representation by means of the 
ANOVA decomposition. 

- 

In terms of ISE (21a) the accuracy of the MARS model for this problem is seen to increase 

rapidly as the sample size increases from 50 to 200. The additive model (mi = 1) is seen to be 

distinctly inferior to those involving interactions (mi = 2,10) especially as the sample size increases. 
The optimizing GCV score is seen very slightly to overestimate the true PSE on average. 

The true underlying function (20) in this case happens to involve at most interactions in two 

variables. Thus, setting mi = 2 results here in no increase in bias. Owing to the decrease in 

variance, the ISE is seen to be somewhat better than for the unrestricted MARS model (m; = 10). 
.The size of the effect is seen, however, to be fairly small (5 25% in squared error loss) so that a 

large penalty is not incurred by fitting the full nonparametric model. 

3.2. Alternating Current Series Circuit. 

Figure 2a shows a schematic diagram of a simple alternating current series circuit involving a 
resistor R, inductor L, and capacitor C. Also in the circuit is a generator that places a voltage 

vab = v,sinWt (214 

i. 
across the terminals a and b. Here w is the angular frequency which is related to the cyclic frequency 

f by 
w =27rf. '_ Wb) 

The electric current I& that flows through the circuit is also sinusoidal with the same frequency, 

(214 

Its amplitude is governed by the impedance 2 of the circuit and there is a phase shift 4, both 

depending on the components in the circuit: 

2 = Z(R,w, L, C), 

4 = w,w, 4 Cl. 
From elementary physics one knows that 

Z(R, w, L, C) = [R2 + (WL - l/wC)2]l’2, 

+(R, w, L, C) = tan-’ 
LwL -i’wcl * 

(2% 

VW 

The purpose of this exercise is to see to what extent the MARS procedure can approximate these 

functions and perhaps yield some insight into the variable relationships, in the range 

x1 : 0 < R 5 100 ohms 

x2: 20 5 f < 280 hertz 
(23) 

x3:.0-< L< 1 henries 

x4: 1 < C 5 11 micro farads. 
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Two hundred four-dimensional uniform covariate vectors were generated in the ranges (23). For 

each one, two responses were generated by adding normal noise to (22a) and (22b). The variance 

of the noise was chosen to give a 3 to 1 signal to noise ratio for both 2 (22a) and 4 (22b), thereby 

causing the true underlying function to account for 90% of the variance in both cases. 

3.2.1. Impedance, 2. 

!. 

Applying the MARS procedure to the impedance data with mi = 1 (additive model) gave an 

optimizing GCV score of 0.558. The GCV scores for mi = 2 and 4 were respectively 0.231 and 

0.229. The additive model is seen (not surprisingly) to be inadequate. Perhaps more surprising is 

the fact that even though the true underlying function (22a) contains interactions to all orders, an 

. approximation involving only two-variable interactions is seen to give nearly as good a fit to these 

data. Owing to its increased interpretability we show the results of the mi = 2 model. 

Table 2a shows the ANOVA decomposition in the same format as Table lc. There is a purely 

additive contribution from xl(R), additive contributions from 22(w) and x4(C), and interactions 

amongst x2, x3(L), and x4. Of the six ANOVA functions, all but the last one (involving an 

interaction between the capacitance C and the inductance L) seem important to the model. Figure 

2b displays a graphical representation of the ANOVA decomposition. The first frame plots the 

(additive) contribution from the resistance R. The next three frames display the contributions of 

the remaining variables that participate in interactions. These perspective mesh plots show the 

total..(additive plus interaction) contributions of each such variable pair. For example, the frame 

in the upper right corner plots the sum of the second and fourth ANOVA functions, whereas that 

of the lower left plots the sum of the second, third, and fifth. 

The plots have been rotated so as to provide the best perspective view. The indicated zero 

marks the lowest value and the axis label marks the direction of higher values. 

The dependence of the impedance 2 on R (first frame) is estimated to be approximately linear. 

For low frequencies w, 2 is seen to be high and independent of L (upper right frame). For high w, 2 

has a mild monotonically increasing dependence on L. For low L, 2 monotonically decreases with 

increasing w, whereas for high L values, the impedance is seen to achieve a minimum for moderate w 
values. The lower left frame shows that 2 is very small and roughly independent of w and C except 

-when they jointly have very small values, in which case the impedance increases dramatically. The 

lower right frame of Figure 2b shows that the C, L joint contribution is nearly additive, consistent 
with the weak contribution of the sixth ANOVA function (Table 2a) to the MARS model. 

These interpretations are based on visual examination of the graphic representation of the 

ANOVA decomposition of the MARS approximation, based on a sample of size N = 200. Since the 
data?n this case are generated from known truth one can examine the generating equation (22a) 

to verify their general correctness. 

Table 2b summarizes the results. of a simulation study based on 100 replications of data ran- 

domly drawn according to the above prescription (22a), (23), in the same format as Table Id. The 
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MARS procedure applied to the smallest sample size, N = 100, is seen to provide a fairly poor 

approximation on average in terms olISE. .The approximation accuracy improves substantially 

with the larger samples, except for additive modeling (mi = 1). The approximation accuracy for 

_ the constrained (mi = 2) models is (on average) nearly identical to the unconstrained (mi = 4) 

ones. It appears that the bias-variance trade-off is exactly off-setting in this case. 

The average GCV score is seen to underestimate the corresponding PSE at the smallest sample 

size. This is due to the sharp joint dependence of 2 on w and C [see (22a) and Figure 2, third frame]. 

For small sample sizes most replications will fail to sample covariate vectors with very small joint 

values for w and C, thereby failing to capture the rapid variation of 2 in that region. There is no 

. way that the GCV score (based on the ASR) can detect rapid function variation where there is no 

data. Note that sample reuse techniques such as cross-validation or bootstrapping have the same 

problem. As the sample size increases enough data is sampled in this region and the GCV score 

gives a more accurate estimate of the true PSE (on average). 

3.22. Phase Angle, 4. 

The MARS procedure applied to the phase angle data (22b) (23) with mi = 1,2, and 4 gave 

optimizing GCV scores of 0.295, 0.219, and 0.203, respectively. Here the additive model, while 
y still being less accurate, is more competitive with those involving interactions. The two variable 

interaction model again fits the data almost as well as the unconstrained model. 

Table 3a summarizes the ANOVA decomposition for the mi = 2 MARS model. It involves 

additive contributions from all but x3(L) and interactions among all variable pairs except C and L. 

Two of the ANOVA functions (fifth and seventh) however are seen to make very weak contributions 
to the final model. Figure 2c is a graphical representation of the ANOVA decomposition in the 

same format as Figure 2b. The dependence of the phase angle I$ on all of the variables is seen to be 

more gentle and more nearly additive than the impedance 2 (Figure 2b). The principal interaction 

effect is to decrease the phase angle for simultaneously high values of the predictor variable pairs. 
li’ Table 3b gives the results of 100 replications of phase angle data generated according to (22b), 

(23). At the smallest sample size (N = 100) the additive model produces fits that (on average) are 
nearly as accurate as those involving interactions. For the larger samples the interaction models 

-are somewhat more accurate in terms of ISR. The average optimizing GCV score is seen to be 

quite close to the true average PSE. 

L 
3.3. Additive Data. 

In, the preceding examples there were strong interaction effects and it was seen that allowing 

I 1”:: such-effects in- the MARS model substantially improved approximation accuracy. This example, 

taken from Friedman and Silverman (1987), examines what happens when the true underlying 1 
function is exactly additive and interactions are allowed to enter the MARS model. One would 

expect accuracy to deteriorate since allowing for interactions among the variables increases the 
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variance of i while, in this particular case, not decreasing the bias. 

Table 4 summarizes (in the same-format. as-Tables Id, 2b, 3b) the results of 100 replications 

of the following simulation experiment. N(= 50,100,200) 19dimensional covariate vectors were 

_ generated in the unit hypercube. A set of standard normal deviates C; were then generated and 

response values were assigned according to 

yi = 0.1e4”li + 4/[1 + e-20(z2i-1/2)] 

+ 3X3i + 2% + X5i + 0 - %i + 0 - X7; 

+ 0 - 28i + 0 ’ xgi + 0 - xl&i + 6i. 

Here the signal to noise ratio is 0.28 so that the true underlying function accounts for 92% of the 
variance of the response. 

The ratio of the average ISE values for the additive and mi = 2 interaction fits are seen (Table 
4) to be about 0.67 at all sample sizes. The corresponding ratio for the mi = 10 unconstrained fit 
is about 0.60. The corresponding square roots of the ratios are 0.81 and 0.77. Thus, the (average) 
accuracy here is reduced by about 25% when the interactive models are fit to purely additive data. 

This degradation is surprisingly small given the small sample sizes and the high dimensionality 
( n = 10). Note that the average GCV scores for the interactive models are always slightly worse 
than that for the corresponding additive fit, so that the interactive models are not (on average) 
clain&g to do better than the additive ones. This suggests a strategy of accepting the additive 

model if those involving interactions fit no better in terms of the GCV score, especially owing to 
the increased interpretability of the additive model. 

4.0. Remarks. 

This section covers various aspects (extensions, limitations, etc.) of the MARS procedure not 

discussed in the previous sections. 

4.1. Constraints. 

The MARS procedure is nonparametric in that it attempts to model arbitrary functions. It is 

often appropriate, however, to place constraints on the final model, dictated by knowledge of the 

system under study, outside the specific data at hand. Such constraints will reduce the variance of 

the model estimates, and if the outside knowledge is fairly accurate, not substantially increase the 

bias. One type of constraint has already been discussed in Section 3, namely limiting the maximum 

interaction order of the model. One might in addition (or instead) limit the specific variables 

that can participate in interactions. If it is known a priori that certain variables are not likely 

to inZ@ract wit-h others, then restricting their contributions to be at most additive can improve 

accuracy. If one further suspects that specific variables can only enter linearly, then placing such 
a restriction can improve accuracy. The incremental charge d (15b) for knots placed under these 

restrictions should be less than that for the unrestricted knot optimization. (The implementing 
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software charges 0.8 . df and 0.4 . df, respectively, for the additive and linear constraints where df 

is the charge for unrestricted knot optimization.)‘ 

These constraints,.as well as far more sophisticated ones, are easily incorporated in the MARS 

strategy. Before each prospective knot is considered, the parameters of the corresponding potential 
new multivariate spline basis function (V, t,!, and BP) (10) can be examined for consistency with 
the constraints. If it is inconsistent, it can simply be marked ineligible for inclusion in the model. 

4.2. Semiparametric Modeling. 

Another kind of a priori knowledge that is sometimes available has to do with the nature of 

the.dependence of the response on some (or all) the predictor variables. The user may be able to 

provide a function g(xr, . . . , x,) that is thought to capture some aspects of the true underlying 

function f (21, - - . , 2,). More generally, one may have a set of such functions {gj(xl, s . ., zn)}[, 
each one of which might capture some aspect of the functional relationship. A semiparametric 

model of the form 

f&l, - - - ,Xn) = kCj$Tj(Xl,***,Xn) + fl(Xl,"',Xn), (24) 
j=l 

where f( x1, . . . , xn) takes the form of the MARS approximation (9), could then be fit to the data. 

The coefficients cj in (24) are jointly fit along with the parameters of the MARS model. To the 
extent that one or more of the gj successfully describe attributes of the true underlying function, 

they will be included with relatively large (absolute) coefficients, and the accuracy of the resulting 

(combined) model will be improved. 

Semiparametric models of this type (24) are easily fit using the MARS strategy. One simply 

includes {gj(q, . . . , xn)}{ as J additional predictor variables (z,+~,. . . , x~+J) and constrains their 

contributions to be linear. One could also, of course, not place this constraint, thereby fitting more 

complex semiparametric models than (24). 
4.3. Collinearity. 

Extreme collinearity of the predictor variables is a fundamental problem in the modeling of 

observational data. Solely in term of predictive modeling it represents an advantage in that it 

effectively reduces the dimensionality of the predictor variable space. This is provided that the 

observed collinearity is a property of the population distribution and not an artifact of the sample 

at hand. Collinearity presents, on the other hand, severe problems for interpreting the resulting 

model. 
This problem is even more serious for (interactive) MARS modeling than for additive or linear 

mo&ling. Not only is it difficult to isolate the separate contributions of highly collinear predictor 
variables to the functional dependence, it is difficult to separate additive and interactive contribu- 

tions among them. A highly nonlinear dependence on one such variable can be well approximated 

by a combination of functions of several of them, and/or by interactions among them. 
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In the context of MARS modeling one strategy to cope with this (added) problem is to fit a 

sequence of models with increasing maximum interaction order (mi). One first fits an additive 

model (mi = l), then one that permits at most two variable interactions (mi = 2), and so on. 

_ The models in this sequence can then be compared by means of their respective optimizing GCV 

scores. The one with the lowest mi value that gives a (relatively) acceptable fit can then be chosen. 

4.4. Robustness. 

Since the MARS method as described here uses a model selection criterion based on squared 

error loss it is not robust against outlying response values. Unlike linear regression, however, it 

is not very sensitive to outliers in the predictor variable space, owing to the local nature of the 
. resulting fit; sample covariate vectors far from an evaluation point tend to have less rather than more 
influence on the model estimate. Response outliers will tend to strongly effect model estimates only 
close to their corresponding covariate values. They will also (slightly) increase the variance of model 

estimates elsewhere by increasing the number of multivariate spline basis functions (required to 
capture the apparent high curvature of the function near each outlier). 

There is nothing fundamental about squared-error loss in the MARS approach. Any criterion 

can be used to select the multivariate spline basis functions, and construct the final fit, by simply 

replacing the internal linear least squares fitting routine by one that minimizes another loss criterion 

(given the current set of multivariate spline basis functions). Using robust/resistant regression 

methods would provide resistance to outliers. 

The only advantage to squared-error loss in the MARS context is computational. It is difficult 

to see how rapid updating formulae could be developed for other types of linear fitting. For those 

with access to rich computing environments, this presents no problem. For others, a compromise 

strategy can mitigate the robustness problem for isolated outliers. The multivariate spline basis 

functions are selected using the standard MARS approach with least-squares fitting. Given this 

basis, the expansion coefficients {u,}f (9) are then fit using a robust/resistant linear regression 

method to form the final model. This reduces the influence of the response outliers on model 

predictions close to their corresponding covariate vectors. It does not remove the (small) increased 

variance associated with the additional (now redundant) basis functions. 

4.5. Logistic Regression. 

Linear logistic regression (Cox, 1970) is often used when the response variable assumes only 

two values. The model takes the form 

log[p/(l -P)] = g ,&xi 
i=l 

where p is the probability that y assumes its larger value. The coefficients {pi};” are estimated 
by (numerically) maximizing the likelihood of the data. Recently, Hastie and Tibshirani (1986) 
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extended this approach to additive logistic regression 
- n 

WPlO - IdI = c fii(Xi>. 
i=l 

The smooth covariate functions are estimated through their “local scoring” algorithm. The model 

can be further generalized by 

w.P/(l - 241 = ax1 7 - - ‘7 %> 

with f(zr, . . - , zP) taking the form of the MARS approximation (9). This is implemented in the 

MARS algorithm by simply replacing the internal linear least-squares routine by one that does lin- 

ear logistic regression (given the current set of multivariate spline basis functions). Unless rapid 

.updating formulae can be derived this is likely to be quite computationally intensive. A compromise 
strategy analogous to that described in Section 4.4, however, is likely to provide a good approxima- 
tion; the multivariate spline basis functions are selected using the squared-error based loss criterion 

and the coefficients {am}sM for the final model are fit using a linear logistic regression on this basis 

set. Note that in this setting the least-squares criterion is more robust than the likelihood based 
criterion. 

4.6. Reflection Invariance. 

The MARS procedure as described here is not necessarily invariant to reflections of the indi- 

vidual predictor variables. Replacing x; by -xi can (slightly) change the MARS model. This is due 

to the fact that the pure linear term, associated with the piecewise-linear basis on each variable, is 

not automatically included in the model; but rather it is subjected to the same forward/backward 

stepwise selection strategy as all other potential basis functions. This gives the procedure the abil- 

ity to model certain types of dependencies with fewer basis functions than would otherwise be the 

case. Also, certain kinds of interaction effects require less terms to model than others. 

In order to get an idea of the size of this effect a further simulation study was performed on 

the alternating current series circuit example (Section 3). Fifteen additional simulation studies 

(N = 200, 100 replications each) were done analogous to those that led to Tables 2b and 3b. 

For each of the (total) 16 studies, the predictor variables were each multiplied by one of the 
16 combinations of (fl, fl, fl, 51). Th e variance of the ISE over these 16 experiments was 

compared to its average variance over the 100 replications of different training sample sets. For the 

impedance, this ratio was 0.156 whereas for the phase angle it was 0.036. The higher value for the 

impedance is due to the very sharp structure for very low joint values of w and C (Figure 2, lower 
left frame). In both cases, however, the variability in modeling accuracy due to reflections of the 

predictor variables is seen to be very small compared to the variability associated with the random 

nature of the training data. 

Several modifications of the MARS procedure that render it invariant under variable reflection 

are currently under study. It remains to be seen whether they can provide approximations that are 

as accurate as the method described here. 
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4.7. Low Dimensional Modeling. 

The main advantage of MARS modeling over existing methodology is clearly realized in high 

dimensional settings. It can, however, be competitive in low dimensions (7~ 5 2) as well. Friedman 

and Silverman (1987) studied its properties for the smoothing problem (n = 1) and showed that it 

can produce superior performance, especially in situations involving small samples and low signal 
to noise. These properties should extend to surface modeling (n = 2) as well, although detailed 

studies have not yet been performed. Friedman and Silverman (1987) also studied this approach 

in the special case of additive modeling (mi = 1). The method was shown to be competitive with 

existing methodology in this application, again exhibiting superior performance in situations with 
small samples and low signal to noise. 

5.0. Conclusion. 

The examples and simulation studies indicate that the MARS approach has the potential to 
become a useful tool for data modeling. It possesses to some degree the the desirable properties of 
the recursive partitioning approach; these are its adaptability, automatic variable subset selection, 
and ability to exploit low “local” dimensionality. Moreover, it is able to overcome some of recur- 

sive partitioning’s limitations; it produces continuous approximations with continuous derivatives 

(if desired); it has additional adaptabilty to exploit functions with weak high order interactions, 

thereby providing better approximations to functions that are nearly linear or additive; and it has 

increased interpretability through its ANOVA decomposition that breaks up the approximation 

- into its additive and various interaction components. 

It is important to note that this is a new methodology for which there is, at present, very little 

collective experience. Its results should be interpreted with some caution until their reliability is 

tested over time in a wide variety of settings. No doubt as such experience is gained useful and 

important modifications to this basic approach will become apparent. 

A FORTRAN program implementing the MARS methodology described in ths report is avail- 

able from the author. 
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Table la 

History of the MARS-forward stepwise knot placement strategy 

iter. 

10 

11 

12 

13 

14 

15 

16 

17 

gcv # efprms variable knot parent 

0.8460 4.5 1. 0.5257 0. 

0.5781 8.0 2. -0.6736 1. 

0.3914 11.5 3. -1.626 0. 

0.2885 15.0 4. -1.170 0. 

0.2347 18.5 5. -1.601 0. 

0.1911 22.0 2. -1.177 0. 

0.1599 25.5 1. -1.164 6. 

0.1603 29.0 9. -1.128 2. 

0.1621 32.5 3. -0.9315 0. 

0.1696 36.0 4. 1.015 1. 

0.1802 39.5 3. 1.013 0. 

0.1829 43.0 6. -0.2161 11. 

0.1936 46.5 4. -1.675 5. 

0.2062 50.0 4. 0.2366e-01 11. 

0.2271 53.5 9. 1.583 3. 

0.2519 57.0 9. -0.2349 5. 

0.2837 60.5 2. -0.4146 5. 

for Example 3.1. 
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Table lb 

The result of the backwards sfepwise term deletion strategy 

for Example 3.1. 

gcv = 0.1404 #efprms = 18.5 

term 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

coeff. variable 

0. 1. 

0.8746 2. 

0.4525 3. 

0.3171 4. 

0.2232 5. 

0. 2. 

0.2373 1. 

0. 9. 

0. 3. 

0. 4. 

0. 3. 

0. 6. 

knot 

0.5257 

-0.6736 

-1.626 

-1.170 

-1.601 

-1.177 

-1.164 

-1.128 

-0.9315 

1.015 

1.013 

-0.2161 

parent 

0. 

1. 

0. 

0. 

0. 

0. 

6. 

2. 

0. 

1. 

0. 

11. 

- 

27 



Table lc 

ANOVA decomposition summary df the MARS model for Example 3.1. 

fun. std. dev. -gcv # terms # efprms variable(s) 

1 0.4518 0.4109 1 3.5 3 

2 0.2983 0.2520 1 3.5 4 

3 0.2229 0.1974 1 3.5 5 

4 0.7772 0.8867 2 7.0 1 2 

piecewise cubic fit on 5 terms, gcv = 0.1457 
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Table ld 

Summary of 100 replications. of ‘Example 3.1, piecewise cubic fit. 

mi GCV PSE ISE 

N = 50: 

1 .46 (.12) .45 (.097) .40 (.ll) 

2 .28 (.13) .28 (.18) .22 (.20) 

10 .27 (.ll) .30 (.19) .24 (.21) 

N = 100: 

1 .36 (.072) .36 (.064) .30 (.070) 

2 .15 (.043) .14 (.026) .059 (.029) 

10 .15 (.047) .16 (.041) .077 (.044) 

N = 200: 
1 .32 (.037) .31 (.022) .25 (.023) 

2 .12 :, (.029) .12 (.015) .033 (.015) 

:: 10 .12 (.029) -12 (.024) .041 (.025) 
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Table 2a 

ANOVA decomposition summary of the MARS model 

on alternating current series circuit impedence, 2. 

gcv= 0.2311 #efprms = 46.5 

fun. 

1 
2 
3 
4 
5 
6 

std. dev. -gcv # terms # efprms variable(s) 

0.5096 0.6392 1 3.5 1 
1.833 0.6854 3 10.5 2 
1.417 0.6431 3 10.5 4 

0.4195 0.4401 1 3.5 2 3 
2.034 0.5704 4 14.0 2 4 

0.1702 0.2577 1 3.5 3 4 

piecewise cubic fit on 13 terms, gcv =0.2447 
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Table 2b 

Summary of 100 replications 01 the alternating current series 

circuit impedance, 2, piecewise cubic fit. 

mi GCV PSE ISE 

N = 100: 

1 .65 (.12) .71 (.092) .68 (.lO) 
2 .46 (.15) .52 (.19) .46 (.21) 
4 .45 (.15) .52 (.19) .47 (.21) 

N = 200: 

1 .60 (.082) .62 (.050) .58 (.056) 
2 .27 (.064) .27 (.lO) .20 (.ll) 
4 .28 (.066) .28 (.091) .20 (.ll) 

N = 400: 
1 .57 (.049) .57 (.026) .52 (.029) 
2 .20 (.057) .18 (.050) .095 (.056) 
4 .20 (.035) .18 (.035) .092 (.038) 

- 
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Table 3a 

ANOVA deZompositi& of the MARS model 

on the alternating current series circuit phase angle, 4. 

gcv = 0,219o #efprms = 39.5 

fun. 

1 

2 

3 

4 

5 

6 

7 

8 

std. dev. -gcv # terms # efprms variable(s) 

0.6323 0.3257 1 3.5 2 

0.7253 0.4180 2 7.0 4 

0.9931 0.3041 1 3.5 1 

0.6483 0.4015 2 7.0 2 3 

0.1521 0.2254 1 3.5 2 4 

0.7754 0.2662 2 7.0 1 4 
0.2064 0.2248 1 3.5 1 3 

0.3464 0.2458 1 3.5 1 2 

piecewise cubic fit on 11 terms, gcv = 0.2393 
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Table 3b 

Summary of 100 replications df the alternating current series 

circuit phase angle, 4, piecewise cubic fit. 

mi .GCV PSE ISE 

N = 100: 

1 .36 (.057) .35 (.036) .27 (.040) 

2 .33 (.059) .32 (.047) .25 (.052) 

4 .32 (.059) .33 (.12) .26 (.14) 

N = 200: 

1 .32 (.032) .31 (.016) .23 (.017) 

2 .25 (.033) .24 (.022) .15 (.025) 

4 .24 (.032) .24 (.022) .15 (.070) 

N = 400: 

1 .30 (.020) .29 (.007) .21 (.OOS) 
r;- 2 .22 (.019) .20 (-011) .ll (.012) 

4 .21 (.019) .19 (.012) .lO (.013) 
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Table 4 

Summary of TOO repktions of applying MARS 

to purely additive data, Example 3.3. 

mi GCV PSE ISE 

N = 50: 

1 .30 (.092) .25 (.053) .13 (-062) 

2 .34 (.077) .30 (.074) .19 (.085) 

10 .34 (.077) .29 (.080) .19 (.092) 

N = 100: 

1 .22 (.035) .18 (.020) .053 (.024) 

2 .22 (.040) .21 (.035) .081 (.041) 

10 .24 (.041) .21 (.035) .088 (.042) 

N = 200: 

1 .17 (.022) .16 (.008) .024 (.009) 

2 .18 (.024) .17 (.014) .036 (.016) 

10 .19 (.025) .17 (.012) .040 (.015) 
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I 

Figure Captions 

Figure la: Graphical representation of the ANOVA decomposition of the piecewise cubic 

MARS model for Example 3.1. 

Figure lb: Enlargement of the fourth frame of Figure la; interaction contribution of (q, Q) 

to the MARS model for Example 3.1. 

Figure lc: Graphical ANOVA decompositon of the MARS model for Example 3.1, with 200 

observations. 

Figure 2a: Schematic diagram of the alternating current series circuit of Example 3.2. 

Figure 2b: Graphical ANOVA decomposition for the alternating current series circuit 

impedance, 2, Example 3.21. 

Figure 2c: Graphical ANOVA decomposition for the alternating current series circuit phase 

angle, 4, Example 3.22. 
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