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ABSTRACT 

We rewrite the O(3) nonlinear sigma model in 2+1 dimensions in terms of 

SU(2) matrices, thereby solving the constraint. The Lagrangian has the sym- 

metry SU(2)~l~b~l x U(l)~~~~l. Static soliton solutions to this Lagrangian have 

energy 47rN as usual. We then show that the Hopf instantons, in the formalism 

of principle chiral fields, are just the skyrmions of QCD in 3+1 dimensions. 
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I. Motivation 

Recently, it has been suggested that the novelties of the 2+l nonlinear sigma 

model with Hopf term could account for the strange properties of the new high- 

Tc superconductors. ’ The Lagrangian density for the nonlinear sigma model is 

given by 
1 

L = -a 2 p 
nUi3hU + ynana - l] (1) 

where ~1 = 0,1,2 and a = 1,2,3. The nonpropogating constraint field X(z) 

insures that the modulus of the n-fields is one. The above Lagrangian admits 

soliton solutions of energy 47rN,4 with N an integer, for configurations satisfying 

din a = feabcE~jnbajnc where i , j = 1, 2 only. Other workers have conjectured 

an additional term, the Hopf term,” in the field theory Lagrangian which is 

responsible for fractional statistics. The Hopf term is non-local in the mfields 

but can be formally written in terms of a conserved topological current Jr = 

e 
sHo,f - G  / d3,d3yP’X.Jp(z) (x - y)vJx(y) . 

Ix - Y13 
(2) 

Formally, the solitons realize the mapping II, = 2 and the instantons the 

Hopf map I13(S2) = 2.6 Note that the conserved charge & = J d2zJo is the 

explicit expression for I12(S2) modulo factors of z. 

The model as formulated with the n-fields has two unattractive features, 

the constraint field A( x and the non-locality of the Hopf term. In the CP1 ) 

formulation, one makes the map7 n’ = ZtZZ with 2 a two-spinor (a, p) and the 

resulting Lagrangian becomes 

L = 2(a,z)t(au) 

+ a(zb,z)(zkz) + A(dZ - 1) 
(3) 

. 
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A Hopf term can similarly be written starting from a conserved topological 

current’ Jp = iF’XdvZtd~ 2 which can also be written generally as Jp = 

.s~vXdvB~. The Hopf term in the CP’ language thus is written 

e s - Hopf = 4=2 J d3xJC”Bp , 

which gives for the Lagrangian density 

L ~~‘v~(zt~,z)(avzta,z) . Hopf = -4?r2 

Even in the CP’ Lagrangian, a constraint field X(x) appears’and even though the 

Hopf term is local, its instanton solutions are not obvious. One can rewrite the 

Lagrangian introducing gauge fields that make explicit the U(1) gauge invariance 

of the CP1 model: 

Ccpl = 2(D,Z)t(PZ) + -$A,B,A~ 

where D,Z = (a, + iA,)Z. The above Chern-Simons term is equal to the e-term 

in (9) only to lowest order in 8. The CP1 model has SU(2)~l~b~l x U(l)~~~~l given 

by, 2 --) GZ with G &SU(2), and 

2 -+ ei6(‘)Z , A, + A, - a,6 . (7) 

We will find maps of the nonlinear sigma model with the same symmetry 

but without the X(x) fields and a Hopf term that gives manifest integer solutions 

to lowest order in 8. We will find indeed that the Hopf fibrations are expressed 

uniquely as &(SU(2)). 



II. Principle Chiral Maps From The CP1 Model 

The complex field 2 = (o, p) with the constraint ZtZ = 1, describes S3 

which is isomorphic to SU(2). The most general definition of an SU(2) field 

relative to the Z-field is 

U= ($* ,4:) 
where 

(3 =G (3 with G E SU(2) . (8) 

The constraint ZtZ = 1 thus implies UtU = 1 which is implemented simply 

via the expansion U = eiea(z)T’ where the r” matrices are the 2 x 2 Pauli ma- 

trices. All we have done is to rewrite the nonlinear sigma model which is a 

SO(S)/SO(Z) mod 1 ’ t e an o one which is SU(,!?)/U(l). Whereas the CP1 map uses 

a fundamental representation to do so, we have used an adjoint representation. 

The kinetic piece in the Lagrangian becomes in terms of the principle chiral fields, 

L = Tr(a,Ubw) + ~Tr(ut,a,u)Tr(Uto~a”U) (9) 

which has the SIJ(2)~l~b~l x U(l)Local symmetry with U + UG for G cSU(2) , 

and 

u j eie(z)a~u . (10) 

Introducing gauge fields to make this explicit, our Lagrangian becomes 

L: = Tr[(DpU)t(DW)] , (11) 

where D,U E (a, + iA,a,)U. The above two Lagrangians are classically equiv- 

alent. To see this, simply solve for the gauge field equations of motion and 

substitute. A topological term starting with the gauge field similar to the CP’ 

model uses the manifestly conserved current, Jp = E~~~&Ax. This term changes 
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the equations of motion for the gauge fields and to lowest order in theta gives 

the same topological term as starting from the topological current in the U(x) 

language, 

Jt”op = iE~“ATr(a,Uto~a,u) . (12) 

The Chern-Simons term is thus given by 

c - ’ EP”~A&,A~ 
cs = gr2 

(13) 
= -e~“YXT7(Ut~~a,U)Tr(a,vt,a,u) + qe”> . 

167r2 

Noting the following identity, 

/ d3x-E~u~Tr(Utaua,u)Tr(a,Uta*a~U) 
Pb2 

/ 
=- 

3 
d3x E“~~T~(U~,U Ub,U Ub,U) , 

the Chern-Simons term to lowest order in theta can be rewritten into the familiar 

form for the winding number of the vacuum in QCD,g or equivalently the Baryon 

number for skyrmions,” 

I 

c L~uATr(ub,U ub,u Ub,U) + a(e2) . Hoff = -~4~2 (15) 

Of course, the full Chern-Simons term is not an integer, but to lowest order in 

theta, we have shown that it gives the topological term which is explicitly an 

integer. Higher order corrections can be derived via the equations of motion for 

A P, 
8 Ar=-!f-- 16?r2 ~,~x~“A~ , 

which implies 

8 A,=-$+- 64r2 qw~a~ Jx 

4 . 285261r4 a,(av Jv) - 
82 

+ 4 ~256~~ q Jp+o(e”) , 
(16) 

5 



where 

Jp = -i[Tr(Uta,i3pU) - Tr(apU~,u)] . (17) 

III. Principle Chiral Maps from the WFields 

The map from the previous section picks out an arbitrary direction along the 

the z-axis. Motivated partly to eliminate this specific choice, we start with the 

following definition, 

ii = &r (d(u * k)UfY) , (18) 

where the three-vector k is some constant vector. One easily confirms n2 = 1. 
The nonlinear sigma model Lagrangian now becomes 

L: = ;Tr[apUbw] + & Tr[cd(a . k)Ua,Ut(a . k)U] . 

Expanding iUc3,Ut = cyiq for some alphas, we can show 

u. k)UcY,Ut(a . k)U) 

= ~Tr(a,utaw) + $ 
[ ( 
2-r Ut(o . k)+U) 

I[ 
Tr(Ut(a . k)d’W 

>I 

Thus the Lagrangian becomes 

L: = T~[a,Uta’LU] + & [Tr (Ut(o . k)il,U)] [Tr (Ut(o . k)PU)] 

Finally, introducing gauge fields, this becomes 

L = Tr[(qJ$(DW)] , 

(19) 

(20) 

(21) 

(22) 

where D,U = (a, + iA,(a . k)) U. H ence, we see that the general construction 

reproduces the map derived from the CP1 model for the special case k, = 1, 
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k, = k, = 0 . This Lagrangian has SU(2)~l~b~lx U(l)~~~=l symmetry realized as 

U + UG for GE SU(2), and 

U + cie(z)(a’k) U with A, --+ A, - a,8 . (23) 

Again, we add a Chern-Simons term, 

L: f!! cs = 8?r2& puXAP&,AX . (24 

Now expanding the A, fields in terms of the principle chiral fields, we get 

L 8 
cs = - 16$k2 epuXTr (d (a - k)a,U) Tr (&Ut(o . k)+U) + o(02) . (25) 

This implies that the real, gauge-invariant and SU(2) invariant topological cur- 

rent in the U fields is 

&Ut(a. k)&U . (26) 

We can simplify the Hopf term by using identity (14). Therefore, we get the 

winding number formula for QCD vacua again, 

L e~“YXTr(UtapUUtauUUta,U) . Hoff = -24X2 (27) 

To summarize, when we expand the nonlinear sigma model with Hopf term 

using principle chiral fields, our most general Lagrangian is 

with D,U = (a, + iAp(a. k))U and the recursion relation 

Jp Ok2 A,=---- 
4k2 16T2 q&‘AX 3 

(28) 

which when expanded to lowest order in theta gives L: = Lkin + LHoPf where 

L:kin is given in (21) and LHopf in (27). 
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IV. Solitons and Instantons 

Let’s first look at the soliton solutions in the U(x) fields. The Hamiltonian 

becomes, neglecting the toplogical term, 

u = T@oUtaoU) - 2k2AoAo + Tr ((Diu)t(oiu)) , (29) 

where i = 1,2. For time independent solutions in the A, = 0 gauge, the energy 

is 

E = 
J 

d2x Tr[(DiU)t(DiU)] . (30) 

Using the inequality, 

/ 
dZx Trl [DiU f $u - k)DjU] I2 2 0 . (31) 

We find the energy is given by 

E = 
J 

d2x Tr[(DiU)t(DiU)] 2 $/d’xTr (tliUt(~.k)ajU) Eii s (32) 

The right-hand side is a total derivative (in fact, the quantized topological charge) 

and for U’s at the boundary given by 

i6(6) r4 
U=e G, 

the right-hand side of (32) becomes 

2 dB~=4nN, 
J 

which implies E > 47rIV. Thus, the Bogomol’nyi condition” is 

Diu = Y@ ‘%(o. k)DiU . 

(33) 

(34 
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Solutions to the Bogomol’nyi condition have energy 47rN as required. Con- 

sider the special case k, = 1, k, = k, = 0. If we expand U(x) as in (8), then we 

get the two equations 

(ai + iAi)a = fi&ij(dy + iAj)a, 

(% + iAi)P = *i&ij(aj + iAj)P , (35) 

where Ai = -~Tr(3iUt~~U) = -i(aiZtZ) with Z defined as a complex spinor 

((Y, p). Writing in the CP1 form, the two equations become DiZ = fi&ijDjZ , 

whose solutions are the well-known instantons in the euclidean l+l dimensional 

0 (3) nonlinear sigma model4 Solutions to (34) are invariant under resealings 

of i. For general unit vector 2, the soliton configuration U; that satisfies the 

Bogomol’nyi condition is 

Uz = G-‘(k)Uo 

with UO being the solution gotten in the above special case and G(k) being the 

SU(2) element satisfying 

a’- i = Gt(k)o,G(k) . (36) 

The Hopf instantons are given by the winding numbers of QCD vacua which 

are also the hedgehog solutions in skyrmion physics. These solutions are well- 

known, for the general case of a Hopf N-instanton, the ansatz12 is 

u = cos e(r) + i u . i sin ecr) (37) 

where r2 = (x:+x:+x$ and 0( ) r is any function with the property e(O) = Na and 

0(oo) = 0. With these general properties for e(r), it can shown that expression 

(27) integrated over euclidean three space is an integer N. Thus, as promised, 

skyrmions of 3+1 chiral Lagrangians are like euclidean space Hopf instantons. 
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Now, using the defining map for the n-fields, we can derive the general expression 

for the Hopf instantons in the language of the nonlinear sigma model, in euclidean 

space, 

qq - J&0s2e(r) + -- 2(? x Z) 
J-s 

sin28(r) + “‘2,’ (2-Z);‘. (38) 

The mfields are directly proportional to the k;vectors at infinity and at the origin, 

+ 
iqco) = - & = Z(0) . (39) 

Similar expressions for the CP1 fields could also be derived for the special case 

using the map (8). It would be interesting to map the solutions connected with 

the linking number for curves on S3 to the solutions demonstrated here. The 

essential comparisons between the nonlinear sigma model, the CP1 model and 

the SU(2) model are summarized in Table 1. 

V. Conclusions 

We have rewritten the nonlinear sigma model with Hopf term using principle 

chiral fields. This can be done either starting from the mfields or the CP1 fields. 

The Chern-Simons term to lowest order is manifestly an integer representing the 

Hopf instantons. The solitons in this language also satisfy a Bogomol’nyi identity. 

It is expected that higher order terms beyond the winding number expression are 

the relevant terms that stabilize the soliton against quantum corrections. This 

is the subject of our current work. 

The author would like to thank Dieter Issler for innumerable discussions 

and queries and acknowledges discussions with Roger Brooks and the constant 

support of Sebastian Doniach. 
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