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1. Introduction 

Chiral Bosonization of two-dimensional conformal field theories is a powerful 

method of extracting correlation and partition functions. In addition to the original 

work on fermions [l], the Wess-Zumino-Witten (WZW) models[2,3] of level one 

admit representations of their current,s and vertex operators as simple functions 

of free bosons[4]. Al so, the background charge method pioneered by Feigen and 

Fuchs[5], and subsequent generalizations [6], ff t e ec ively bosonize a large class of 

models including the minimal conformal series[7]. The purpose of this paper is to 

describe how to extract correlators aad cha.racters by embedding a theory into a 

larger bosonizable one. In particular, we shall focus on embedding ZN Parafermion 

(PF) algebras of Zamolodchikov and Fateev[8] into a direct sum of two affine level 

1 Ka.c-Moody algebras su(N)l $ su(N)l, where the subscript denotes the level 1 

algebras. 

The classification of two dimensional conformal field theories (CFT’s) is rele- 

vant to the study of universality properties of statistical models, and for under- 

standing the breath of possible string compactifications. One particular classifica- 

tion scheme which embodies a large subset of known rational CFT’s is the coset 

construction of Goddard, Kent and Olive[S]. C onsider a WZW model with holo- 

morphic and antiholomorphic (‘left’ and ‘right’) Kac-Moody symmetry algebras 

G@ G. Let the stress tensor of the left sector be TG and the central charge of G by 

CG. If H is a subalgebra of G with corresponding T~I and CH, then a coset model is 

labeled by G/H, and has a stress tensor TG - TH with central charge CG - CH. That 

this construction yields an exactly solvable CFT is discussed by Douglas[lO]. In 

particular, the exactly solvable models based on the background charge method fall 

under this classification, as do other general 2~ models[S, 111. The 2~ PF models 

to be considered are classified a.s both s~(2)~/U(l) and su(N)l $ s~(N)l/s~(N)z. 

While correlators and characters of the G/H theory are fixed by the informa- 

tion contained in the G and H theories[lO], for the case at hand we will argue that 

the G/H theory can solved with information from the G theory alone. In particu- 
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lar, differential equations for correlation functions, and for the characters of each 

highest weight state, can be obtained from the bosonized SU(N)r theories. We 

denote this technique as Coset Bosonization , beca.use it eliminates the need for 

non-trivial information from the H theory. 

An intriguing interplay between physics and mathematics occurs with WZW 

models and their corresponding Kac-Moody symmetry algebras. The characters 

[12] of the irreducible representations of the untwisted affine Kac-Moody (KM) 

algebras are building blocks of the partition function of the WZW model[l3]. The 

characters decompose under the infinite dimensional Weyl group of the KM al- 

gebra. l&h character is a finite sum of string functions[lJ] multiplied by theta 

functions which describe a sum over cosets of the Weyl Group. The string func- 

tions are building blocks for the partition functions of the generalized parafermions 

of Gepner[l5]. S o a direct- calculation of the parafermion characters yields infor- 

mation about the KM representations. Moreover, the field spa.ce of generalized 

parafermions contains most of the non-trivial information of the Kh’I representa- 

tions. In particular, the characters for each highest weight state of the Zamolod- 

chikov and Fateev PF models considered here are essentially the string functions 

which generate the WZW characters of SU(2)~[16]. So one of the motivations for 

the calculation of PF characters from conformal field theory methods is to generate 

the structure of KM theory from a physics point of view. 

The ZN PF theories a.re building blocks for large classes of interesting theories. 

By combining them with a single free boson, one can obtain either the sum 

models discussed above or models with N = 2 world sheet supersymmetry[l’i]. By 

combining them with Feigen and Fuchs bosonic models with background charge, 

most known rational conformal field theories a,re generated[l8]. 

The contents of this paper are orga.nized as follows: section 2 is a review of the 

operator content and algebra of 2~ PF theories with empha.sis on results crucial 

to later results. In section 3 we describe the bosonization of the parafermion 

current algebra, relations between bosonic sir vertex operators and operators 
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in the PF field space, and a sample calculation of the differential equation for an 

order operator four point function. Section 4 contains relations between level one 

characters of SU(N) and characters of the PF theory, and differential equations 

are derived for these characters via a. calculation of the parafermion two-point 

function on the torus. Special integrable cases, including the Ising (22) model, 

are discussed. We conclude with a discussion of our prescription and comment 

on future applications in section 5. Appendix A contains background material 

on bosonization of SU(N) 1 and Appendix B describes an alternate method of 

calculating the parafermion two-point function on the torus based on an N-fold 

cover argument. 

2. Parafermion Current Algebra and Field Space 

In this section, we review properties of parafermionic theories which were de- 

veloped in [S]. The ZN th eories contain parafermion currents $Q(z) and $k(~) 

(E = 1,2, * *a , N - 1) which satisfy 

&!J,(z) = 0 i?&(5) = 0. (24 

The fields $0 and q0 are defined as identity operators. For the 22 case, 41 is the 

Ising fermion. The parafermions V+!Q and $;l, have ZN x EN cha.rge (k, k) and (k, -k) 

respectively, where the charge is defined mod N. This labeling of charge under the 

ZN symmetries is useful for discussing mutual semi-locality properties of fields, and 

manifests the self-dual behavior. It is also convenient to express the cha,rges (k, I) 

in the form [k+Z, k-11, d e ne fi d mod 2N, in which case the parafermions $Q and $r, 

have &arges [2k, 0] and [0,2k] respectively. This basis is pa,rticularly useful when 

comparing PF fields with those of the corresponding SZL(~)N models, a,s we will 

discuss at the end of this section. Furthermore, holomorphic (antiholomorphic) 

fields have charges [I, 0] ([O, I]) in this basis; the parafermions generate decoupled 

chiral algebras so we will focus mainly on the fields 41; since similar results for the 

qk fields can be easily transcribed. The conjugate is defined as $L zz $~-k. Fateev 
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and Zamolodchikov have shown that the following choice for the dimensions of the 

parafemions is consistant: 

AR = k(N - k)/N. (2.2) 

The operator product expansion defining the parafermion a.lgebra is 

$k(z)~l(w) = cl;,& - w)-~““~[~J~+~(w) + O(z - w)] k + 1 < N , 

$J~(z)$/(w) = c~,N-~(z - w)-““(“-‘;)~“[~~_~(w) + O(Z - w)] k > I , (2.3) 

t+bk(z)&w) = (z - w)-~~~[I + (aA,/c)(z - w)~T(w) + O(z - w)~]. 

Associativity of the OPE’s determine the ck,~. Note that there is no S(z - w) 

term in the Q~(z)q!~t(w) OPE, b ecause any dimension 1 current would violate the 

assumption that 2~ x 2~ is the maximal symmetry of the model. The stress 

tensor T(z) obeys the operator products 

c/a 2T(ro) &J’(w) 
T(z)T(w) = (z _ w)4 + tz _ w)2 + (z _ w) + o(1), 

(2.4) 

The central charge of the Virasoro algebra consistent with (2.4) is given by 

c = 2(N - l)/(N + 2). (2.5) 

Generalizing the Ising model, there exist order and disorder operators ak and 

,uk (k = 1,2,. .. , N - l), with charge [k, k] and [k, -k] , and conjugates aN-k 

and PN-k. They are highest weight under the Virasoro algebra with conformal 

dimensions (h, x) g iven as (dk, C&), where 

2dl; = k(N - k)/N(N + 2) (2.6) 

(The value k = 0 corresponds to the identity.) The operator product of order and 
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disorder fields contains the parafermion currents : 

“k(z,+k(tu,?i?) = &l;(z - W) Ak-+ _ q-2dk [g,k(w) + . . .I, 

&+L(w,iTi) = &k(z - W) A49 - w)-2dy~k(w) + . . .I, 
(2.7) 

where &k = k!(N - k)!/N! is determined by normalizing the two point functions 

of $I;, ak, and pk. The Ising model is a special case where order and disorder fields 

are self-conjugate, so that the operator product of ak and pk contains both $)I; and 

$k- 

The parafermion field space is generated by a,pplying parafermion currents 

to the highest weight stat,es under the PF algebra - i.e. the order and disorder 

operators. It decomposes into a direct sum of subspaces specified by 22~ charges: 

The superscript denotes the highest weight order operator, the subscripts denote 

&?N charges, where (I, 7) = k mod 22. The factor of 3 denotes the double counting 

of fields: 

P-9) 
In this language, the order (disorder) operators ok (ilk) are q!#kl (~$f:!-~,), and 

the currents tik @k) are df~j$l ($,)2k1)’ The modes of the currents ?,!)k and $J: are 

defined via the operator product expansions 

(2.10) 

Order and disorder operators are annihilated by operators A, and Af, for all V, p > 
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0. Upon each order operator the sequence $[Fk, is generated as 9 

&,,,,] = A(k-,+,I)/N-lA(k-,+,1-2)/N-l, * . . $,+k)/N-lak 1 = 091, * . . , iv - k, 

4’“’ [k 2l,k] = “!(k+l-21),NAt(k+l-a1+2)/N’. . * Ai-(&k),Nak ’ = O, ‘7 * + ’ T Ice 

(2.11) 

The operatorsA and xt are similarly defined and the resulting fields c$[F~ have 1 

conformal dimension (cl:), d!)) given by 

d(“) = dl, + (I - q)(k + Z)/4N k -k<l<k, 

df) = dl, + (1 - k)(2N - k - 1)/4N k 5 11 2N - k. 
(2.12) 

Note that the disorder operator pk is in the field space generated by the order 

operator ok. All fi Id b e s a ove are primary under the Virasoro algebra, and the 

other fields in the spectrum differ in dimensions from these by positive integers. 

P As implied above, the 2~ theory has a simple relation to the SU(2)N WZW 

model. Introduce a free massless boson <p = (b(s) + q(z), with two point functions 

on the conformal plane 

M+#(w>) = - ln(z - 4, 

($(Z)$(E)) = - ln(Y - E), (2.13) 

The holomorphic stress tensor is T(z) = -3: 8,&S’,@ ; it generates a Virasoro 

algebra with central charge c = 1. Holomorphic currents are defined by 

J+(z) = fi$l(z):exp +i $5(z) :, [\i 1 
(2.14) 

All three currents are of dimension (1, 0), and generate the correct operator prod- 
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ucts for the SU(2)N current algebra by virtue of (2.3) and (2.13) . The primary 

fields under this algebra are given by the simple relation 

Correlators of the PF and WZW theories are therefore equivalent up to free boson 

correlators. The double comlting (2.9) of the PF Hilbert space is related to the 

Z:, outer automorphism of sU(2)N. The q uantum numbers of the PF theory are 

one-half the spin of the associated 42) fi e Id s, and a Weyl reflection, in + +E, 

applied to the antiholomorphic part of the representation converts ‘order’ to ‘dis- 

order’ in the PF theory. 

It is useful to decompose the fields as a product of holomorphic and antiholo- 

morphic parts 

Note that both the holomorphic and antiholomorphic fields have the same value of 

k. More general constraints between the holomorphic and antiholomorphic parts 

generate other models, as discussed by Gepner and Qiu [16]. 

3. Coset Bosonization of the PF vertex operators 

In this section we will describe how correlation functions of the PF field theory 

can be extracted from the correlators of sz~(N)r. There are three basic principles 

we shall combine. First, the highest weights of the PF theory are imbedded in the 

SU(N) @ SU(N) highests weights. Secondly, the relations between coset model 

correlation functions developed by Douglas[lO] can be applied. Finally, the stress 

tensor method of Friedan[lS] g enerates simple differential equa.tions for the PF 

correlators because the stress tensor and parafermions are completely bosonizable. 



3.1. COMPLETE BOSONIZATION OF PF CURRENT ALGEBRA 

Since the centra.1 charges of sir $ SU(N)~/SZL(N)~ are equivalent to the 

central charges (2.5) of the PF th eories, it is natural to search for a combination 

of bosonic vertex operators which reproduces the PF algebra (2.3). In fact, this 

combination has been found by previous authors * [20,21], and also applied by 

Bernard and Thierry-Mieg [23]. Introduce (N - 1) + (N - 1) free bosons which 

satisfy periodic boundary conditions on a 2(N - 1) dimensional torus, generated 

by the sum of root lattices of SU(N) and %(N). The bosons Cpfi = c#+‘(z) +$“(F) 

and 6’ = p + F(Z), (i = 1,. . . , N - l), have the following two point correlators 

on the sphere : 

($p(z)cjY(w)) = -S~‘ln(z - w), v 

(J+(*)p(w)) = -P”” ln(z - w), (3.1) 

wt&Y4) = 0. 

Mixed holomorphic and antiholomorphic two point correlators vanish. We refer 

the reader to Appendix A for a brief discussion of the bosonization of SU(N)l. 

The bosonic operator below is found to satisfy the parafermion operator products 

(normal ordering is implied): 

(3.2) 

where w is a weight of the i ” basic representation of szl(N) , which is in the ith con- 

jugacy class of SU( N). In Young T a bl eaux notation, the representation is denoted 

by i vertical boxes; the conjugacy cla.ss is given by the number of Young Tableaux 

boxes mod N. The conjugate of the operator is given by interchange of represen- 

tations [i] --+ [N - i], which changes the signs in the exponential. Norma.lization 

of the two point correlator determines the overall coefficient. 

* We are grateful to L. Dixon for pointing out reference [al]. 



A straightforward method of obtaining the stress tensor is to take the $1 and 

q!~l operator product and to extract the second leading term. (The 1inea.r term 

always vanishes since the elements of each basic representa,tion form symmetric 

representations centered about the origin.) By comparision with (2.3) we find the 

holomorphic stress tensor 

(3.3) 

where x E ($--$)/a, and the sum on CY is over roots in the adjoint representation 

of SU( N) with non-vanishing weight. The stress tensor can also be obtained in 

a different fashion. The diagonal su(N) 2 current is given by the sum of the level 

one currents. The diagonal stress tensor is found via the Sugawara construction; 

it is proportional to bilinears of the normal ordered dia,gonal currents. The PF 
1 

stress tensor is the difference between this and the total. This yields (3.3) up to 

a factor proportional to cocycles which accompany the currents. We take (3.3) to 

be the stress tensor consistent at the operator product level with our definition of 

the parafermions (3.1), and with central charge (2.5). 

From these explicitly bosonized representations, it is clear that any correlation 

function of the operators (3.2) and (3.3) can be calculated on the sphere. On 

the other hand, these correlators are also simple to calculate without the bosonic 

representation[S]. This is because the para.fermion fusion rules are simple -- this 

type of correlator has only one current block. We will apply these bosonized 

operators to find correlators for the rest of the operators of the PF theory in 

section (3.3). W e will also use the bosonized version of the parafermion to calcula.te 

parafermion correlators on the torus in section (4.1). 
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3.2. ORDER OPERATORS AND THE PF FIELD SPACE 

We now isolate products of PF fields a.nd su(N)z fields which combine into 

bosonized vertex operators. The order and disorder operators of the PF theory 

are of particular interest. The bosonic opera,tors initially a.vailable are the highest 

weights of the su(N)r theories, G (l) lkl 
and ?$I). The index k denotes the kth basic 

representation and the labeling of the elements of each representation is suppressed. 

It is useful to define the holomorphic decompositions 

(3.4) 

These holomorphic and antiholomorphic operators are exponentials of free bosons 

i$] = exp[iCC* $(??)I, 
(w,w) E [I;]. (3.5) 

The operators $/ and $1 have conformal dimensions (A[:;, 0)) where 

A;;; = k(N - k)/2N. (3.6) 

The operators j!$! and $!I) are defined as above with replacement of d, by 8, etc. 

In the diagonal su(N)2 theory, the highest weights , labeled as G!Zt& have the 

holomorphic decomposition 

(3.7) 

There is no explicit representation for these holomorphic fields in the bosonic lan- 
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guage. The operator gig?l has conformal dimension ( A~Z~{l, 0), where 

. . 
A(?). = N+l 

h.11 2N(N + 2) 
[(i(N-i)+j(N-j)]+~~lil), N’;‘;;” (3.S) 

- 

This is the explicit evaluation of the dimension formula A(R) = Cz(R)/(N + 2), 

where Cz(R) d enotes the quadratic Casimir operator of the representation R. 

Since the parafermion currents and the stress tensor are bosonized as functions 

of x, there exists the symmetry 

under which (3.2) and (3.3) are invaria.nt. Any two bosonic vertex operat,ors equiv- 

alent under this symmetry will have the same properties with respect to the PF 

current and Virasoro operators. Secondly, 2~ neutrality of non-vanishing correla- 

tors is equivalent to Coulomb charge balance in the exponentials of the bosonized 

operators. Hence ZN charges of bosonized operators are essentially specified by 

their coulomb charge. Finally, the parafermion currents are not well defined op- 

erators in the su(N)r theories that the bosons describe, because the differences 

between left and right momenta do not lie on the root lattice (this constraint is 

discussed in Appendix A). Therefore, since operators in the PF theory are con- 

structed by operating modes of these currents on highest weights, operators in the 

PF theory will not in general be well defined operators in the su(N)r $ su(N)r 

model. 

The operator products with parafermions provide a way of identifying ZN 

charges. Consider the opera,tor product 

Il#Gf;j(o, 0) - z -“‘N[qk](o, 0) + * * *I, (w,w) E [k], (3.10) 

where G’[,] is the excited field onto which the OPE factors. This and the OPE 

(1) with $r imply via (2.10) that G[,] behaves as the order operator a~ , with charge 
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[k, k], under the PF current algebra. The OPE of CT 0) 
kl with TPF shows that it 

has dimension (dk, &.) under the coset Virasoro algebra. Similarly, G[ij behaves as 

G[i] under the diagonal Virasoro and current algebras. (The sum of the dimensions 

A# and dl; equals A[:/.) However, because of the symmetry (3.9) , G[z-nl has 

the same properties under the PF algebras. We identify this symmetry as the 

double counting (2.15) of the PF field space. This leads to the following consistent 

identifications 

(3.11) 

The rest of the PF field space is generated by applying parafkrmion currents to 

these operators. For exa.mple, from (2.10) and (2.11), the disorder operator 1~1 = 
-t A,,al, and has the contour integral representation 

dz ,-liN &+q(O, 0) (3.12) 

Insert G~~/(O,O) into both sides of (3.12) , and use (3.2) and (3.11) to evaluate the 

residue of the simple pole. The result is 

Gtt]p~ = exp [LJ. $ + i~. :], c-44 E PI. (3.13) 

The bosonic vertex operators in this case are not su(N)r fields of the original 

theory. General formulas for the relation of holomorphic operators in the three 

theories are 

-0) - (2) (k) qk] - qk] be 
(3.14) 

The exponentials $1 and $1 defined by (3.5) have charges [k,O] and [-k,O] 

respectively. 
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The self-consistency of these identifications is illustrated by a calculation of 

order-disorder operator products. We first check the normalization of order opera- 

tors by interpreting the OPE of (3.11) with its conjugate (summing over elements 

of the representation [k]) as 

(3.15) 

a~(r,z)a~(o,o) = *-2dk Z-‘d’[l +. . a]. 

The order-disorder OPE is embedded in the following OPE of the bosonic theory: 

>: ~k(r,~)G~~~(z,~)~k(O, O)G$)(O, 0) = (;) ~-“~i+,h,(,). . -1. (3.16) 

(Gw4 

. 
Application of (3.15) to identify the G:ii Gfiy’ contribution to (3.16) and use of the 

identity 2A[i,’ = A, - dk shows that the correct leading term in the order-disorder 

OPE (2.7) is obtained. This also generates the normalization factor QE = (y)-‘. 

3.3. CORRELATION FUNCTIONS IN THE PF FIELD SPACE 

We will now argue that correlation functions in PF field space can be calcu- 

lated in terms of the bosonic correlation functions of su(N)r. We will apply the 

G/H conformal field theory ideas of Douglas [lo] and the stress tensor method of 

Friedan [19]. We have found above linear relations between the operators of the 

G = SUM $ su( N) 1 a,nd G/II = PF field th eories. The G/H conformal field 

theory relation between correlators of the three theories is for the holomorphic (or 

antiholomorphic) decomposition. The full correlation function is reconstructed by 

demanding crossing symmetry, and we will not consider this here. Let (G) be 

a holomorphic correlator in the G theory, (H) and (F) be those of the H and 

G/II theories with the holomorphic operators related by the highest weight rela- 

tions (3.14) , or excitations generated by modes of the PF currents (3.2) acting on 
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(3.14). Then th e correlators are related by 

((3~ = W);(F),- (3.17) 

The A indices denote the number of group invaria.nts, i.e. channels, that can be 

constructed from the group indices of the G and H operators. The group invariants 

are the same for the G and H correlators in our case because of the identification 

of the highest weights given by (3.11). Th is is a simplification of the genera.1 

case discussed by Douglas[lO]. The p index, which is summed over, labels the 

number of primary fields that the H correlator factors into for each channel. The 

sub-correlator (11): is known as a current block [2]. More general cases have a 

primary field label for the G correlator but for the bosonized level 1 theory, there 

is only one primary on which the highest weights factor. The G/H correlator is 

subsequently labeled by the number of G and H primaries, which in our case is 

the single index p. If we know (G)A and (H);, then (F), can be determined [lo]. 

But our philosophy will be to attempt to determine (R’), without knowledge of 

correlators in the H theory. 

At our disposal are the explicitly bosonized PF currents (3.2) and stress tensor 
(4 (3.3). Let Apf be an operator consisting of PF creation operators defined via the 

OPE’s (2.10). Th y e commute with operators of the 111 theory 

(G)$) = (H);(F):) (3.18) 

The label (i) d enotes correlator obtained via the action of A:) on an initial set 

of order operators. Different PF correlators are obtained by applying different 

raising operators onto a set of order operators. If this results in enough different 

non-vanishing correlators, then (3.18) can be used to determine the matrix (H);. 

We conjecture that this can be achieved; tha.t the number of primaries p in the 

H theory is equal to the number of independent correlators in the PF theory 

generated by the action of A,f onto order operator correlators. If there are more 
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group invariants than primaries, then we take a subset of the invariant channels 

equal in number to the primaries. 

Next, if the PF stress tensor (3.3) is inserted into the correlators (3.18), then 

the derivative with respect to insertion points of the PF correlators is obtained by 

isolating the single poles in the OPE of the fields with the stress tensor [19]. This 

is written as 

(DG)?) = (H);(&F$ (3.19) 

where x is an insertion point, and (DG)$) is the bosonic correlator obtained by 

isolating the single pole. Then by applying (3.18) to eliminate (H)> , the following 

matrix equation for the correlators (F)$) in terms of the calculable functions (G)!;) 

and (DG)$) is found 

1 (a&) = (F)'~'(C)$)-~(DG) 
P 

$1 (3.20) 

This is a useful equation because it generates differential equations generically of 

order equal to the number of primaries p for each of the correlators (&‘):I, in terms 

of calculable bosonic correlators of the G theory. 

As an example, consider the four-pt. function 

(3.21) 

This is the holomorphic part of the correlator (~~r~~crr~f). The fusion rule for the 

field $$‘I and its conjugate is 

(3.22) 

where 4I;“’ is the holomorphic part of the energy operator c(l) [8]. These two 

primary field channels are matched with the identity and adjoint of the level 2 

theory. 



Hence two different sets of correlator relations are required, one of which must 

contain (3.21) as the G/H factor. Two relevant, equations are 

The label A runs over the two ‘s’ and ‘t’ channel group invariants: 

where wi is the weight of the field at zi. Define the anharmonic quotient: 

z = (21 - zz)(zj - z4) 

(21 - 23)(22 - 24) * 

P 

The bosonic four point correlation functions can be written as 

(G)$’ = [(Al - ~3)(~2 - ~q)]-~~j:I(G(z))i), (3.26) 

(3.24) 

(3.25) 

where (G( z))$) is a function of the anharmonic quotient only. Similarly, we define 

the matrix 

(DG)$) = [(zl L z3)(z2 - z~)]-~~~::(DG(~))$). 

We find the following by straightforward calculation: 

(3.27) 

(G(x)@ = (x( 1 

and 

(DG(x))(i) = -txtl - x))l’N 
A 

N(N + 2) 

( 
1. 1 
2 l-x 

- “)pN 
1 z(l-x)llN 0 1 ’ 

(3.28) 

--I-.- +N-l - 
2(1-x) 22 i&J - (f-$2 \ 

Y-l’N(y - q&q, Y-l’N& )* 
(3.29) 
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(3.20) to find the desired differential equation for (F):): 

NP + ai),2 + N(N+2)-2 
2(N + 1) 2(N + 1) 

where dl is the dimension (2.6) of the order operator 01, and the two solutions 

correspond to the two primaries labeled by p. The N = 2 case of (3.30) was 

originally found in [7] ; solutions to (3.30) are given in [8]. 

Note that the G/H Ising model case is special because the SU(2)2 H theory 

is an Ising model plus a free boson. Then the G correlators yielcl squares of Ising 

correlators, up to trivial U(1) f ac t ors. Hence it is possible to generate the square 

of Ising model correlators directly. This is equivalent to the approach taken by 

Boyanovsky[24]. 

P 

4. Differential EcpatSions for PF Characters 

4.1. How TO GENERATEA DIFFERENTIAL EQUATION 

The partition functions for the 2~ parafermion theories can be calculated by 

relating them to characters x IN’(T) of tl e 1 spin l/2 representations of SU(2)N, which 

expresses the number of states generated by holomorphic current creation opera,tors 

acting on a highest weight state with spin l/2. String functions c; , (I - m E 22) 

are defined by the relation[l4] 

Cfn(+L,N(~). (44 
m=-N-?-l 

. 

This expression is a decomposition of the character under the infinite dimensional 

Weyl group of Slav; the theta function contains all of the translational subgroup 

and corresponds to the U(1) current subalgebra of sum. String functions are 
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the holomorphic building blocks of the PF partition functions. More precisely, the 

combination 

d’) = Tj(T)Ci(T) m (4.2) 

are the PF characters; how to generate the PF partition functions from (4.2) is 

discussed in [16]. (The functions Orn,~ and ~(7) are discussed in Appendix A.) 

The PF characters (4.2) d escribe the number of states in each sector, originating 

from highest weight al and with 22~ holomorphic charge m. , by the operation of 

holomorphic creation operators in the theory. They admit two symmetries 

z,(“) = z(“) 
m -m 

z(‘) = zp+:, 
w 

m 

Self-duality of the PF theory generates the first and the overcounting (3.9) corre- 

sponds to the second. Equivalently, by relating the PF theory to sum, the first 

is SU(2) Weyl symmetry of the spectrum and the second is due to the 22 outer 

automorphism of sum. In addition, the charges are defined only mod 2N - 

d”) = .$+2N. m (4.4) 

It is also useful to define 2, (I) E 0 if I - m is odd. 

One method to determine WZW characters is to apply the Kac-Weyl charac- 

ter formula [12]. The characters also satisfy differential equations in the modular 

parameter 7, as discussed in [25]. Via the GKO construction,they are related to 

the conformal characters of the minimal models [26], which also satisfy differen- 

tial equations [27]. In tl ris section we will find differential equations for the PF 

characters directly. 

The essential tool for the analysis is the two-point function of parafermions 

on the torus as determined by conformal field theory techniques. Because the 
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parafermions are explicitly bosonized, this correlator can be calculated exactly in 

the SU(N)&$%(N) 1 va,cua, which are labeled by the highest weights of each of the 

SU(N). Th e b osonic parafermion operators are not well defined vertex operators in 

the level 1 theories; we calculate the holomorphic square of the correlator, because 

the holomorphic square of the parafermion is a well defined operator in the level 1 

theories. After the classical contributions (windings about the lattice) are properly 

included and a Poisson resummation on one set of the windings is performed, the 

resulting function is the sum over highest weights of holomorphic squares. We 

interpret the holomorphic square root in each sector as the parafermion correlator 

in a given level 1 vacuum sector: 

“’ The notation [;I denotes the z basic representation of su(N)l ([j] denotes the 

representation of SU(N)r), and the theta functions 9, and Ol;lil are defined in 

Appendix A. The correlator (4.5) factors onto the product of characters x[z;)t3;) 

with singularity .zm2*l as z + 0. 

How is this used to generate differential equations? Because of the coset con- 

struction, the level 1 vacua are a sum of products of su(N)2 and PF vacua : 

The integer valued matrix A will be determined below. As z + 0, the leading term 

of (4.5) factors onto (4.6). Th e second leading term of the &ll,l OPE (2.3) factors 

onto the PF stress tensor, which on the torus is the modular derivative of the PF 

partition function [19, 221. Th ere ore, f the second leading term is of the form 

We will show that in general (4.6) eliminates x[$ from (4.7). This generates a 

differential equation for the PF functions 21. First we illustrate this with the 22 

(Ising) and 23 cases. 
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4.2. 22 AND 23 CHARACTER RELATIONS 

The relationships between characters of 5’17(2)1, SU(2)z and 22 theories are 

given in [9], since the Ising model is the first in the minimal conformal series. To 

simplify the analysis, it is useful to define 

where c is the central charge (2.5) of the Znr models. The differential equations 

for QA will simplify and involve only level one SU(N) theta functions we denote 

as @[;I, suppressing the level 1 subscript. The su(N)l characters are given by 

xfz;’ = O[;]/?p’, up to an offset in the vacuum energy which is of no concern. 

The factors of q(r) in these characters and in the definition (4:8) can be absorbed 

in a redefinition of the level 2 characters. For the Ising model, the relation between 

characters, reexpressed in terms of the Qk, is given as 

@[O]@[O] = X[O] 0 A(2)Q(o) + $f;llQr), 

@[l]@[O] = X[l] 1 
.. (2)Q0) 

7 WI 

q11q11 = Q,l] 0 
-c2) Q(O) + #Qr’. 

The characters 2;‘) , ,Z$“, and Z,(1) have highest weights I, 1c,, and g respec- 

tively. The second term of the $I& OPE (2.3) f ac t ors onto the stress tensor. For 

the flat, doubly periodic torus defined by the periods 1 and r in the complex plane, 

the unnormalized stress tensor one point function is the modular derivative of the 

partition function[l9, 221: 

(T(s)) = 27riD,Z(7-, 7). (4.10) 

When the partition function decomposes into a sum of a holomorphic square of 

characters, then the expectation value of the stress tensor in a given sector (corre- 

sponding to a character) is the modular derivative of the character of that sector. 
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By applying this to the second term of (4.5) for the 22 case, the following equations 

are generated 

(4.11) 

where I denotes 8,. Note that the O[o]O[~] q e u&ions are redundant because 

,JZ,(~)=Z~~. The equations (4.9) and (4.11) generate first order differential equations 

for the Q’s which are solved by inspection. The results are - 

Qf' 0~ ; [(qo12 + Q~~]")~'~ + (qo12 - qll~)'l;], 

Q$" 0: (@ploLll)1'4, (4.12) 

Qr' 0~ ; [(Q2 + oLl12)1/4 - (oLo12 - ql12)1/4], 

Arbitrary integration constants are determined by demanding that the ,Z’,$‘) high- 

est weight is a singlet, and that the Z,(‘) and Z,$‘) highest weights are doubly 

degenerate; they correspond to the states (a, p) and ($I, tit) respectively. 

Products of SU(2)1 theta functions can be reexpressed aa products of Riemann 

theta functions by redefining variables in the definitions of the functions. The 

relations relevant to the functions (4.12) are - 

( [I> 
2 O[O]O[l] = il ; ) 

0 2 qq2 + qq2 = 2 23 o ( [II ) 

0 2 
qq2 - qq2 = 2 ti 1 ( [I) ) 

I 

(4.13) 

Applying these to (4.12) leads to the sta.ndard results. 
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The rules which govern the combination of characters become clear when the 

23 case is displayed. Again, some factors of q(r) are absorbed into ~1~;) - 

A(2) (2) @[o]@[o] = $;Q?' + x[~,~~Q~ 7 
A(2) (1) 

@[21@[11 = i#QI"' + x~~,~~Q~ 3 
-PI (3) @[l]@[o] = i;;;olQi" + xi2,21Q1 7 

%I% = X[l,O] 0 
A t2) Qc2) + $;;21Qf’, 

(4.14) 

The characters Z,$‘), Z,$“, 2i3), a.nd Z,(‘) correspond to the highest weights 1, ~1, $,, 

and err respectively. (The field e(1) is a 2~ neutral field of dimension 2/5 discussed 

in [S]). Therefore, (4.14) ’ .t 1s wo decoupled systems consisting of two equations with 

1 two unknowns. This will lead to second order differential equations for the Q’s. 

But since the information for the general case is at hand, further discussion of 23 

will be differed until the general structure is obtained. 

First note that many combinations of level one characters yield redundant 

information; label each combination of O[;]O[j] by n = i + j mod N (0 5 n < IV). 

Then the products in the (N - n) ” class yield the same information as the n th, by 

the identity O[i] = @[N-i], and the relations (4.3) and (4.4) . Second, in the 22 a.nd 

23 examples above, the level 2 highest weights (and associated characters) which 

appear are in the product of the level 1 highest weights or their descendants. 

Therefore they belong to the same conjagacy class n as the product of level 1 

weights. All terms in the products appear which generate unitary representations 

of SUM. (Th is restricts the highest weights to one or two columns of Young 

Tableaux.) They are multiplied by characters of the PF theory, such that the sum 

of conformal dimensions of the level-2 and PF highest weights equals the sum of 

level 1 highest weights, mod 2. Third, the 22~ charge of the PF characters equals 

the sum of the charges of the level 1 highest weights. (This charge is the difference 

i - j mod IV.) Finally, integer-valued coefficients which in principle multiply the 
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By the above discussion, the general case is deduced by including all level- 

2 characters whose highest weights appear in the product of level 1 states, and 

mat thing these with PF characters with correct charges and dimensions. The 

general relation is 

. 

products of level-2 and PF characters are all unity. This is surprising because the 

highest weight of level-2 characters appears more than once in the product of level 

1 states. In these cases however, the PF characters have degenerate highest weights 

which account for this. 

4.3. CHARACTER RELATIONS AND DIFFERENTIAL EQUATIONS 

(‘J(N-u)+n) + C ~~~~n+N-a]Q2i-n 7 
2a>n+N 

(4.15) 

where K = 0 if 2n 2 2i 2 n and K = 1 if 2i 2 n + N. For the second case, the 

22~ charge of Q is converted to 2i - n - N by application of (4.3). The sum over 

Q is over all level 2 highest weights in the conjagacy class n. That they all appear 

is discussed in [28], and we have verified this for simple cases. Note that i > j in 

this construction since the rest of the equations are redundant. 

Let p be the 22~ charge of the PF characters, a.nd n be the conjugacy class of 

the product Ol;lO~l. Then 

iEPSn 2 + P;(N - P>, 

j= n-P y--- + $24 
(4.16) 
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for all N > p 2 0 such that p - n E 22. The integer “F is defined as 

q = 0 n>P>O, 

(4.17) 

Since the products of theta functions and the level-2 characters are specified by n 

and ,D , introduce the notation 

(4.18) 

with (i,j) given by (4.16) . The character relations (4.15)are equivalent to 

1 
A; = c x;Qp'. (4.19) 

N2r20 

These are defined only for ,L? - n E 22 and y - n E 22. It is useful to define A;, 

x; to be zero if n - ,L? is odd. Because of the symmetry n --+ N - n, we restrict 

the conjugacy class n such that N 2 212 2 0 with no loss of information. 

It is not clear that we have enough data to solve for x; via (4.19) and generate 

a differential equation for Q in terms of the theta functions, because the domain 

of p is greater than that of n. The solution to this puzzle is to apply the relations 

(4.3) to the Q’s , thus reducing the system to matrix equations. The analysis leads 

naturally to the following quantities - 

A$ E A;;: f A;+ 

(4.20) 

The point of these definitions is A* and x* for N 2 2p > 0 , contain all the 

information of A and x for N > /3 2 0. Note though , that (4.20) may in certain 
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cases vanish identically ; this is true for N even and 71 - ,O odd. This leads to 

different cases that will be discussed below. Similarly, we define 

Q!$ = Q$$’ f Q& (N > 27 2 o), 

Q!'; E '(Qr' + Qg:,) 2 (27 = N). 
(4.21) 

These definitions satisfy the matrix equations 

A$ = x&Q!$ N 2 2n,2P,+ 2 0, 
“Ya = x”,Q!$ 

(4.22) 
N > 2n,2,8,2y 2 0. 

A sum over y is implied. The second term in the parafermion two-point function 

generates the equa.tions 
P 

&A’$ = &Q'$ N > 2n,2/3,2y 2.0, 

1 AEp = xR7Q$) 
(4.23) 

N+2 N > 2n,2,8,2y 2: 0. 

We have applied all the symmetries of the level 1 and PF characters ; (4.22) is 

used to solve for xk in (4.23) . H ence there is enough information in the two-point 

correlator of parafermions on the torus to find differential equations for the PF 

cha.ra.cters in the general case. The final equation clearly takes the form 

Q&A’, = (N + 2)A*Qi. (4.24) 

For manifestly integrable cases when the rank of A* is one, the solution is clearly 

Q cx A1/(N+2). Note that (4.24) g enerates a power series solut,ion in the variable 
q = e2*ir for all characters , given the dimensions of the highest weights as initial 

condition information. We now consider the different cases and determine the 

order of the differential equation equation for ea.ch element, given by the rank of 

the matrix. 
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Odd N 

By observation of (4.20) the matrices A* , xi and Q* never generically vanish 

when N is odd. Each matrix is square and of the form A;, with Q = 0, 1, . . . , (N - 

1)/2. Hence the order of the differential equation for each element, given by the 

rank of the matrix, is (N + 1)/2. 

The lowest order example is the 23 case, with the Q matrices given by - 

Qk = (4.25) 

The differential equation (4.24) is specified by the A matrices 

~ (4.26) 

This system c,an be converted into ordinary second order differential equations in 

a single variable. First note that 0~~1 = OfI] for SU(3). Then rewrite A& as 

- o[1]2M* (4.27) 

where s = O~o~/O~l~. The overall factor 0~~1 2 leads to the redefinition - Qk = 

@[l] . 2/5R* Then let Rk = R%(s) . The factor of cls/&- cancels on both sides of 

(4.24)and an ordinary differential equation in the variable s results - 

(4.28) 

This clearly generates two second order differential equations which after futher 

studies yield series solutions. 
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N Even a,nd n Even 

The matrix Azp vanishes when n - ,B is odd Hence the matrices in (4.24) are 

of the form A$$. If N/2 is odd, the dimension is given by (N + 2)/4 for both A+ 

and A-. The first example in this series is the 22 sector 

Qf = Qff’ f Q(O) 2 7 

A& = OLo12 f OLl12 
(4.29) 

The other ha.lf of the 22 theory is in the n odd case. If N/2 is even, then the 

dimension of the matrix A& is given by (N + 2)/4 f l/2. The first in the series is 

the 24 case - 

Q+ = 
Qip’ + Q(O) 2Qp’ 

s(Qf’ + ;f)) Qf’ 
(4.30) 

Q- = Qf’ - Q(O) 4 

with A matrices - 

A+ = 
@[O12 + @[212 2@[1]@[3] 

20[1]” 2@[0]@[2] > (4.31) 

A- = OLo12 - q212 

N Even and n Odd 

The matrix Agp vanishes when n - p is odd so the ma.trices in (4.24) are of 

the form A$::. If N/2 is odd, the dimensions are (N f 2)/4. The first example 

in this series is the 22 case - 

Q+ = QI”, 
A+ = 20~o10~ll. 

(4.32) 
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The second member of this series, 26 , has a,n integrable equation for A- 

&- = QI” - Qp’ 7 

A- = O[olO[ll - O[310[41. 
(4.33) 

The rest of the 26 system (A+ for n odd and A& for n even) has rank two matrix 

structure. 

Finally, if N/2 is even, the dimension of the matrices is N/4 and the lowest 

representative of this series is the 24 odd sector 

Q* = Q’,” f Q(l) 3 7 

A* = @[o]@[l] f @[2]@[3]* 

(4.34) 

This completes the analysis of the different cases. Only the 22 system is completely 

integrable (first order). The 24 and 26 systems are the only partially integrable 

systems. 

5. Discussion 

The process of extracting information about a CFT via coset bosonization is 

clearly not unique to the case of 2~ parafermions we ha,ve discussed. To clarify 

the general structure of this method, we offer the following prescription: 

Let G be a bosonizable theory with current algebra we also label G, a.nd H the 

theory of the closed subalgebra II. 

A. Find the chiral algebra fields of G/H. For the PF case, these are given by $i 

and TPF. We expect tha.t such fields can in general be completely bosonized 

because their simple fusion rules can be reproduced by bosonic vertex operators. 



B. Identify relations between primaries of the chiral algebras. Begin with the pri- 

maries under G and deduce their coset decomposition by considering their charges 

under the coset chiral algebra fields. 

C. Understand the fusion rules of H and G/H fields. This fundamental informa- 

tion of the H and G/H th eories, is required to formulate the coset relations for 

correlation functions. 

D. Calculate correlation functions (E’):), via the differential equation (3.20). 

E. Determine the relations between cha.racters of the theories. Use symmetries of 

G and H and detailed analysis of highest weight relations (i.e. charge conservation 

and level matching). 

F. Factor chiral field correlators on the torus. This generates differential equations 

for the characters. Wit,h no current a.lgebra in the G/H theory, the second leading . 
term of neutral non-vanishing chiral field two-pt functions factor onto the stress- 

tensor, which is the modular derivative of the character of the particular sector. 

This prescription immediately a.pplies to the ca.ses GI; c (Gl)“, where GI, 

is the level Ic WZW model of the semi-simple group G[30]. The currents of GI, 

are the diagonal sum of the level 1 currents and the stress tensor is obtained 

via the Sugawara construction. In particular, the roles of H and G/H can be 

interchanged in our construction to discuss aspects of SU(N)2. We also know of a 

bosonic representation for the SU(3)3/U(l) p ara ermion, for which this formalism f 

can be applied. It is clear that elements of this prescription can be combined 

to calculate G/H correlators on the torus, and that a formulation of these ideas 

should be possible for arbitrary genus surfaces. We hope that this construction 

can supplement other techniques and shed additional light on the structure of the 

space of CFT’s. 

Acknowledgements: We are indebted to J. Bagger, L. Dixon, I<. Hornbostel, D. 

Lewellen, M. Peskin, M. Walton, and S. Yankielowicz for insightful conversations. 
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APPENDIX A 

Bosonization of su( iv) 1 

The diagonal .s~(N)r theory is represented by an even Lorentzian self-dual 

lattice [29] compactifcation. It is equivalently formulated on a conventional N - 1 

dimensional torriodal compactification [31] with constant background metric and 

antisymmetric tensor field, with action 

We now define the constant background metric g;j and antisymmetric tensor 

field BpV, following Ginsparg[32]. C onsider the root lattice AR of SU( N) generated 

by the simple roots er , where i = 1, . . . ,N-llabelstherootsand~=l,...,N-1 
P 

denotes the euclidean component of each root. The dual vectors ei,’ satisfy e:eJ” = 

6; and generate the weight lattice Aw. The metric is given by gij = erey/4 = A;j/4 

where Aij is the Cartan matrix of SU(N). Sp acetime vielbeins are $ the simple 

roots. Points Qp and Qfi + 27rn”(;er) are identified to form the spacetime torus. 

The constant antisymmetric field is defined as B,, = b;j(2e;L”)(2ezJ), where 

I 

ih j  
i < j, 

b;j  = O i=j, 

-Yij i>j. 

(A4 

One method of obtaining the spectrum of the model is by the path integral 

approach on the world sheet torus. Represent the torus by the pa.rallelogram 

defined by the vectors 1 a.nd r = 71 + ir2 in the complex plane, where 72 > 0. 

Two canonical homology cycles A and B correspond to motions in the 1 and r 

directions. The zero modes @p = Cp.z + ??z, where C@ and ??’ are constants, 
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must undergo shifts by spacetime lattice vectors when carried about the cycles 

fCp +jYG= anzief. 

B B 

The solutions to (A.3) are given by 

Cp = i7r[n;?- - m;]$efL. (A.4) 

The classical contribution to the partition function is ZCl = &,, eq[-Snm] where 

S nm is the classical action of the solution (A.4). By a.pplication of the Poisson 

resummation formula to the lattice vector m2er/2, the classical partition function 

1 becomes 

The sums on left a.nd right momenta ye and 7~ are over the integers (ni, pj) where 

pj is introduced via the Poisson resummation 

Y$ = [Pi - i(b;j + &j)nj]e:. 

(-4.6) 

The lattice (ye, 7~) is Lorentzian even and self dual, which follows from ye - YR E 

AR and yL +yR E Aw. 

Theta functions of su(N)k a.re given by 

OX(Z,T) = x exp[iakry’ - 2rik-y. 21, (A.7) 
YEllR-kX/L 

where X is a weight vector. The notation @[,I( ) z is used to denote the SUM theta 

“’ function wit,h X E [i], where [i] denotes the z basic represent,ation. The classical 
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partition function (A.5) is given by 

. 

N-l 
&l = c @[i]@[i]. (A.8) i=o 

The quantum contribution to the partition function is easily found via the 

stress tensor method. The two point function for the free bosons on the torus is 

given by 

(W(z,Z)@“(O,O)) = -P”” [ In [S(Z)/~\~ - 2w(Imz)2/r2]. (A.9) 

The theta function 0 = ti [I] is a Riemann theta function on the torus with zero 

at z = 0. The general definition of these functions on the torus is 

(217) = C exp [im(n + a)2 + i2r(n + u)(z + b)]. (A.lO) 
nEZ 

The function ~(7) = q1/24 nr=,( 1 - q”). Th e s t ress tensor for the bosonic theory 

is 

T(z) = -;: d,Wld,W: (A.ll) 

By taking derivatives of (A.9) , tl re q uantum expectation value of the stress tensor 

can be isolated; subsequent application of (4.10) generates the modular derivative 

of the quantum partition function Z&. The correlator (A.9) is normalized to factor 

onto .Z& ; this normalization is fixed by the procedure. The result is 

z,, = l/g? (A.12) 

;. 

Up to a shift -(N - 1)/24 (1) - in vacuum energy, the level 1 characters are ~1~1 - 

q;l/rlN-l and the full partition function is a sum over i of the holomorphic square 

of these. 



APPENDIX B 

Cover-Space approach to the PF Two-Point Correlator on t,he Torus 

It is natural to search for parafermion correlators on the torus by applying the 

relative locality properties of the parafermion currents. In this appendix, only the 

23 theory will be considered. The 2-point function between bhe parafermion $1 

and its conjugate must be of the form 

where ti = ti [ 11 as defined by (A.lO) . The theta function 9 essentially describes the 

quantum contribution to the correlator, as discussed in section 4.1 and Appendix 

A, including the relative semi-locality between parafermion and anti-parafermion. 

The function F must describe the relative semi-locality between the parafermion 

and the highest weights of the vacuum sectors. Consider the torus for large 72 

with 71 fixed. Then if z + z - r then the parafermion fa.ctors onto the highest 

weight. This generates a phase of the form 0, where w z e2*i/3, and factors the 

correlator onto another vacuum state, both as given by (2.10) . Under this action, 

the parafermion adds charge [4,0] to the highest weight. For the case at hand there 

are two sequences - 

and - 

(B.2) 

(B.3) 

For the second sequence, the identity (2.9) has been used to identify ~1 = $[.$l. 

Under z + z - 1, the psrafermion circles about the highest weight a,nd the cor- 

relator also obtains a phase from the semi-locality with the highest weight. If the 

34 



contribution to the phases from the anti-parafermion is factored out by normaliz- 

ing the vacuum (identity) sector, then the following phases are obtained under this 

transformation 

(B-4) 

The correlator returns to its original sector with no phase under the motions 

z --+ z - 37 and z --+ z - 3. This situation is pictured by drawing cube root branch 

cuts about the two cycles; the parafermion and anit-parafermion are connected 
. also by a cut - as the parafermion moves about cycles, it deposits this branch 

cut. The cover of the torus with branch cuts is the three-fold torus, on which 

the correlator is doubly-periodic (meromorphic). The functions F(z - w), which 

generate no branch cut between z and w, are meromorphic on the cover. One 

convenient representation of these functions is given by 

Fa(.z - WIT) = 29 .$12 [ 1 (4(2-w)1127-) a=O,l,.*.,ll. 

These functions give ($$t), z Fu/8 4/3 the required properties; the denominator 

generates 9 poles of order 4/3 on the cover so the numerator has 12 zeroes as 

dictated by the meromorphic constraint on the cover. The functions ( $I$‘), clearly 

form a basis on the cover. Transformation properties of the F, a.re 

F&z + 1) = dF&), 

Fa(z + 7) = Fu+q(z). 
(B-6) 

By comparing these transforma.tion properties with (B.2), (B.3), and (B-4), the 
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: 

highest weights (I, ~1) behaive as ($$t), f or a = 0 mod 4. The other sectors are 

generated by motions about the B cycle. 

There are four linearly independent functions ($$t), , with 7 dependent co- 

efficients, which describe the different correlators for each sector. This freedom is 

is reduced by two additional constra.ints. First, the correlator for the (1, ~1) sector 

is invariant under the interchange of 1c, and its conjugate since the highest weights 

have no charge. This reduces the ($$t),,,, correlators to 

Finally, there can be no U(1) currents in the theory so the second leading term in 

the (z - w) expansion must vanish. This reduces the problem to two decoupled 

systems with two unknown r dependent coefficients. This is precisely the amount 

of information supplied by the coset bosonization procedure of section 4 (compare 

(B.7) to (4.5) and (4.14) ). 
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