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ABSTRACT 

The role of high-altitude (Z > 200~~) tracer,stars in determining the Galactic 

disk potential is systematically analyzed. It is shown that such tracers cannot, 

by themselves, be used to measure the missing mass in the disk. Up to 60% of 

the disk mass may be in unobserved components with only a 20% discrepancy 

between the measured high-altitude disk potential and what could be expected 

from the observed components alone. In addition, a sample of - 1000 stars is 

necessary to measure the disk potential to even 20% l-a accuracy. However, high- 

altitude tracers may be used to constrain the high-velocity dispersion components 

of the unobserved matter. Consequently, while high-altitude tracer observations 

are important, they should not be given undue emphasis in tracer observation 

programs. 
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1. Introduction 

The determination of the density profile of the Galactic disk in the neighbor- 

hood of the Sun is a problem with a substantial history going back to Oort (1932) 

and even before. The basic method for making this determination is to measure 

the number density Y(Z) of some isothermal population of tracer stars. [The 

population is assumed isothermal if its velocity d ‘spersion $(z) is independent 

of height, within errors.] In principle one may simply “read off” the potential 

$(z) from the density and velocity dispersion data using the one-dimensional 

thermodynamic relation 

dll, (4 2 dlny(z) 
--z-- = -v dz -’ (14 

- 

or its integral form 

$I(z) - t/(O) = -2 In #. P-2) 

These equations are special solutions of the collisionless Boltzmann equation. In 

practice, there may not be enough data from any one star population to make a 

reliable estimate. It would be preferable to fit the potential to density data from 

several tracer populations (which are typically at different temperatures.) Alter- 

natively, one might compare the potentials as fit to several tracer populations. 

An additional constraint comes from Poisson’s equation 

d2+(4 
d9 = 47+(z) + MF]; +) = PA(Z) + i%(z), 

and its boundary conditions 

$‘(O) = $!J(o) = 0. 

P-3) 

(1.4 
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Here PA and PB are the sum of the mass densities tif all observed and unobserved 

components of the disk, 

/‘A(Z) = c Ai ew[-+(z)/(v2)i]; /IB( EBj exP[-ti(z)/(v2)j19 (1-5) 
ob unob 

and peff accounts for effects due to the large scale structure of the Galaxy. The 

Ai in equation (1.5) are the densities of the observed components (stars, dust 

etc.) of the Galactic disk as measured at the Galactic plane. The (v’) are the i 

corresponding dispersion velocities of these components. In a one-dimensional 

problem, the distribution can always be represented as a sum of Gaussian com- 

ponents. It is generally-found that each star type (or other disk material) is 

well represented as a single isothermal componer t. However, in principle, it is 

possible that some disk material would have to be represented as the sum of 

several isothermal components. The Bj and (v”), are the densities and velocity 

dispersions of the unobserved components. The parameter peg is known from 

theory (see $IV), 

Peff - .08 f .04pA(0), (l-6) 

but only within fairly wide errors. Much of this paper will be concerned with 

understanding the influence of the uncertainty C peff on measurements of the 

disk potential. For now, however, the importan thing about peff is that it is 

very strongly believed to be a constant over the distance scales I am considering. 

(More precisely, the first correction to the leading :onstant term is quadratic and 

small enough that it does not significantly alter 1 he results of my calculations.) 

In §IV I will discuss exactly how peff depends ou the large-scale structure of the 
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Galaxy and in what sense it is an “effective density.” The first boundary condition 

in equation (1.4) comes from the (assumed) symmc-try of the disk potential about 

z = 0. The second is a convention. The integrated column density of the observed 

plus unobserved components is called C. 

Note that while the Ai and (v~)~ are observed quantities, the combined den- 

sity of these components at finite altitudes, PA(i) (z > 0), is not an observed 

quantity. It depends on $(z) which in turn depends on the unobserved com- 

ponents. Th us, PA(z) cannot be calculated from a knowledge of the densities 

and velocity dispersions of the components observed at the plane. Moreover, the 

various observed components can be directly observed only up to some definite 

finite altitudes which depend on their intrinsic luminosities. This is why I have - r’ i 
given the density profile of the components observed at the plane the neutral 

label “PA(Z)” rather than, say, up0bS(%)“. 

Bahcall (1984a, 1984b) h as carried out two :tudies in which he solved the 

combined Poisson-Boltzmann equation using as s:,urces all observed matter dis- 

tributions plus various trial unobserved distributions. The resulting potentials 

were then compared to the potential as determined by applying equation (1.2) to 

tracer density data. In one study, Bahcall used F stars as tracers. In the other 

he used K giants. In each case, the tracer samples extended up to 200 to 600 

pc, only about one to three times the scale height of the disk. He found that if 

one assumes no unobserved matter, then the column density, C, is roughly 52 

i&pcV2 for peff = 0 and 48 Mapcm2 for peg = O.lp~(0). However, the resulting 

potential gives a poor fit to the tracer data, ant outside his “95% confidence” 

interval. Thus he was compelled to fit the tracer data by trying various combi- 
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nations of unobserved components. Typically he ;iound that to get good fits, he 

had to assume that about half the disk matter wi;3 unobserved. 

Recently, Kuijken and Gilmore (1987) h ave argued that the column density of 

the disk and its unobserved fraction are best determined from tracer populations 

which rise high above the disk.* In this region, where the disk itself has vanishing 

density, the potential should just be linear (plus a term reflecting the large-scale 

Galactic structure), 

$(z) = -A$ + Kz + Fz2 (D B- D*), 0.7) 

where K and F are constants which are related to C and peg by 

K = 27rGC, F = 27rCpeff, (l-8) 

and D, - 200 pc is the scale height of the disk. IThe constant A$ is necessary 

to satisfy the boundary condition (1.4) at the origin.] Kuijken and Gilmore 

measured K using a sample of 530 K dwarf stars as high up as 2000 pc, well 

above the - 200 pc scale height of the disk. Tl ey found that their measured 

value of K (or C) was consistent with the value which would be inferred if one 

assumed no missing matter (that is 48 &PC-~). Thus they concluded that there 

was no missing mass, apparently contradicting B;.hcall’s result. 

Kuijken and Gilmore are continuing their sure zy and other observers are also 

undertaking surveys of high altitude tracers. These surveys offer a perspective 

* Private conversations have convinced me that Kuijkerl and Gilmore are not alone in hold- 
ing this view. 
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on the disk potential which is as different from tha:, of low-altitude tracer data as 

a photograph of Andromeda is from one of the Milky Way. I believe that as with 

any new perspective, one should proceed cautiously, heavily discount previously 

acquired intuition, and conduct a thorough rearxlysis of the problem from the 

new viewpoint. Thus, in this paper, I propose to analyze what can be learned 

from high-altitude tracers and with how great an accuracy. For the bulk of the 

paper, I will consider only what can be learned from high-altitude data alone. At 

the end, I will briefly address the question of how high and low-altitude data may 

be combined, and what can be learned from the combination which cannot be 

adduced from each sample considered separately. However, a’systematic analysis 

of this more complicated-problem is left to a later paper. 

A complete description of the missing matter would require a determination 

of all the Bj and (v’) j in equation (1.5). H owev ?r, at the present time, such a 

complete determination would appear to be a distant prospect. A more realistic 

short term goal would be to answer the following three questions: 

i. Is there a significant amount of unobserved matter? 

ii. If so, what is its total density? 

ai;. What is its velocity dispersion? 

Although the above three questions may seem unambiguous, they actually 

conceal radically conflicting viewpoints on the notion of missing matter. To 

different people, the question “Is there missing lnatter?” may mean one of at 

least three things: 

1. Is there a significant density of matter in the neighborhood of the Sun which 
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we do not observe? 

2. Is the column density of the disk significantly larger than would be inferred 

from the disk components observed in the neighborhood of the Sun? 

3. Of all the mass in the disk, is a significant fraction due to disk components 

which are not observed in the neighborhood of the Sun? 

These questions may appear to be just clever rewordings of one another, but 

each refers to a completely different concept. More importantly, measurements 

which help answer (or definitively answer) one of these questions may have little 

or nothing to say about the others. Thus, it is crucial to give a mathematical 

definition to each of these ideas of “missing matter” and to determine how they 

are related. 

I define the following three dimensionless quantities corresponding respec- 

tively to the above three definitions, 

1 _ P-&) -_- 
~(0) ’ (1-g) 

(1.10) 

(1.11) 

where 

00 00 

CA - 
/ 

dZPA(Z), CB = 
I 

dzPB (2)) CECA+CB, (1.12) 

-00 -09 

and Cmin is the minimum possible column density of the disk consistent with the 

components observed at the plane. 
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I consider these quantities in turn. The first, A,, is a measure of the missing 

matter which is at the plane. Clearly if there is a l.>t of unobserved, low velocity- 

dispersion matter, AP will be large. On the other land there could be substantial 

quantities of unobserved matter, but if its velocity dispersion were high, very little 

of this matter would be at the plane and hence A, would be low. Thus, while 

AP provides useful information about the disk potential, it cannot, by itself, 

resolve the question of missing matter. The determination of AP is, in principle, 

straightforward. On the one hand, PA(O) is directly observed. On the other, p(O) 

can be found by fitting the low-altitude potential to a parabola 

47rGp(O) = -2F + dz2 d2+lr(z) / 
, 

z<<D. 

where D, - 2OOpc is the scale height of the disk. One possible problem with this 

procedure is that F is not known perfectly. However, from equation (1.6), it is 

clear that this uncertainty plays a minor role. More important is the difficulty in 

finding tracers with a large enough density and small enough velocity dispersion 

to be sensitive to the potential near the plane. In any event, AP will not figure 

prominently in this paper. 

In a way, AC is the mirror opposite of A P: it is very sensitive to high velocity- 

dispersion dark matter, but very insensitive to dark matter with low velocity 

dispersion. This relationship, which is not at all obvious, will be analyzed in 

detail in $11. Thus, like AP, it provides useful in’brmation about the potential, 

but cannot, by itself, resolve the question of mtssing mass. There is another 

sense in which AC is the mirror opposite of A,: !; will play an extremely promi- 

nent role in this paper. This is because high-altitude tracers naturally measure 



AC. High-altitude tracers measure a single number, K, or equivalently, C, the 

column density. (They also yield information about F, but that is irrelevant to 

the present discussion.) This number must then be compared with some other 

single number which characterizes the known matter distribution. The only such 

number is Emin, the minimum column density consistent with the observed com- 

ponents. The comparison of these two numbers [eq. (l.lO)] is Ax. 

I cannot emphasize too strongly that this situation is very different from that 

produced by medium and low-altitude tracers. Using a general set of tracers, one 

could in principle map the potential with arbitrary accuracy. Of course there will 

be a whole range of potentials which are consistent with any given finite data 

set. Some of these potentials can be ruled out on physical grounds. For example, . 
the second derivative of the potential is the mass density, and this cannot be 

negative. But, by using the Poisson constraint as Bahcall (1984a, 198413) did, one 

can rule out many more potentials which would otherwise be consistent with the 

data. In particular, none of the components desc-ibed by the (v~)~ in equation 

(1.5) can have coefficients less than A;. Thus the Poisson constraint contains 

an enormous amount of information. However, But the higher one gets in the 

potential, the more components die out, and the less significant this constraint 

becomes. Finally, at very high altitudes, the Poisson constraint provides only 

one piece of information, namely that the linear term in the potential must be 

at least as great as fLrGC,i,. Thus, Cmin may be regarded as the high-altitude 

rump of the Poisson constraint. 

This residual constraint is very weak. As I ~2x0~ in $11, there are potentials 

which just barely satisfy it and yet have a tremendous amount of missing matter. 
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The procedure for determining Cmin is as follows. If one could be sure that 

there were no unobserved components (and that 3ne knew pee), one could nu- 

merically determine the total column density fram equations (1.3), (1.4), and 

(1.5). The quantity so calculated is Cmin. It is easy to convince oneself (again 

assuming that peff is known) that 

(1.14) 

where equality holds if and only if there is no missing mass. Thus, Cmin is indeed 

the minimum possible column density consistent with the observed components. 

The third quantity, AT, corresponds to my own naive view of what is meant 

by “missing matter” in so far as it can be described by a single parameter: It is 

the fraction of the disk mass which is in unobserved components. In addition, 

this parameter is sensitive to both high and low-v !locity dispersion dark matter. 

For high-velocity dark matter, it just as sensiti-fe Ax. For low-velocity dark 

matter, it is not quite as sensitive as Ap, but is much more sensitive than Ax. 

Therefore, in this paper I will use AT to quantify the fraction of the disk matter 

which is dark. 

However, AT does have an important drawba:k; it is not easily measured. It 

is defined in terms of CA, which is not an observed quantity. Recall that CA is 

the integral of PA(z) which depends on the potential and thus on the unobserved 

components. The only way to determine CA is t1.J measure the whole potential, 

using tracers and the Poisson constraint. This determination is a difficult problem 

(Bahcall 1984a, 1984b). Fortunately, the difficc lties in measuring AT do not 

translate into difficulties in carrying out the analysis of this paper. 
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In $11, I begin by analyzing what one learns about the missing mass (AT) 

by measuring K (and hence AC). I show that if AC is large then AT must also 

be large, but that the reverse is not true. If the missing mass has a low velocity 

dispersion, then well over half the mass may be in unobserved components even 

though there is not much discrepancy between C and Cmin. In particular I find 

that AT may be as high as 60% when AC is only 20%. Thus, one may use 

measurements of AC to demonstrate the existence of missing matter, but not to 

rule it out. 

In $111, I calculate how well one may measure K, if nothing is assumed about 

F. (In other words, how well may K and F may be measured simultaneously.) 

I find that the (1-a) statistical error in the measurement of K in these circum- 

stances is 

(1.15) 

where N is the number of stars observed above the disk. With 350 such stars, 

the error is - 45%. With 2000 stars it is - 20%. If this result is combined with 

the results of $11, it is clear that high-altitude tracers cannot (by themselves) put 

any serious constraint on the missing matter, Al, unless astronomical amounts 

of data are taken. 

In §IV and §V, I examine the possibility that the problems encountered in 

$111 can be avoided by making a theoretical estimate of F. In §IV I calculate 

F theoretically and give an estimate of the erro” in this calculation. In §V, I 

show how this theoretical determination may bc combined with observational 

data to yield a single estimate of K. I find that the uncertainty in this combined 
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calculation is substantially reduced relative to equation (l.15), but is still large, 

6K - - 27% 
K 

(N = 350). 

At N = 1000, the uncertainty is still - 20%. 

Thus, the viewpoint that the missing matter is best measured by observing a 

tracer population well above the disk, does not stand up to examination. Despite 

the fact that the potential has a simple form in this region, only a very crude 

determination of the missing mass is possible. In avoiding the region where 

the potential has a complicated form, one also Yavoids” the region where one 

can apply the powerful Poisson constraint. As I will show in later paper, this 

constraint plays a key role in determining the mi:,sing matter. 

The conclusions of $111 and $V must be modified by the following more refined 

analysis. Recall that it is not C itself that gives information about the missing 

matter, but Ax. This latter quantity is related to C by a “known quantity”, 

c min - However, the procedure for inferring Cmin iom the observed components 

involves assumptions about F. This means that if an error is made in measuring 

(or estimating) F in $111 (or !jIV), then there will also be an error in the minimum 

column density. This will in turn induce an error in AC. In SVI, I calculate this 

error and show that its sign is such as to reduce the effects discussed in $111 and 

§V, but that its magnitude is relatively small. Another way of saying the same 

thing is that an error in F will induce an error in K which may be divided into 

two pieces. The first (smaller) piece has no effect on AC, while the second has a 
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direct effect. I call the first piece “the irrelevant error in K”, (6K)irr, and find 

(bK)irr h) 25% 
6K , (1.17) 

One rather disappointing result of §V is that even very large numbers of star 

counts do not significantly improve the accuracy of the measurement of F (or 

peg). Recall that this quantity is known from theory only to within 50%. At 

N = 2000, this uncertainty drops somewhat, but only to - 40%. Since F is an 

important parameter of the large-scale structure of the Galaxy, one might hope 

that these high-altitude measurements would shed some light on it. In §VII, I 

investigate a back-door route to this goal. Measurements of K made in and near 

the disk depend only very weakly on F. Therefore, if these measurements can - 
:: 

beat down the error in K to low levels, then the high-altitude measurements can 

give important information about F. In $VII, I estimate how well the present 

data (N = 350) can constrain F if K is known to some specified accuracy. I 

find that substantial improvements can be made i-1 the accuracy of F if the error 

in K (as determined from low-altitude measurer rents) can be reduced 2 15%. 

Further improvements are possible if more high-aititude stars are observed. 

The central focus of this paper is the use cf high-altitude tracer data in 

the measurement of the disk mass, in general. While the paper was stimulated 

by the work of Kuijken and Gilmore, its application is not restricted to any 

particular data set. Thus, in the bulk of the paper I treat the Kuijken and 

Gilmore data set as an example and do not attempt to analyze it in detail. 

However, Kuijken and Gilmore have used their data to make the strong claim 

that there is no evidence for missing matter in th : disk. I believe that a number 
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of subtle considerations conspire to undercut this claim. In gVII1, I show that 

the Kuijken and Gilmore data tend to indicate tha-, there is a significant quantity 

of missing matter, although the uncertainties art far too large to make a firm 

claim. 

I conclude that tracer observation programs should not be designed to max- 

imize the number of high-altitude tracers. Star for star, these tracers require 

more telescope time and are more prone to systematic errors. The hope that 

these drawbacks of high-altitude tracers might be compensated by their assumed 

exceptional value in determining the missing mass is illusory. 

2. AT vs A,: Missing Mass As Measured By K 

In this section, I investigate the extent to which missing mass can be calcu- 

lated by measuring K, the linear term in the high altitude potential. To simplify 

the discussion, I will assume throughout this section that F = 0. I will deal with 

problems posed by a finite F in subsequent sectia:is. With this assumption Cmin 

is known so that [by eq. (l.lO)], a measurement of K directly implies an estimate 

of AC. Thus, the problem is reduced to analyzing how much missing mass (AT) 

is implied by a given measurement of AC. In general, one expects that this will 

depend on the velocity dispersion of the missing mass. It may also depend on 

the degree to which the observed distribution dev ates from being isothermal. Of 

course it may also depend in a subtle way on the ,?recise composition of both the 

observed and unobserved components. However, in this section I am not inter- 

ested in such subtleties. I wish only to find how tlr: relationship between AT and 

AE varies with the gross characteristics of the system. I will therefore consider a 
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set of disk models each of whose components (whither observed or unobserved) 

has one of the three velocity dispersions, ~12, v;, OI v:, which satisfy the following 

extreme relations 

(2.1) 

The total column density (observed plus unobserved) of these components will 

be designated Cl, C,, and Ch. No assumption will be made about the relative 

size of the column densities. However, I will assume that the density at the plane 

of the medium-velocity component is much greater than that of the high-velocity 

component, 

Pm(O) B Ph(0). P-2) 

Condition (2.2) will almost always be satisfied in the limit (2.1), so this is not a 

significant additional assumption. (Note that since the system is collisionless, the 

different components can coexist at different terrperatures. These components 

are assumed to interact with one another only gr bvitationally.) 

Remarkably, the Poisson-Boltzmann equation may be solved exactly in the 

limits (2.1) and (2.2). Th e solution, given below, is derived in Appendix A. 

3 = Ktanh 
dz 

Z +tanh-’ Kzm 
D 7) -Ki,[l-tartiI(&+tanh-‘$)I, (2.3) 

4~Gp(z) = 

K 
-sech2 ( 

Klrn 
D 

’ + tanh-’ - Klrn 
E K > -sech2 

+ Dlrn ( 5 + tanh-’ 
Dlrn 

2) + Kz6(0), 

(2.4) 

4rGprn(O) = K2-KK:,; 
2v2 47rGm$) = K?mvK?; 

h 
2v2 

m 
(2.5) 
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where 
Kl ~27rGC1, Km E 2rGCm, Kh - 2rGCh, 

Kim -Kl+ Km; K-Kl+Km+Kh, 
P-6) 

D=%; 2vk 
K 

Dim = -. 
rlrn 

P-7) 

Note that the solution is exact only in the limit (2.1). It might also be 

regarded as the first term in a systematic expansion of the solution around vf = 0, 

vi = 00. However, from the standpoint of this paper, the leading term is all that 

is important. 

Using equation (2.5),-the relationship between AT and AC may be evaluated 

1 for a variety of models. The procedure is as follows. Choose a model described 

by observed components Kl, pm (0)) and ph(0). Etluation (2.5) gives the inferred 

column densities Km and Kh (assuming no missir g mass) hence the total (mini- 

mum) column density, Kmin = .Kl+ Km +Kh. [In accord with eq. (2.6), I use K’s 

and C’s interchangeably.] Now I assume that there is enough unobserved matter 

to produce a AC of a given magnitude (say 20%). According to the definition of 

Ax [eq. (l.lO)], th is implies that the total (observed plus unobserved) column 

density is 

K = (1 - AE)-lKminS (2.8) 

I now suppose that all the unobserved mass is in 3 component with one of the 3 

velocity dispersions, say for example, v&. Again ising equation (2.5), I solve for 

the new total density of the medium component, /jrn tot(O). This solution also gives 

the new total column density for the medium conponent, Kkt. From these and 
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the definition of AT [eq. (l.ll)], I calculate the missing mass fraction, 

P-9) 

I consider models whose observed components have a total velocity dispersion 

vk [i.e., Klv; = Kh(v; - GJ - Khvi], and work in the limit (2.1). Then for 

unobserved components with high, medium, and low velocity dispersions, I find 

AT=AE (high), 

AT = Ac(2 - Ac)[l + ~(1 - Ax)]- (medium), 

AT = [l - (1 - r)(l - AE)“]~ - ~(1 - AC) *(low), 

(2.10) 

where 

r = Kl/K (2.11) 

parameterizes the deviation of the observed distr,bution from a isothermal one. 

Before analyzing the general (non-isothermal) case, consider the limit where the 

observed distribution is a pure medium velocity l..:omponent. For definiteness, I 

will evaluate AT when AE = 20%. In this isotl,ermal limit (7 = 0), equation 

(2.10) reduces to 

AT = AC + 20% (high) 

AT = AE(~ - AE) + 36% (medium) (2.12) 

AT = [AE(~ - AE)]~ ---+ 60% (low). 

Thus, for high-velocity unobserved matter, AC re’lects AT perfectly. However, if 

the unobserved matter is low-velocity, then it ms.:r be present in huge (majority) 
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quantities, while changing the column density omy marginally. The reason for 

this is that if a large quantity of unobserved lon -velocity matter is present, it 

raises the potential everywhere, thereby greatly reducing the column densities 

of the observed components relative to what was inferred on the basis of the 

observed distributions alone. From this explanation, it is clear that if the ob- 

served distribution is highly non-isothermal (and hence has a large low-velocity 

component) an additional low-velocity unobserved component will give rise to 

greater increase in the column density compared to the isothermal case. This is 

confirmed by Figure 1 in which I have plotted AT against r for fixed AE and 

for each of the three types of unobserved matter. In order to assess what value 

of r is most appropriate for our own disk, I give a. more general definition which 

reduces to equation (2.11) in the special case of above models: 

r=CiKI(v2)i-711 p_ CiKitv2)i 
- 

2vZCiKi ’ CiKi ’ 
(2.13) 

where the Ki are the inferred column densities for each of the observed compo- 

nents. Using this definition and Bahcall’s (1984a) values for the Ai and (v~)~, I 

find that for the observed components of the Milky Way disk, r - 0.25. 
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3. Determination Of K And F From Tracer Data 

In this section, I imagine that velocity dispersion and density data of a tracer 

distribution are measured in a region Lr < z < L2 with the aim of determining 

K. I will assume Lr > D, so that virtually the entire mass of the disk is below 

the observations and the derivative of the potential is very well approximated by 

dpl,=K+2Fz 
dz 

. (3-l) 

When I make a numerical calculation, I will take Lr = 4OOpc and La = 2000~~. 

The upper limit is in conformity with the upper limit of the Kuijken and Gilmore 

_ data. The choice of the lower limit requires some justification. Using Bahcall’s 

data (1984a) one finds (assuming no missing mattt r) that - 75% of the disk mass 

is below 400 pc (and above -400 PC). Thus the fcrm (3.1) is not yet really valid 

at 400 pc. In fact, to get above 97% of the disk mass, one must go to - 1000 

pc. This latter number would then appear to be a more realistic lower limit. 

However, while the potential is not the simple function (3.1) of two parameters 

at 400 pc, it can to a very good approximation be written as a more complicated 

function of two parameters. This function would take account of the (nearly) 

exponentially decaying mass density of the high-velocity components which are 

measured at the Galactic plane. On the other hard, at altitudes well below 400 

pc, the potential cannot be written as function of two parameters. In principle, 

then, one should set the lower limit at 400 pc, aut use the more complicated 

potential. However, since I am interested in estimating the uncertainties in K 

and not K itself, such complexities would obscure r,he analysis without improving 
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the results. The idealization (3.1) with the given limits is therefore an appropriate 

one for the task at hand. 

In general, one must assume that the tracer population is not isothermal. 

For example, the velocity dispersion of the Kuijken and Gilmore K dwarf sample 

rose from - 20 km s-l near the plane to - 40 km s-l at 2000 pc. This contrasts 

sharply with the situation faced by Bahcall. Both his F dwarf and K giant samples 

were found to be isothermal within errors. One possible reason for the difference 

is that K dwarfs are simply less isothermal. However, the non-thermal elements 

of any population will become more and more pronounced at higher elevations for 

the simple reason that the low-velocity components become suppressed. It may 

well be that if the F dwarfs were followed up to 2000 pc, their non-isothermal 

components would be more apparent. In any event, if one wishes to use high- 

altitude tracers, one must be prepared to analyze non-isothermal distributions. 

This requires that equation (1.1) be generalized. The appropriate generalization 

is given as equation (4-36) in Binney and Tremaire (1987), 

m= d In Y(Z) d3(z) 
dz -7(z) & -37 

which may be integrated to yield 

P-2) 

To find the potential from density and velocity-dispersion data one has essentially 

two choices. One may fit the density data to some narameterized curve and fit the 

velocity-dispersion data to another, and then read. off the potential from equation 
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(3.2). Alternatively, one may fit the density data to some parameterized curve 

and then use equation (3.3) to fit the potential tc. another parameterized curve. 

In this latter fit, the velocity-dispersion data are the points which are being fit. In 

general, I believe that the first procedure is proba,bly preferable because it does 

not involve any assumption about the density in the region beyond the data. 

However, in my model calculation I will use the second procedure. One reason 

for doing this is that in this asymptotic regime, the derivative of the potential is 

known to have a very simple form [given by eq. (3.1)] with only two parameters. 

If the first method were used, a third jit would have to be done to fit the potential 

to this form after the velocity dispersion and density were fit. This would make 

the entire calculation less clear. A second reason is that, as a practical matter, 

the unknown density in the region beyond L2 = 2000 pc plays very little role. 

In this section and $V I will simulate the an tlysis of data using the proce- 

dure described above in order to estimate the uncertainties in the calculations. 

While the procedure is valid for either isothermal or non-isothermal tracers, I 

will assume that the underlying distribution is isothermal. My reason for this is 

that it makes the simulation analytically tractable. Since I am interested only 

in calculating the uncertainties in the results and not the results themselves, 

this assumption should not cause any serious problems. (Notice, however that I 

have been careful to use a procedure of data anlysis which is valid for a non- 

isothermal population. If my simulation relied 0.1 a procedure which was valid 

only for isothermal tracers, this would cause seric us problems.) Whenever mak- 

ing a numerical calculation, I will use 

3 = (25 km s-l)2 (3.4 
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This is roughly the velocity dispersion of the Kui ken and Gilmore sample of K 

dwarfs at a scale height. 

The net result of this simulation will be the variances and covariance of K 

and F, expressed as a covariance matrix. Since JC and F are dimensionful, the 

elements of this matrix will also be dimensionful, a. id moreover will have different 

dimensions from one another. In order to make 1 he elements of the covariance 

matrix dimensionless, I introduce the dimensionless basis vector, 

(K/K, F/F*) (Standard Basis Vector), (3.5) 

where 

F* G 2.0 x 10e4(km ,~-l)~pc-~; K, E 1.3(km ~-l)~pc-‘. W) 

The choice of the normalization factors K+ and F* is somewhat arbitrary. I 

have taken K, as the minimum value of K (K,i,) given the observed matter 

in the solar neighborhood. I have chosen F* to be the expected value of F if 

K = K*. This expected value is calculated in the next section. With this choice 

of basis, the diagonal elements of the covariance matrix will be the (square of) 

the fractional uncertainties in K and F. Note that the scale associated with this 

normalization, 

K, - - 6.5 kpc, 
F* P-7) 

is of the same order as the Galactocentric distan e, R - 8.5 kpc, and the radial 

scale of the disk, h - 3.5 kpc. As I will make clear in the next section, this is 
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related to the fact that the disk and halo contrib-rtions to the Galactic rotation 

curve are of the same order at the position of the Sun. 

- 
Consider then, a series of n measurements of A/ and ~2 taken at positions zi, 

D, < L1 < z; < La. First, I will mimic the determination of Y(Z) from the 

number density data. Since, the distribution is isothermal, the density will be 

given by 

u(z) = exp(-Ae - Alz - A2z2), (3.8) 

- - 
where A0 is an overall normalization constant, Al :-= K/v2, and A2 = F/v2. I will 

thus try to fit the logarithm of the density to a quadratic, ai + arz + ~22~. The 

variance of al will then translate directly into one source of error in determining 

K. Proceeding with a standard linear fitting analysis (see for example Press et 

al. 1986) one finds 

n 1 
X2(Uo, Ul, us) = c -p[Vob(Zi)l - (a0 + al& + a2zi2)j2, 

i=l 
(3-g) 

where u,b is the observed density derived from star counts. I will consider only 

statistical (and not systematic) errors in the measurement of V,b(Zi). Then the 

variance is just the inverse of the star count in the zi bin, 

0’ = [uob(zi)(Yzf(L2 - Ll!/n]-‘, (3.10) 

where ty: is the spherical angle of the observation 1 one. (For simplicity of exposi- 

tion I take the discrete volume element to be az~/~zi throughout this paper, with 

a taken to be independent of z. I also assume th;,t the bins are large enough to 
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ignore the difference between “n” and “n - 1” in the usual variance formulae.) 

Thus, equation (3.9) becomes 

L2 

x2(ao, al, a2) = 
/ 

az2dz u&(Z){h[u&(Z)] - (uo + ulz + a2z2)}2. (3.11) 

z=L1 

Differentiating with respect to oj yields the matrix equation 

b;kCLk = dj 

where 

(3.12) 

L2 L2 

byk = az2dz y,b(Z)zj+k 
J 

dj = 
/ 

az2dz ~ob(z)z’[h(vob(Z)]. (3.13) 

Ll Ll 

The covariance matrix for the Uk is given by the inverse of bTk. (See Appendix 

B.) I will assume, as is almost certainly the case, that 

Fv2 
K2 << 1. 

Then b; may be evaluated 

= NA-(i+j) f(’ + j 3 
1 

f(2) ’ 

where 

(3.14) 

(3.15) 

f(k) E k! 2 [ (KLf/sJ1 exp(-KLl/s) - @yp exp(-KLz/;‘i)] 3 (3.16) 

I=0 . 

and N is the number of stars in the sample. I’he covariances of al and u2 

contribute directly to the covariances of K and ,:p. This is clear because, if the 
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velocity dispersion q(z) were known precisely at every point, then K and F could 

be read off directly from al and ~2. Thus, by ev; luating and inverting b,“i, and 

then converting to the standard basis [eq. (3.5)], one obtains the contribution to 

the covariance from the measurement of V(Z). I have carried out this calculation 

using the above standard values of 7 and the L,, and taking K = K,. I find 

that the (dimensionless) covariance matrix is given by 

0.3 -3.5 8.9 

c.. v- - 
1 

- 
13 N 

-3.5 42.3 -112.4 (i,j = 0,1,2). (3.17) 

8.9 -112.4 307.7 

The zeroth row and column in the above equation are the covariances of the 

overall constant term in the potential. This term is physically unobservable 

and hence irrelevant. Its covariances are of interest only because they illustrate 

the degree to which the determination of physical observables depends on the 

irrelevant normalization of the tracer density. The relevant terms in equation 

(3.17) are 

-112.4 

307.7 > 
(i,j = 1,2). (3.18) 

Thus, for N = 350 (roughly the number of stars above 400 pc in the Kuijken 

and Gilmore sample), the uncertainty in K from $-he density measurement alone 

is - (42/N)li2 - 35%. 

The uncertainties induced by the fitting of 212 are also significant. These are 

independent of the errors induced by the fitting of V, so I am justified in assuming 

that Y(Z) is completely known for purposes of this specific calculation. I adopt 

a trial potential +(z) = uoz + u1z2, and make a prediction for 2(z) based on 
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equation (3.3). Thus 

n 1 
X2(Uo,4 = c 3 v,2b- [V(zi)]-” /mdi’(c, + ~u~z’)Y(z’)}~. (3.19) 

i=l 2 

In this case, 

- 
U: = 2(V2)2[Y(Zi)CYZj!(L2 - 1 l)/n]-l, (3.20) 

so that the inverse of the covariance matrix is given by 

b~j=~~~[/” r dz’(az’)‘u(z’)] [Jdz’(Zz’)jv(z’)]. 
Ll z z 

(3.21) 

1 As in the previous evaluation, I assume the condition (3.14). Then byj may be 

evaluated 

b;(, =A bl;, = by0 = --&8 + 8x + 4x2 + x3)em2 
KLl/z 

2(v2)2’ KL2/3 
.- 

bY1 =$(38 + 38x + 19x2 + 6x3 + ~~)e--./~~“:‘:, 
KL2/v2 

j E (2 + 2x + x2)ewz :zlir. 
2 2 

(3.22) 

The dispersion fit contribution to the covariances of K and F is given by the 

inverse of this matrix. I have evaluated this matrix in my standard dimensionless 

basis and using my standard values of K, Li, ant’ 212 and find, 

(3.23) 

According to the “resistor rule” for c0variancc.s (see Appendix B), covariance 

matrices from measurements carried out “in series” add directly, while covariance 
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matrices from measurements carried out “in parallel” add inversely. (A set of 

measurements of a vector is said to be carried or t “in parallel” if each may be 

used separately to determine the vector. Conversely, it is said to be carried out 

“in series” if the entire set is necessary to make the determination.) Using this 

rule, I find that the (dimensionless) covariance matrix for the entire measurement 

process is 

(3.24) 

Thus, the l-a uncertainty in the determinati: n of K is - (74/N) ‘I2 - 45% 

for the case N = 350. This is in addition to any systematic errors which arise 

from the measurement procedure. 

Equation (3.24) has two salient features. First, the diagonal elements (vari- 

ances) are very large compared to the values one would naively expect (- l/N). 

Second, the dimensionless variance of F is much larger than that of K. Since 

the large variance of K is an essential limiting fattor in our ability to use high- 

altitude tracers to measure the disk potential, it is important to understand the 

physical origin of these features. 

The large variances are a direct result of the large covariance (off diagonal 

elements). That is, K and F have an unexpected’y large correlation coefficient, 

-171 
- (74 .424) l/2 - -o’g7’ (3.25) 

Physically, this arises from the fact that it is difficult to distinguish between 

the effects of the quadratic and linear terms in ‘he potential. This problem is 
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exacerbated by the fact that at the lower limit, L1 = 400 pc, the effective density 

term in the potential is already fairly large. Ret; 11 that it was necessary to set 

the lower limit this high in order to insure that ,he potential could be written 

as a known function of two variables. Thus, this Z,.rrge covuriunce is connected in 

a fundamental way to the attempt to avoid the details of the potential by getting 

above the disk. To judge the impact of having to set L1 so high, I evaluate the 

covariance matrix for the (hypothetical) case L1 =: 0, L2 = 00. For this case, all 

equations may be evaluated by hand and one quickly finds 

$?=;(a ;); [L1-=o, L2=*oo]. (3.26) 

Thus a factor of - 5 in the variance of K is due t-j the fact that no observations 

from the region where the effective density term I ‘3 negligibly small can be used. 

The large value of the variance of F relative LO that of K is, in a sense, an 

artifact of the normalization, (3.6). Th e scale o: the normalization [eq. (3.7)] 

is 6.5 kpc, while the intrinsic scale of the measu: ement is s/K - 480 pc. If I 

had normalized K and F according to this latter scale, the variance of F would 

have been - 200 times lower. This is why I say that the large variance in F is 

an artifact of the normalization. Nevertheless, this difference in scales is a real 

effect, and it is one which can be used to advan- age as I will show in the next 

section. 
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4. Theoretical Relation Betw’::en K and F 

The fractional variance in F (- 424/N) f ound in the last section is so large 

that a typical measurement may easily yield an absurd value of F. For example, if 

N = 350, then there is a high probability that F will be measured to be negative. 

While F is not precisely known, it may be taken as positive with considerable 

confidence. One should really include a theoretical constraint on F to prevent 

it from wandering so far afield. Since the covariance of K and F is large, this 

constraint on F will produce an indirect constraint on K. This section is therefore 

devoted to a theoretical calculation of F. It turns out that what is constrained 

theoretically is not F alone, but a linear combination of F and K. In the next 

section I will show how this constraint may be incorporated into the evaluation 

of K, and estimate the degree to which the uncertainty is thereby reduced. 

As I will show, the theoretical uncertainty in F is very large (- 50%) when 

measured in units of F*. Since these are the natural units for measuring F, one 

might at first be led to believe that not much wouid come of such a “constraint.” 

However, recall the point made above that the variance of F in equation (3.24) 

was small in units natural to the measurement but large in units of F,. Thus, the 

ratio of distance scales acts as sort of a lever which allows one to drastically reduce 

the uncertainty in one arena by making a fairly crude calculation in another. 

Unfortunately, as I will demonstrate in the next section, this reduction is not as 

great as one would like. 

What physical effects, then, contribute to F’ First, there are effects which 

relate to large scale structure of the Galactic potc-ntial. Second, there are effects 
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which arise from changes in the velocity ellipsoid as one moves away from the 

disk. I consider these in turn. 

The potential above the Galactic plane depends not only on the vertical mass 

distribution of the disk but also on the large scale structure of the Galaxy. Stars 

which are at some height z directly above the Sun are a distance R + z2/2R from 

the center of the Galaxy. (Here R is the solar Galactocentric distance.) Thus 

there is a quadratic term in the potential due to the Galactic halo and bulge, 

+hb, 

+hb(Z) = 4hb(R + Z2/2R) - +h@?) - z2 ‘h;y), (4.1) 

where &b(r) is the (spherical) potential due to the halo and the bulge. Compar- 

ison of the above equation with the definition of .P shows, 

$3 = hb’cR) 
2R ’ (4.2) 

Note that q&,‘(R) is just the centripetal force (duz to the halo and the bulge) on 

the Sun [really, on the Local Standard of Rest (LSR)] as it travels in its circular 

orbit about the Galactic center. This force plus the radial force due to the disk 

potential, 4disk’( R), must balance the centrifugal force on the LSR, V2/R, 

g = &b’(R) + &isk’iR)- (4.3) 

I model the disk density as falling off exponentially with radial distance. Then 

(Binney and Tremaine 1987) 

ddisk’(R) = 2rGCg(R/2h); g(x) G e22x[Ieex)Kc(x) - Ir(x)Kr(x)], (4.4) 

where h is the scaling radius of the disk, C is the disk column density at the 
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Sun, and the I and K are standard Bessel functio;ts. Combining equations (4.2) 

through (4.4) and the definition of K gives 

V2 
F=- 

2R2 
- &g(R/2h). P-5) 

The parameters in the above equation have the values (Binney and Tremaine 

1987) 

RfAR=8.5fl.Okpc; hfAh=3.5&0.5kpc; VfAV=220&15kms-‘. 

(4.6) 

Combining equations (4.5) and (4.6) gives 

$ + .68E = 1.68 f 47 
* * (4-7) 

where Fj, and K, are given by equation (3.6). (Recall that I chose F* to be 

the expected value of F when K = K,.) The uncertainty in equation (4.7) was 

evaluated by considering AR; Ah, and AV to be independent, and evaluating 

the variance in F at K = K,, 

(AF)2 = (&) 2(AV)2 + [ -$g’(R/2h)] 2(Ah)2+ 

[ I 
2 

V2 
s+ sg’(R/2h) - &g(R/S) (LJR)~. 

(4-8) 

It is of some interest that the AR term is by far ;he dominant one in the above 

expression. The contribution of the AV term is c 3 times lower and that of the 

Ah term is - 8 times lower. 
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A second source of effective density comes frcm the (possible) ways the ve- 

locity ellipsoid changes as a function of z. The mcst important such change is a 

rotation. At the Galactic plane, the dispersion velocity (squared) in the r direc- 

tion is about 4 times that in the z direction. If the velocity ellipsoid rotates so 

that the long axis of this ellipsoid always points toward the center of the Galaxy, 

then for stars high above the plane, the observed doppler shift partially reflects 

this faster radial component. Thus, the velocity dispersion tends to increase with 

height. According to equation (3.2), an increasing velocity dispersion mimics the 

effect of a more slowly decreasing density. It thus makes us think that the po- 

tential is rising more slowly than it actually is. A positive F causes the potential 

to rise more rapidly than it would otherwise. Th.rs, this rotation may be char- 

acterized as a negative contribution to F. There is most likely some rotation of 

the velocity ellipsoid, but whether it is enough to point the long axis toward the 

Galactic center, or half that much, or some other amount is a matter of spec- 

ulation. I therefore introduce a parameter p which is unity for the case of full 

rotation and zero for the case of no rotation. I confess almost complete ignorance 

as to the value of p and assign it to be 

p = .7 f .3, (4-g) 

so that the entire range of reasonable possibilities is contained within l-a. It is 

easy to show that the corrections to F from this effect are given by 

F 
7 

ellip = -3Pjp (4.10) 

- 
where v2 is the velocity dispersion of the tracers. Note that this effect varies from 

tracer to tracer depending on the velocity dispersion. It will also be a function 
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of z if the tracers are not isothermal. I will estimate this effect for my model 

isothermal tracers with velocity dispersion of 25 km s-l, 

F ellip - - .08 f.04. 
F* 

(4.11) 

Note that the entire effect is small compared to the uncertainty in equation (4.7). 

I will therefore ignore it in the remainder of this paper. 

To a good approximation, then, F (or p,~) may be regarded as an effect of 

the large-scale structure of the Galactic potential. Indeed, from equation (4.2), 

one may write 

p 
e 

ff = Mhb(R) 

47rR3 ’ 
(4.12) 

where &&b(r) is the total mass of the halo and buige interior to r. This equation 

makes clear in what sense peff is an “effective density.” [It was on the basis of 

eq. (4.12) that I made the claim at the beginning .)f this section that F is known 

to be positive.] 

It is clear from equation (4.5) why K,/F * is of the same general order as R 

and h. These latter two quantities are the only lengths in the equation. The only 

dimensionless parameter entering this equation which could differ appreciably 

from unity is the ratio of the disk to the halo contributions to the centripetal 

force. As it happens, these two quantities are of the same general order. Thus 

K,/F, must be of the same order as R and h. 

. 

‘. 
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5. Combined Theoretical and Experimental Estimate of K and F 

It is straightforward to combine two independent measurements of a vector 

(see Appendix B). Th e covariance matrix is found by adding the contributing 

covariance matrices inversely. Thus, the joint (dimensionless) covariance matrix, 

cuw+gs, is given by 

C VU+@ = [,,‘J + bgS]-1 = 

where b”” is the inverse of cV” [eq. (3.24)], and b@ is the “inverse covariance 

matrix” associated with the Galactic structure analysis made in the last section. 

I have placed the words “inverse covariance matrix” in quotations because it is 

not the inverse of any matrix; it is degenerate. Nevertheless, it can be obtained 

in the standard way by writing down the x2 associated with equation (4.7), and 

differentiating with respect to the vector, (K/K,, F/F,). 

While it is easy to evaluate c V”+ss for any pi;rticular value of N, c”“+ss is 

not a simple function of N. There are three ways of dealing with this. First, the 

matrix may be evaluated for a particularly relevant case. Second, its elements 

may be graphed as functions of N. Finally, sonle limiting features which are 

independent of N may be analyzed analytically. I consider each of these in turn. 

For the case N = 350, cVu+zs is found to be 

.0738 
C vu+gs - - 

-.1378 
--1378) N &j ( Tzg ;,4”) . 
.3181 

(5.2) 

Comparison of equations (3.24) and (5.2) s h ows tlat there is a dramatic improve- 

ment in the uncertainty of K (and a still more dramatic one in the uncertainty of 

34 



F) when the Galactic structure argument is appled. However, the uncertainty 

in K is still - 27%. 

Figure 2 shows the uncertainty in K/K, as a function of the number of 

stars observed. Values are calculated both with (sP>lid) and without (dashes) the 

theoretical constraint [eq. (4.7)]. Al so shown in tnis figure is the uncertainty in 

F/F,, from the combined determination. This curve is fairly constant over the 

broad range where the uncertainty is dominated by its theoretical component. 

Even for N = 800 stars, the uncertainty in F is - 50%. Can this uncertainty be 

substantially reduced, short of making a very large number of observations? The 

answer is, in principle, yes. I will discuss this further in §VII. 

P Finally, some intuitive understanding of the rc$le of the theoretical constraint 

can be gained by posing the question: If an error is made in the theoretical 

estimate of F, how large will the resulting error in K be (assuming statistical 

uncertainties can be ignored)? Of course the qualification about statistical un- 

certainties never really applies. In the limit of small statistics this uncertainty is 

too large to be ignored and in the limit of large statistics one would just use the 

results of $111 and would not bother with the theoretical constraint. Nevertheless, 

the calculation is instructive because it demonstrates the limits of the use of the 

theoretical constraint. 

Suppose, then, that a theoretical estimate F is made for the quadratic pa- 

rameter in equation (1.7), but the actual poten-ial is described by a different 

quadratic parameter, j, 

$‘(z) = k + 2 jz &F-F-j. (5.3) 
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- 
I will assume that actual velocity dispersion, v2 aqd actual density 

u(z) = Aexp (-“z$fz2), (5.4 

are measured in each of n measurements. (That is, I will ignore statistical errors.) 

I will assume that a trial potential G!(z) = K + 2Fz is varied in K to minimize 

x2. To answer the question, what is the induced error, 6K E K - k?, I follow 

my familiar procedure: 

x2(K) = 2 ${ P- [v(zi)]-l /mdz’(K + ~Fz’)v(z’)JZ. 
i=l z 

P-5) 

Using the same variance, (3.20), equation (3.3), and the definitions of 6K and 
- 6F, this becomes 

1 
2 

dz’(6K + 2SFz’)v(z’) . (5.6) 

Differentiating with respect to K gives 

0 =[G [j?dz’v(z’)] [fdz’(bg + 26Fz’)v(z’)]. 
2 2 

(5.7) 

Again employing the condition (3.14), one finds 

6K -=- 
K 

26FG (6 + 6x + 3x2 + x3)eAz 1:::;: 

K2 
1 

- 17%, (5.8) 

where I have used the standard values for K,p, tnd the Lit and equation (4.7) 

for the estimate of the error, 6F. 
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Note that if K were 17% higher than the l..$(km ~-l)~pc-l which I have 

used in the above estimate, then the entire range for the theoretically predicted 

F [eq. (4.7)] would be moved lower by 0.23 x lo- 4(km s-~)~Pc-~. Taking this 

coupling into account, I find that a l-a error in F he estimate of F produces an 

error of - 22% in K. As expected, this error is below the (- 27%) error found 

when statistical uncertainties were incorporated into the analysis. 

6. Covariance O f Cmin and F 

In the preceding section I showed that F and K have a significant covari- 

ante, whether F is estimated purely from theory, or whether the experimental 

evidence for the relationship between K and F is weighed against the theoretical 

evidence. Regardless of the method of determination, if F is overestimated then 

K (or equivalently, C) will be underestimated. Iiowever, in this case Cmin will 

also be underestimated. Since Ax depends on the difference between these two 

quantities, the error will be somewhat less than was indicated above. In Ap- 

pendix A I show that if F is overestimated by 6F, then the minimum column 

density Cmin will be underestimated by 

I!% min .-=-4~~[ln(-j+)+fr], 
c min 

(64 

where r is thermal deviation defined by equation (2.11), and vm is the mass- 

weighted velocity dispersion of the disk. Note that equation (6.1) has the limiting 

forms 
SC min - = -4FAy!(ln2 - r/2), 
c 

(7 < 1); 
min 

(1 - 7): 
8 1 , (-4 (6.2) 



for the extreme isothermal and non-isothermal observed distributions respec- 

tively. Thus, 6C,i, depends only very weakly on how isothermal the distribution 

is. I define the “irrelevant portion of 6K” as the y-alue of 6Kmi, when r and V~ 

take on their Milky Way values: r - 0.25; V, - 18km s-l. 

(6K)irr _ 
K = 

N -0 096F 
’ F,’ (6.3) 

How important is this correction ? To answer thit question, I evaluate the ratio 

of (6K)irr to the quantity 6K found in the last section [eq. (5.8)] for the case 

when F was estimated purely theoretically, 

(SK)irr 
6K 

(6 + 6s + 32: + z3)e-z~:=:;; 1 - -25%, 

where I have made the evaluation with my standard values of the Li, and 7. 

Note in particular that equation (6.4) is independent of 6F as befits a ratio of 

two quantities which are each linear in 6F. Equation (6.4) demonstrates that 

this correction is a small effect and in no way urdercuts the conclusions of the 

previous sections. 

‘/ 
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7. Using Constraints on K To Determine F 

As I discussed in §V, high-altitude tracers cannot, by themselves, give very 

much information about F. The theoretical uncertainty in F is of order 50%, 

and only observation of several thousand tracers can significantly improve on this 

(see Figure 2). This problem is rooted in the large covariance between F and 

K. If K could somehow be constrained, then the high-altitude tracer data would 

become very sensitive to F. 

Where could one find such an F-independent constraint on K? Measurements 

of K made in and near the disk do not depend strongly on F because the effective 

density term in the potential is small. This implies that the covariance between 

F and K from these measurements may, to a first approximation, be ignored. Of 

course, the disk potential is complicated and this means that K will be covariant 

with the several parameters which are required to represent this potential. Thus, 

determining K accurately from these measurements will not necessarily be easy. 

I will not inquire into these difficulties in this pa)er. I will simply assume that 

K has been measured to some specified accuracy, 

var(K/K,) = r2; (Assumed Measurement From Disk), (7.1) 

and that this measurement has negligible covariance with F. I will then ask how 

well high-altitude tracers can measure F given such a constraint. 

The “inverse covariance matrix” associated with this measurement (in my 

standard basis) is 

(7.2) 
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The combined covariance matrix is then (by the resistor rule), 

1 
-1 

comb _ c - bdisk + )yJ + { i i bt3s , 
(7.3) 

where the quantity in braces is 1 if one wishes to include the Galactic structure 

argument in the estimate of K and F, and is 0 if one wants to consider the tracer 

data independently of that argument. I have calculated the uncertainty in F for 

various values of 7 and N and for both of the above cases. My results are given in 

Figure 3. The solid line shows the uncertainty in F as a function of 7 for N = 350 

and assuming that the Galactic structure constraint is included in the analysis. 

The dashed curves all assume that the galactic structure constraint has been 

ignored. They assume N = 350, 1050, 1750, and 2450 stars. Notice that if the - 

error in K can be reduced below 15010, then all these curves show a significant 

improvement in the uncertainty of F relative to the 50% [eq. (4.7)] given by 

Galactic structure argument. The more high-altitude tracers are observed, the 

better F is measured. For example, if N - 1000 and the uncertainty in K can 

be reduced to - lo%, then the uncertainty in F can be brought down to S 30%. 

1’ 

8. Some Comments On The Analysis O f Kuijken And G ilmore 

In a widely circulated preprint, Kuijken and CIilmore (1987) analyzed a sam- 

ple of 530 K dwarf tracers which they had observed. They fit the density and 

velocity dispersion to curves and then used these results to fit the potential to a 

three parameter family of curves 

$(z) = K[(z’ +D2)lj2 - P] + Fz2. (84 
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[The formulae which they used to relate the poten ial to the density and velocity 

dispersion can be shown to be equivalent to my ‘?q. (3.2), although this is not 

obvious at first glance.] Kuijken and Gilmore found that the fitting of equation 

(8.1) was insensitive to choice of D over the range D 5 300~~. They attributed 

this to the fact that their data contained predominantly high-altitude stars and 

thus was naturally insensitive to this “low-altitude” parameter. (Actually, as I 

will detail at the end of this section, the situation is somewhat more complicated. 

The parameterization (8.1) destroys valuable information about the potential. 

The parameter D is intrinsically both difficult to fit and physically meaningless. 

These problems become worse the more evenly balanced is the data between 

high and low-altitude tracers.) For now the important point is that Kuijken 

and Gilmore obtained no more information about the potential with their three- 

parameter fit to all the data than they would have from a two-parameter fit to 

the high-altitude data. This makes it possible to compare their results with the 

theoretical analysis I gave in $111 through §V. 

Holding F fixed, Kuijken and Gilmore varied K to find the best fit. For two 

particular fixed values of F they found, 

K = 1.4K, (F GO); K = l.OK, (F = 2F,). (8.2) 

(These results include slight adjustments for the velocity ellipsoid effects dis- 

cussed in §IV.) By linear interpolation, one may estimate the “best fit” for K 

given an intervening choice of fixed F, 

K/K, = 1.4 - 0.2F/F, (best it for fixed F). (8.3) 
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They found that between the two trials shown in c luation (8.2)) the former actu- 

ally gave the better fit. However, it was grossly ol:t of line with their theoretical 

estimate of F, 

f + .85x = 2.8 f 0.5 (KG) 3 (8.4) * * 

(The error bar is my reconstruction from their argument.) They thus used the 

latter value in equation (8.2) w ic was in conformity with their estimate (8.4). h h 

Kuijken and Gilmore then estimated the uncertainty in K, apparently by getting 

a best fit using fixed values for F at the extreme limits of equation (8.4). Their 

net result was K = .96K, f 17% which, they noted, is consistent with no missing 

matter. Kuijken and Gilmore emphasized that while their result was not strictly 

inconsistent with missing matter (particularly of low velocity dispersion) it did 

tend to rule out significant amounts of medium and high velocity-dispersion dark 

matter. 

There are several subtle considerations which tend to undermine these con- 

clusions. First, equation (8.4) substantially overestimates F. At K = K,, it 

gives roughly twice the value I calculated [eq. (4.7)]. Part of this difference de- 

rives from the fact that the Galactic parameters used by Kuijken and Gilmore 

(R = 7.8 f .7 kpc, h = 4.5 f 1 kpc) differ from those of equation (4.6). However, 

if the KG parameters are plugged into my equations (4.5) and (4.8), then one 

finds 

$ + .5; = 2.0 f .46 (KG corrected), W) 
* * 

roughly halfway between the KG estimate, (8.4:, and my estimate (4.7). The 

remainder of the difference is accounted for by the fact that Kuijken and Gilmore 
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mistakenly took the halo contribution to F to bt the local density of the halo, 

rather than its efiective density, M~a~o(R)/47rR3. [See eq. (4.12).] Had they 

fixed F according to my value [eq. (4.7)], or according to their own Galactic 

parameters [eq. (8.5)], th y e would have found (by eq. (8.3)] K - 1.2K, or 

K - l.lK, respectively. 

Second, when combining two estimates of a two-component vector, one must 

be careful to weight each appropriately, that is, by its inverse covariance matrix. 

When this weighting is done, the central value of F will not be same as its central 

value as determined by one of the estimates alone, but will be intermediate 

between the two central values. Thus Kuijken and Gilmore should not have fixed 

F at its central theoretical value, but allowed it vary to maximize the combined 

likelihood. This procedure (which I simulated in §V) would have driven the 

central value of F down toward the better fit in eql ation (8.2). By equation (8.3), 

this would have driven the central value of K up. This is a modest effect because 

the theoretical constraint on F, (4.7), is much ;ighter than the experimental 

constraint, (3.24). 

Third, the error bars are larger than Kuijken and Gilmore expect. The same 

procedure for combining two estimates mentione 1 in the paragraph above, also 

gives the combined error. As I showed in $V, this error is substantially larger 

than that given by fixing F at the limits of the theoretical constraint and fitting 

for K. Specifically, I found that the combined uncertainty was 27% rather than 

17%. 

While I am not in possession of Kuijken and Gilmore’s raw data, the above 

considerations lead me to suspect that a more c.areful analysis of them would 
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yield, K = 1.25K, f 27%. This is still, as Kuijk,zn and Gilmore claim, consis- 

tent with no missing mass. However, it is equally consistent with K = 1.5K,. 

By equations (2.10), this latter value corresponds to 33% high-dispersion, 48% 

medium-dispersion, or 65% low-dispersion missing matter. Thus, these data 

are not sufficient to either demonstrate or rule out the existence of substantial 

amounts of missing matter of any type. 

I turn now to an examination of the parameterization, (8.1). In the limits of 

high and low z, this equation becomes 

+I( z >= ( g+F z2 
> 

(z < D,); +(z) = -KD + Kz ;t Fz2 (z >> D,). 

(8.6) 

The first equation is just the generic low-z behavior of any physical potential 

satisfying the boundary condition (1.4). From equation (1.13)) one finds that it 

relates the parameter D to the total density at the plane, p(O), 

K/D = 47rGp(O). (8.7) 

The second equation is just the generic high-z potential of any physical potential. 

From equation (1.7), one finds that it relates the parameter D to the “potential 

offset”, A$, 

KD = A+. (8.8) 

The question is, for a given K can a single value. of D reasonably satisfy both 

equations (8.7) and (8.8)? To answer this question, one must first understand 

what is the physical significance of A$ and what measurements are sensitive to 

it. 
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At first sight it may appear that A$ has no physical significance in as much 

as a potential is determined physically only up to an overall constant. However, 

this constant is already set by the boundary cond. tion (1.4). Evaluating All, [by 

integrating eq. (2.3)], one finds that it is closely related to the mass-weighted 

velocity dispersion of the disk, vk, 

A+=vk 2 ln&+i 
[( 

. (8.9) 

Here r is the thermal deviation defined by equations (2.11) and (2.13). Note that 

the factor in square brackets is the same very weak function of r which appeared 

in the formula for 6Cmin [eq. (6.1)]. For extreme isothermal and non-isothermal 

disks it is respectively 1.39 and 1.00. Consider then a class of disks of fixed K 

and vk, but variable 7. As the thermal deviation increases, A+ falls slowly while 

p(O) rises rapidly. Thus, there is no reason to belie ve that one D can satisfy both 

equations (8.7) and (8.8). I give two examples. If the disk were composed entirely 

of its observed components as catalogued by Bahcall(1984a), then D would have 

a value of 240 pc by equation (8.7), and of 283 pc by equation (8.8). Kuijken 

and Gilmore believe that substantially more low velocity-dispersion interstellar 

medium is observed (13 &pcS2) than does Bahcall (5 Mapcm2). If the disk 

were composed only of the observed components in this model, then D would 

have values of 146 pc and 231 pc according to the respective formulae. 

Measurement of “D” in the first sense [p(O)] re q uires low velocity-dispersion 

tracers so that they are very sensitive to the behavior of the potential at low 

altitudes. Measurement of “D” in the second ;ense (A$) requires relatively 

high velocity-dispersion tracers with a significant sampling near the plane. The 
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low-altitude sampling is necessary to normalize tire tracer density and the high 

velocity dispersion is necessary to map the pott ntial at high altitudes. Any 

particular sample will satisfy these conflicting criteria to various degrees and will 

consequently be sensitive to none, one, or both of these D’s. However, even 

by combining several very good tracer samples at different velocity dispersions, 

one can never hope to pin down “D”, nor would such a measurement have any 

significance if one could. 

9. Conclusions 

With present statistics, high-altitude tracer data cannot be used to seriously 

constrain the missing mass in the disk. The N - 350 stars observed so far 

allow the disk column density to be measured with a l-a error of - 27%. If 

1000 stars were observed, this would allow a determination within 20%. For 

N > 1000, the uncertainty declines more slowly than N-‘i2. At N = 2000, 

for example, the uncertainty is still - 17%. Uncertainties of this magnitude 

do not allow any significant limit to be placed 3n the missing mass. This is 

because a constraint on the column density translates directly into a constraint 

on the amount of unobserved matter in high-velocty components, but leaves a lot 

of room for unobserved matter in low-velocity components. For example, if the 

column density were measured as equal to the deneity expected on the basis of the 

observed components alone (with an uncertainty of 20%)) it would still be possible 

for the majority of the mass of the disk to be in unobserved components. Thus, 

high-altitude tracers cannot, by themselves, be .Jsed to constrain the missing 

matter unless a very large number of stars are observed. On the other hand, 
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they promise to be quite useful in constraining the amount of matter in high- 

velocity components. This is important because ‘;hese are just the components 

to which low altitude tracers are least sensitive. 

If K can be measured sufficiently well (within - 15%) by low-altitude mea- 

surements, then it will be possible to use high-altitude tracers to determine F to 

much greater accuracy than it is presently known 

These results have important implications for the planning of tracer observa- 

tions. If high-altitude tracers actually played a decisive role in the determination 

of the missing disk mass, then an exceptional effort should indeed be made to 

observe a large number of these stars, despite the additional telescope time re- 

5 
quired and the additional risk of systematic errors inherent in such observations. 

However, as I have shown, these stars provide itiormation on only one piece of 

the complicated puzzle of disk missing mass. Therefore, while some observations 

of high-altitude tracers are worthwhile, the principal focus should be on medium 

and low-altitude tracers. 

A full analysis of how to balance these various observations must be left to a 

later paper. 
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APPENDIX A: Some Exactly Solvable Models 

In this Appendix, I solve the 3-component disk model described in $11. I also 

calculate the reduction in the column density due to a small effective density peff 

(or F). The definitions of all quantities are the same as in $11, 

Kl,=Kl+Km; K E Kl -:- K, + Kh, (A-1) 

(A-2) 

I begin by solving a simpler two-component model, where Kh = 0. In the 

limit v; < v&, all the mass from the low-velocity component will be below the 

mass of the medium velocity component. Thus, the former may be taken to be 
. 

a surface density. All of the matter at finite z will then have velocity dispersion 

v&. The boundary conditions on the potential become 

W) = 0; T)‘(O) = Kl. (A-3) 

Since the velocity dispersion is a constant, equation (3.3) may be written, 

Poisson’s equation may be written 

47rp(z) = h’(z), (A-5) 

where 

h(z) G I,+) - 2Fn (A4 

is the derivative of that portion of the potential which is due to disk material (as 
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opposed to the effective density). Note that the d &nition of Kl, implies 

h(w) = Kl,. 

Combining equations (A.5) and (A.6) gives 

00 00 

h’(z)& = 
J 

dz’ h(z’)h’(z’) + 2F 
J 

dz’ h’(z’)z’ 
% z 

= $h(oo)l - h(z)2] + 2F /mdl’ h’(z)z’. 
z 

(A.7) 

(A-8) 

For the case F = 0, one can immediately write down the solution to this equation 
. which satisfies the boundary conditions (A.3), 

h(z) = Kl, tanh 
Kl -E + tar&-l - 

Dim G-n (A-9) 

Thus the density at the plane is just 

47rGp,(O) = h’(0) = zsech2 
Kl tanh-’ K 

> 
= K,2, - K; 

2v& - 
(A.10) 

To solve the problem for finite but small F, I write 

h(z) = Kl,,, tanh z Dl, + tanh-’ -- K;; + FE(z). (A.ll) 

I will want to find the effect of this effective poten ,ial term on the column density 

given that the density at the plane is still given by equation (A.lO). This implies 
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the boundary conditions, 

((0) = (‘(0) = 0. 

Substituting equation (A.ll) into equation (A.8) gives 

E = [ ((oo) - t(z) tanh & Kl + tanh-’ - 
Krm 

+Zrz’dtanh(& + tanh-’ $)] -; (J(F). 
z 

(A.12) 

(A.13) 

Using equations (A.12) and (A.13), one may evaltate E(oo),% 

((00) = -2Tzdtanh( & + tanh-’ 2) = -201, In ( KLKi’Kl). (~~14) 
0 

It would now be possible to substitute equation (1 .14) back into equation (A.13) 

and solve for t(z). However, I am interested on!y in determining the effect of 

F on the column density and not on the details of the potential. By equation 

(A.7), this effect is 

6Kl, = F[(oo) = -2FDl,In ( K:,) ’ 
(A.15) 

I now turn to the three component problem, frst with F = 0. Since Ph(O) < 

Pm(O) and V:(O) >> V&(O), th e entire high-velocity distribution may be considered 

to be above the medium and low-velocity distril utions. That is, in this limit, 

the entire column density Kim may be considere-3 to be a surface density. This 
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means that one may simply make the substitutiors 

Kl+ Klrn; Kim + K; Dlrn + D, (A.16) 

into equation (A.9)) and write down the high-velocity part of the potential. Com- 

bining this result with equation (A.9) yields equation (2.3), 

3 = K tanh 
dz 

Z+tanh-’ K1m 
D 7) -Kim [1-tanh&&+tanh-’ $)I, (A.17) 

Lastly, I calculate the effect of a small F on the total column density of the 

three-component model. -The reduction of the low and medium-velocity compo- 

nents is given by equation (A.15). If the influence of F is for the moment ignored, 

this reduced value of Kl, leads to an increased value of Kh = K - Kl, because 

the high-velocity component has the same plane density, but is more weakly held 

to the plane. This effect (which I denote SKI) may be evaluated by considering 

equation (A.lO), 

(K + 6Kl)’ - (Kim + 6Klm)2 z-z K2 - KFm, (A.18) 

or 

6K1 = +Klm. (A.19) 

Equation (A.19) t k a es account of both the increase in Kh and the decrease in Kl,. 

Finally, the effect of F on the high-velocity distribution (which I denote SK2) is 

the same as its effect on the medium-velocity distribution (with an appropriate 
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substitution of parameters), 

6K2 = -2FDln(&k). (A.20) 

Combining both terms gives 

6K=6K1+6K2=-K 2K:Kh) +ln2-ln(l+$)]. 

(A.21) 

If one holds the total velocity dispersion fixed at vg, 

’ Klv; = Kh(v; - v;) - Khv;, (A.22) 

. 
and works in the limit vk < vi, then equation (f-.21) reduces to 

where 

Kl 
r=-. - 

K 

(A.23) 

(A.24) 

This completes the proof. 
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APPENDIX B: The Resistor Rult For Covariances 

In this Appendix, I prove the resistor rule for yovariance matrices mentioned 

in $111. Before doing so, however, I briefly review the procedure for calculating 

covariance matrices. 

Let yk be a series of independent measuremer.ts of a function taken at posi- 

tions Xk with variances ai. (In this simplified treatment I will assume that the 

positions Xk have negligible uncertainty.) Suppose that these measurements are 

to be fit to a linear combination of p trial functions, f;(z). Then x2 is given by 

P 
X2(al..*%) = C $[‘%.fi(xk) - yk]’ = C aibijaj - C 2aidi + h, 

i,k i,i i 
(B-1) 

where 

bij E C fi(xk)fj(xk), 

k 4 

di - C .fi(;)Yk, 

k 

h- !!i, c P-2) 
k Ok 

Note that bl,,, is the covariance matrix of the dl, 

ldldd - tdd ldd = c “‘x$f$xq’ ((y/&q) - (Yk) (yq)) 

c ~~~x~~r,o~,,k~‘~ c f+k)fm(xk) = bl,. 
P-3) 

= 
CT202 Q 

Jw k q k 4 

The first step used the definition of the dl and the fact that the fi(zk) are 

constants. The second used the fact that the yk are independent with variances 

02. Setting the derivative of equation (B.l) with sespect to al equal to zero, one 
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I 

obtains the best fit (which minimizes x2), 

Ui = c cijdj, c E c-1. (B.4 

One may show that c is indeed the covariance matrix by direct evaluation. 

covar(uiuj) = (uiuj) - (ui) (uj) = C CilCjrn [(did,) - (4) (&)I 
4m 

c = CilCjmblm = cij. 
l,m 

P-5) 

In equation (B.5), the second step follows from equation (B.4) and the fact that 

the cij are constants. The third step follows from equation (B.3), and the fourth 

from the definition of c. 

I turn now to the resistor rule. First, suppose a set of n independent determi- 

nations of the parameters oi are made “in parallel”. These may each separately 

be described by quantities b~j, df, and hr which are defined analogously to the 

quantities in equation (B.2). Then 

X2 = C UiBijuj - C 2aiZ’i + H, (B-6) 
i,i i 

where 

r r 

, Since the df, d; each separately satisfy equation (E.3), and since df is independent 
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of dj” for r # s, 

(dTdi”> - (df) (di”) = bi’iSra. (B.8) 

It follows that the Di and Bij satisfy their own version of equation (B.3), 

(DiDi) - (Di) (Dj) = C (djdj) - (df) (d;) = C bzj6’” = Bij- 
r,s r18 

(B-9) 

Thus, defining C G B-l and using the (upper case) analog of equation (B.5), 

above, one finds that Bij is the inverse covariance matrix for the oi. This proves 

one half of the resistor rule, that covariances from measurements made “in paral- 

lel” add inversely. [Note that in the above deriva.ion, I did not assume that the 

individual b~j were invertible. I assumed only that they reflected independent 

measurements and satisfied eq. (B.3). Th us, in particular, the argument applies 

to degenerate constraints like eq. (4.7) and its corresponding “inverse covariance 

matrix” bg’, eq. (5.1), even though the latter is not invertible.] 

The other half of the resistor rule says that covariances from measurements 

made “in series” add directly. Suppose that a vector oi is determined jointly 

from two independent sets of measurements, xi and zf. If for any particular 

measurement these vectors differ from their means values by 6x: and 6x:, then 

oi will differ from its mean value by 

(B.10) 

I define C~j to be the covariance of ai ((6oi6aj) t when it is assumed that the 

uncertainties of the second measurement can be Ignored (that is, when aai/axF 
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is set to zero.) Similarly, I define cij 2 to be the ( ovariance of ai when the un- 

certainties in the first measurement are ignored. Finally, I define Cij to be the 

covariance of ai when both uncertainties are taken into account. From equation 

(B.lO) and these definitions one finds that 

cl. E 
c 

dUi CYUj 
-- (6X~bX~t) ) c? G 

aUi aUj 

a3 k k, ax; ax:, 
*j C-- 

1 l 1, ax; ax;, 
(65;62;) , (B.ll) 

2 

and 

(B.12) 

P 

=C~j + 0 + 0 + Cfjs 

The last step in equation (B.12) follows from equation (B.ll) and the indepen- 

dence of xk and xf. This completes the proof. 
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FIGURE CAPTIONS 

1) Missing mass (AT) as a function of thermal deviation 7. Shown are cases 

where the unobserved components have high (dots), medium (dashes), and 

low (solid) velocity dispersions. A column density discrepancy (Ax) of 20% 

is assumed. Note that r for the Milky Way disk is about .25. 

2) Fractional uncertainties in K and F as functions of star count (IV). For 

K, uncertainties are shown both with (solid) and without (dashes) the 

theoretical constraint [eq. (4.7)]. For F, the fractional uncertainty (dots) 

includes the theoretical constraint. 

3) Fractional uncertainty in F assuming that K can be independently mea- 

sured to a fractional accuracy 7. The solid curve assumes a star count of 
. 

:’ 

350 and includes the theoretical constraint. The dashed curves ignore the 

theoretical constraint and assume star counts of 350, 1050, 1750 and 2450 

respectively. 
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