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ABSTRACT 

This paper considers the problem of determining a confidence interval for the 

difference between two treatments in a simplified sequential paired clinical trial, 

which is analogous to setting an interval for the drift of a random walk subject 

to a parabolic stopping boundary. Three bootstrap methods of construction 

are applied: Efron’s accelerated bias-corrected, the DiCiccio-Romano, and the 

bootstrap-t. The results are compared with a theoretical approximate interval 

due to Siegmund. Difficulties inherent in the use of these bootstrap methods in 

a complex situation are illustrated. The DiCiccio-Roman0 method is shown to 

be the easiest to apply and to work well. 
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1. Introduct ion 

The bootstrap (Efron 1982) is an ideal tool to construct confidence intervals 

in complex situations where explicit analytical solutions cannot be found. Sev- 

eral methods have been proposed and theoretical comparisons of these methods 

are available. The purpose of this article is to consider a challenging problem of 

practical importance in which a theoretical approximate interval has been deter- 

mined analytically and to compare this interval with various bootstrap method 

results. Hopefully, this illustration will provide guidelines for choosing among the 

methods in similar situations. The problem to be examined is the construction 

of an interval for the drift of a random walk, which arises in a particular paired 

sequential clinical trial test. 1 

Section 2 reviews the bootstrap intervals to be calculated. Sections 3 and 4 

describe the example and the theoretical interval. Sections 5 and 6 consist of a 

description of the bootstrap procedure and a discussion of the results. 

2. Bootstrap Intervals 

Five bootstrap intervals will be constructed in this paper and each will be 

described briefly in this section. For a more thorough discussion, the reader 

is referred to the surveys by DiCiccio and Roman0 (1987)) Hall (1988)) and 

Tibshirani (1984)) and to the particular references given for each interval. 

. . 

The clinical trial example to be considered later is a one-parameter prob- 

lem in which the parametric bootstrap sampling procedure may be applied and 

the bootstrap notation will be explained in this context. We would like to con- 

struct a confidence interval for 8 which indexes a scalar-parameter family of 

distributions Fe. Our interval is based on the observed value e^, generally the 

maximum-likelihood estimate of 8. The sampling distribution of e^ under 0 is 

GB(s) = P~{L? 5 s}. The bootstrap distribution is the distribution of the esti- 

mator at e^, Gg(s) - P,-{6* < s}, where e^* is obtained by sampling from F’. In 
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practice, we resample B times from Fd to produce e^;, e^;i, . . . , e^h and approximate 

G,- by the empirical cumulative distribution function 

We will seek to construct a central 1 - 2cu interval [0~,~, eu,,] whose endpoints 

have the property that 

GB~,~ (s*) = cy , and 

Ge,,,(e^) =l- a . 
(2.2) 

Any upper (lower) endpoint that satisfies (2.2) will be called ‘exact’. Otherwise, 

as in the terminology of -Efron (1987), a proposed upper endpoint Bu will be 
. 

called ‘ith-order correct’ if 

I eu - eu,, I= Op(n-(i+1)/2) , (2.3) 

and similarly for a proposed lower endpoint. The two-sided coverage error for an 

interval whose endpoints satisfy (2.3) is typically O(n-‘12). 

2.1 The Percentile, BC, and BC, Intervals 

The popular standard interval [e^ - Bz(~-~), e^ - &,a(“)] where ~(“1 is the oth 

percentile point of the N(O,l) distribution, relies on the assumption that the 

statistic is normal with a constant variance. Efron’s (1987) BC, interval is based 

on the more general assumption that for some monotone transformation g, bias 

constant ZQ, and acceleration constant a, the following is true: 

g(e^) - g(e) - N(-.z~(I + ag(e)), (1 + a9(e))2) . (2.4 
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That is, there exists a transformation which normalizes the statistic and lin- 

earizes, not necessarily stabilizes, the variance. The resulting interval [f?L, O,] 

is 

[G~‘(@(+l)), Gi’(@(z[l - 4))] , P-5) 

where 0 is the N(O,l) c.d.f., and 

%[a] = 20 + (20 + aJa))/(l - a(20 + A”))). 

The distribution G,- is approximated using (2.1). 

If the transformation g stabilizes the variance, resulting in an acceleration 

1 constant of zero, the interval (2.5) reduces to Efron’s earlier BC interval. If 

the bias constant is also zero, it reduces to the percentile interval [Gil (Q), 

Gg’(l - a)]. B eginning with the percentile interval, the BC and BC, methods 

successively adjust the chosen percentiles, the former taking into account bias 

and the latter additionally considering variance. 

The appeal of this formulation is that the transformation g need not be 

known in order to form the BC, interval. However, the two constants must still 

be determined. The bias correction can be estimated easily from the approximate 

bootstrap distribution by 

.zo = @-‘(d,(i)) . 

The acceleration constant is more difficult to calculate. Efron gives one esti- 

mate which entails the skewness of the score function: 

& = l/6 SKEW(i&)) le=$ , cw 

where ie = a/&J logfB (e’), 

f@(i) is the density of e^ for a particular value 8, and 

SKEW is the skewness. 
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In addition, he proves that if e^ is the maximum-likelihood estimate, a is 

approximately equal to ~0. DiCiccio and Roman0 (1987a) discuss other estimates 

based on the moments of e^, which apply in the non-maximum-likelihood case and 

when nuisance parameters are present. 

If the transformation assumption (2.4) is true, then the BC, interval (2.5) 

is an exact interval. Even if this requirement is not strictly met, the interval is 

second-order correct as defined in (2.3). H owever, the BC interval and percentile 

intervals are only first-order correct as is the ordinary standard interval. 

DiCiccio and Roman0 (1987b) voice a criticism of the BC, method which is 

shared by Hall (1988). Th e objection is that the acceleration constant must be 

derived theoretically, which means this particular bootstrap interval is not purely 
1 automatic, the most appealing and fundamental feature of bootstrap methods. 

This problem will surface when the clinical trial example is examined. 

2.2 The DiCiccio-Roman0 Interval 

As Schenker (1987) p oints out, an exact upper endpoint Bu,a exists, namely 

that value of B such that e^ = Gil( cr and analagously for the lower endpoint. ) 

However, simulation of Go for numerous values of 8 in order to conduct a search, 

would be prohibitive. The DiCiccio-Roman0 method (1987b) bypasses this ob- 

struction by prudently choosing the values of 8 at which the bootstrap distri- 

bution is simulated and then constructing an interval based on a theoretical 

relationship between these distributions. In so doing, they not only deal with the 

acceleration constant calculation problem, as their method does not require this 

parameter, but also they achieve exactness when 

Gs(O) is a pivot , (2.7) 

which is a weaker condition than (2.4). Their iterative method for the upper 

endpoint Bu is: 
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Let e. = any value of 8, 
in particular it could be the percentile point Gi(l - a), 

then 0: = G;‘(a), and 

e ;+l = G~‘{Gp(f?i)} for i = 1,2,. . . . (2.8) 

The ith step DiCiccio-Roman0 endpoint is defined as 0;. The lower endpoint 

endpoint is found by replacing tr: by 1 - cy in the above. In practice, (2.1) is used 

at each step to estimate the bootstrap distribution. 

If the exactness condition (2.7) holds, 81 will be an exact upper (lower) end- 

point. Otherwise, the method can be iterated as outlined in (2.8) until the 

endpoint is deemed satisfactory as discussed in Section 6. The number of steps 
. 

required for either endpoint may differ. Notably, the amount of computation 

required is linear in the number of iterations. In addition, DiCiccio and Roman0 

(1987b) show that each iteration reduces the error by O,,(~Z-‘/~). 

2.3 The Bootstrap-t Interval 

A third approach is the bootstrap-t method (Efron 1981, Hall 1988)) which re- 

sults from studentizing in analogy with the location-scale problem. In this case, a 

stable estimate 3 of the standard deviation of e^ must be known. The sampling dis- 

tribution which we would like to estimate is He(s) E PO{ (s^-0)/S 5 s}. The boot- 

strap method provides the bootstrap distribution Hi(s) s Pi{(e^* - 8)/i?* 5 s} 

where 8* is the estimated standard deviation of e^*. The resulting interval is 

[e^ - c?Hi’(l - a), e^ - &H;‘(a)] . (2.9) 

In practice, a sample of size B is taken and He is is approximated by 

if&s) = #{(ii - @/et 5 s}/B . 

Hall (1988) h s ows that the bootstrap-t interval (2.9) is second-order correct 

and provides an interesting theoretical framework for comparing it with the BC, 
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interval. He advises the former based on its philosophical appeal, even though 

both have the same error. Basically, if an interval for a mean when the variance 

is unknown were desired, the bootstrap-t method is analagous to the correct 

approach: the (1 - cu)th and ath percentile points from the appropriate t-table 

are used for the lower and upper endpoints respectively. 

3. The Clinical Trial Example 

We consider a simplified medical experiment in which two treatments are 

to be compared as described by Siegmund (1985). Paired patients enter the 

trial sequentially, perhaps matched on some external factors such as age . The 

difference between the treatment 1 and treatment 2 responses for the ith pair is 

denoted xi, i = 1,. . . . The xi’s are assumed to be i.i.d. normal with mean p 

and known variance which, without loss of generality, is set equal to one. For 

expositional purposes, we first consider a test of the mean and then construct 

the analogous confidence interval. The null hypothesis is HO : p = 0 versus 

the alternative Ha : p # 0. The trial should be terminated as soon as enough 

evidence is gathered to adequately favor one treatment over the other. In the 

fixed sample size setting, the null hypothesis would be rejected if 

sn&x+bfi , 
i=l 

where b is chosen to achieve the desired significance level of the test. 

One intuitive sequential stopping rule is to first observe a minimum number 

of observations (me) before even considering stopping the trial, and to define the 

time T as 

T E inf{n : n 2 mo, 1 S,, I> bfi} . 

Since we do not want to go on sampling indefinitely, a maximum of m patient 

pairs are allowed to enter the experiment. Combining these elements, the trial 
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is stopped at r E min(T,m). The null hypothesis is rejected if and only if the 

cumulative sum Sr is less than or equal to some level where the level and the other 

test parameters mu, b, and m are chosen to achieve the desired test significance. 

. 

(0, 0) ho9 0) h 0) 

Figure 1 

The stopping boundary is a parabola lying horizontally with a vertical bound- 

ary at mo after which the process is first observed and one at m at which the 

process is cut-off. Figure 1 shows a typical process S,, which hits the parabolic 

part of the boundary. 



4. The Theoretical Interval 

Siegmund (1978, 1985) d evelops a theoretical confidence interval by noting 

that points on the stopping boundary are ordered, with small values correspond- 

ing to large ~1 values, which favor rejection of the null hypothesis. The upper 

limit PU,~ for a 1 - 2a interval is 

PU,a = sup{p : Pp{stopping point is equal to or smaller than 

the observed stopping point} 2 a) . (44 

A similar expression is available for PL,~. Siegmund has worked out ana- 

lytical approximations for the probabilities required in (4.1) and he solves for 

the endpoints by doing a numerical search for the sup (inf) values. Because the 

sample points are ordered simply by their stopping time and any excess over 

the boundary (ST - bJ?;) is ignored, some information is inherently lost. The 

approximations are also dependent on the normality assumption. 

5. The Bootstrap Procedure 

Two trial situations will be used to compare the theoretical and bootstrap 

intervals (Siegmund 1978, 1985). All intervals will be two-sided with a confi- 

dence level of 0.90. Situations I and II have five and four hypothetical outcomes 

respectively: 

Situation I Situation II 

mg = 1, m = 148, b = 3.45 mo = 16, m = 144, b = 3.12 

T = 19 and ST > 0 

T = 32 and ST > 0 

T = 68 and ST > 0 

T > m and S, = 40.0 

T > m and Sm = 30.0 

T = 39 and ST > 0 

T = 61 and ST > 0 

T > m and S, = 36.0 

T > m and S,,, = 28.8 

The boundary parameters for each Situation are given in the first line of the 
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table. In Situation I, the trial is stopped as soon as possible and a maximum of 

148 patient pairs will be allowed to enter the trial. In Situation II, sixteen patient 

pairs will be allowed to enter the experiment before the results are examined and 

a maximum of 144 pairs will be allowed. 

Consider the first and fourth Situation I outcomes. The first outcome is that 

'T = 19 and ST > 0’, which means that the process hit the upper parabolic 

boundary at time T = 19. In clinical trial terms, this means that after 19 patient 

pairs entered the experiment, the sum of the differences between treatment 1 

and treatment 2 levels was greater than 3.45&9. Unfortunately, and perhaps 

somewhat unrealistically, we do not know the actual statistic ST value. We only 

know that it was as least as large as the boundary that point. 

The fourth outcome is that 'T > m and S,,, = 40’, which means that the 

observed process did not hit the parabolic boundary by the time the maximum 

allowable number of patient pairs had entered the trial. Rather, the process hit 

the vertical boundary at a height of Sm = 40. 

5.1 Estimators of the Drift 

In order to conduct the resampling, an estimator of ~1 must be chosen. The 

likelihood function for p is 

1(7, ST; P) = exp(& - p27/2) 

regardless of the stopping rule. The maximum-likelihood estimator is 

b?zle z sr/r , (5.1) 

which is just the usual sample mean in the fixed sample size case. This will be 

one of the estimators used in the simulations. However, as Woodroofe (1982) 

notes, though the likelihood function is not dependent on the stopping rule, the 
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distribution of the sample mean is. Siegmund (1978) proves that the bias is of 

order l/b. He suggests an estimator of the form 

+ 2/b2) if T 5 m, 

m ifT>m . 

The second estimator which will be used in the simulations is a continuous version 

of the above: 

As pointed out earlier, if the process hits before the parabolic boundary, the 

outcomes do not include the specific stopping height ST. Realistically, the inves- 

tigator would keep a record of the patient pair differences. A reasonable estimate 

is bfi, the actual height of the boundary at the stopping time, though the true 

value is at least as large as this height. This approximation will be used in (5.1) 

and (5.2) to estimate ~1 for Situation I’s first three outcomes and Situation II’s 

first two outcomes. 

5.2 The Bootstrap Sample 

For each outcome, an estimate of the drift p is calculated and B bootstrap 

samples fii are drawn from Fb in the following manner: 

mo-1 
1. Let S&--l = C X; where each xi - N($, 1). 

i=l 

2. For k=mo tom 

begin 

2.1 Let Sk* = S;-, + xk where xk - N(fi, 1). 

2.2 If S; 2 bfi, then the bootstrap sample point is (S;,k). GOT0 4. 

end 

3. The bootstrap sample is (SA,m). GOT0 4. 

4. Calculate ii. 
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In other words, we simulate a random walk and observe it after a suitable wait. 

We have no way of knowing if the process may have crossed the parabolic bound- 

ary and then recrossed it before it is looked at initially (before mo). 

The bootstrap samples do differ slightly from the original outcomes in that 

if the bootstrap process crossed the parabolic boundary (Step 2.2), we know 

the exact height at the stopping time, ST. In most bootstrap situations, the 

statistician mirrors the original observation in the resampling procedure. How- 

ever, if the excess over the boundary is ignored, the resulting bootstrap dis- 

tribution Gb is discrete as the only stopping heights which can be observed 

are be, b&EjTi,. . . . Initially, this approach was tried in the simulation 

work but it required smoothing the resulting bootstrap distribution. Better re- 

sults were obtained by an easier procedure if the bootstrap samples consisted of 

(S,*, 7). Siegmund’s approach, as described in Section 4, avoids this choice as his 

approximate probabilities are in terms of the stopping time only. 

5.3 Estimator of the Standard Deviation 

In order to calculate the bootstrap-t interval, an estimate of the standard 

deviation of fi must be chosen. If the number of patient pairs was fixed at n, B 

would be l/fi. In the sequential analysis situation, the standard interval is 

[hlle - 2 (l-Q)/&&& - *‘“‘/fi] . (5.3) 

For lack of a better solution, we will use l/fi for an estimate of the standard 

deviation for both &le and j&b. The problem of finding a stable B is a difficulty 

inherent in the bootstrap-t method. 
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5.4 The Acceleration Constant 

For the simulations using jimle, the acceleration constant a will be approxi- 

mated by ZJ (Efron 1987). A satisfactory analytical answer could not be found 

in the Pub case, illustrating a problem with the BC, method as discussed in 

Section 2.1. Disregarding the vertical boundaries at mo and m, an estimate of 

the expected value of the stopping time for a parabolic boundary is given by 

Siegmund (1985). C ombining this result with the score function estimate (2.6), 

Wald’s identity and Bartlett’s formula, produced the estimate 

& G -(b2 _ 1)-‘/2 , (5.4 

which equals -0.303 and -0.338 in Situations 1 and 2 respectively. However, 

this estimate did not work well in practice. In outcomes when the process hit 

the vertical boundary at m, such as the fourth and fifth in Situation I, (5.4) 

was especially poor. This result is intuitive as these situations are close to the 

fixed sample size case in which no transformation g (2.4) is necessary and both 

the bias and acceleration constants are zero. Therefore, all BC, intervals will 

be constructed with the acceleration constant set equal to the bias constant, 

regardless of which estimator is used. 

6. Discussion 

For both Situations, intervals were calculated using both the maximum- 

likelihood and unbiased estimators for bootstrap sample sizes of B=30,000 and 

B=5,000. For each of the eight combinations, the Siegmund (Section 4), stan- 

dard (5.3), DiCiccio-Roman0 let through 4’h step (2.8), percentile, BC, and BC, 

(2.5), and bootstrap-t (2.9) intervals were constructed. 

A reasonable method for evaluating and comparing the confidence intervals 

is to use Efron’s correctness criterion (2.2). F or each interval, [p~,pu], the tail 

probabilities 1 - G,, (c) and G,,(P) are estimated using (2.1) with B equal to 
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the bootstrap sample size used in the interval construction. As stated in DiCiccio 

and Roman0 (1987b), the standard error in these approximate tail probabilities 

can be estimated by 

((cy(1 - cX))/B)‘/2 . 

For cr=O.O5, this estimated standard error is 0.0013 for B=30,000 and 0.0031 for 

B=5,000. 

The right-to-left ratio 

(PU - ci)/(P - PL) 

is also reported, indicating the skewness of the interval. 

Appendix A contains the Situation 2, B=30,000 intervals for both the un- 

biased (5.4) and maximum-likelihood (5.2) estimators in Sections A.1 and A.2 

respectively. Situation 2 was chosen because its large value of no presents greater 

difficulties for the methods. Each entry consists of the name of the method, the 

interval, the upper-to-lower ratio (R/L Ratio), and the upper and lower tail 

probabilities (Pu and PL). 

6.1 The Unbiased Estimator Results 

The Siegmund method does well in all cases. The DiCiccio-Roman0 proce- 

dure also performs well except perhaps for the third outcome which is the most 

difficult because the observed process stopped close to the vertex between the 

parabolic boundary and the vertical boundary at m. Though four steps are 

given for this method, we could stop iterating an endpoint as soon as the re- 

spective tail probability is close enough to 0.05, where closeness could be defined 

using the standard error (6.1). For example, one step might be acceptable for 

the lower endpoint and two for the upper for the first outcome. The bootstrap-t 

method does less well than the Siegmund and DiCiccio-Roman0 procedures. 
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The percentile, BC and BC, intervals are all skewed to the upper as indicated 

by large upper-to-lower ratios and consequently have large lower tail probabilities 

and small upper tail probabilities. 

The standard interval is skewed in the opposite direction. Understandably,. 

this method does better at the lower endpoint than at the upper since the lower 

corresponds to the fixed sample size situation in which the standard interval is 

exact. 

6.2 The Maximum-likelihood Estimator Results 

If the maximum-likelihood estimator is used instead, the Siegmund interval 

is the same since it does not incorporate p. The tail probabilities change as the 

different estimate is used to generate the relevant bootstrap distributions. The 

bootstrap-t intervals also stay roughly the same. 

Perhaps because setting the acceleration constant equal to the bias constant 

is now a better approximation, the BCa interval does better in the maximum- 

likelihood situation than in the unbiased one. 

6.3 Further Comments 

The results for both Situations and for both estimators are summarized in 

A.3. If the unbiased estimator is used, the DiCiccio-Roman0 method constructs 

endpoints whose tail probabilities are within [0.035,0.065] for eight out of nine 

outcomes. Siegmund’s intervals based on the maximum-likelihood estimator sat- 

isfy this criterion for seven outcomes. 

A bootstrap sample size of 30,000 helps to ensure that the observed differ- 

ences between the intervals are results of the methods themselves rather than 

simulation error. However, in practice the computer cost is prohibitive and sug- 

gestions on how to choose B (Efron 1987), and importance sampling ideas should 

. be considered. The Situation 2 unbiased estimator intervals using B=5,000 are 

given in A.4. In general, the intervals exhibit the same behavior as discussed in 
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Section 6.1. The DiCiccio-Roman0 and BC, upper endpoints are the least stable 

as the bootstrap distributions have long upper tails. 

6.4 Conclusions 

This exercise has demonstrated problems encountered in the application 

of bootstrap methods to a complicated yet practical example. The DiCiccio- 

Roman0 procedure has proved especially promising. This new method retains 

the automatic nature of the bootstrap, not requiring the type of analytical work 

which turns out to be difficult and even impossible in other approaches. More 

complicated bootstrap procedures involving prepivoting (Beran 1987) or double 

bootstrapping (Hall 1986) 1 a so might work well in this situation and should be 

1 considered in the future. We hope that when faced with a similar problem, the 

reader will find this illustration a useful one. 
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Appendix A 

A.1 Situation 2, B=30,000 using the unbiased estimator 

I Outcome 1: T = 39 and ST > 0 

I I Interval 1 R/L Ratio 1 PL 1 P” 

Siegmund [0.160, 0.7401 1.279 0.043 0.036 

Standard 10.151, 0.6781 1.000 0.037 0.078 

. 

DiCiccio-Roman0 1 [0.155, 0.6961 1.084 0.039 0.062 

DiCiccio-Roman0 2 [0.182, 0.7011 1.230 0.053 0.056 

DiCiccio-Roman0 3 [0.169, 0.7021 1.173 0.045 0.057 

DiCiccio-Roman0 4 IO.180, 0.7071 1.244 0.052 0.055 

Percentile 10.241, 0.6941 1.611 0.103 0.066 

BC [i0=0.202] [0.266, 0.771) 2.394 0.129 0.023 

BCa [0.290, O.QQO] 4.611 0.164 0.000 

Bootstrap-t 10.233, 0.7181 1.671 0.096 0.050 

r 
Siegmund 

Standard 

DiCiccio-Roman0 1 

DiCiccio-Roman0 2 

DiCiccio-Roman0 3 

DiCiccio-Roman0 4 

Percentile 

BC [&=0.176] 

BG 

Bootstrapt 

Outcome 2: T = 61 and ST > 0 

Interval 

IO.130, 0.5901 

R/L Ratio 

1.284 

PL 

0.049 

pu 

0.037 

(0.121, 0.5421 1.000 0.045 0.076 

[O.lOO, 0.5871 1.102 0.029 0.039 

[0.157,0.573] 1.388 0.074 0.049 

[0.114, 0.5641 1.074 0.039 0.054 

[0.145, 0.5641 1.250 0.058 0.055 

(0.164, 0.6371 1.823 0.078 0.015 

IO.193, 0.6931 2.613 0.115 0.004 

[0.227, 0.8631 5.097 0.167 0.000 

[0.166, 0.5891 1.564 0.082 0.037 

1 
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A.1 Situation 2, B=30,000 using the unbiased estimator, cont. 

Siegmund 

Standard 

Outcome 3: T > m and S, = 36.0 

Interval R/L Ratio PL pu 

10.080, 0.3801 1.355 0.054 0.045 

[0.070, 0.3441 1.000 0.045 0.097 

DiCiccio-Roman0 1 (0.085, 0.3711 1.341 0.057 0.052 

DiCiccio-Roman0 2 [0.061, 0.3761 1.157 0.035 0.048 

DiCiccio-Roman0 3 [0.087, 0.3681 1.337 0.060 0.056 

DiCiccio-Roman0 4 10.060, 0.3821 1.182 0.034 0.040 

Percentile 10.057, 0.4751 1.781 0.033 * 0.002 

BC [&=0.260] [0,095, 0.6341 3.780 0.070 0.000 

BG [0.121, 0.9341 8.380 0.114 0.000 

Bootstrap-t [0.082, 0.3581 1.200 0.056 0.073 

r Outcome 4: T > m and Sm = 28.8 

Siegmund 

Standard 

DiCiccio-Roman0 1 

DiCiccio-Roman0 2 

DiCiccio-Roman0 3 

DiCiccio-Roman0 4 

Percentile 

BC [&,=0.334] 

BG 

Bootstrap-t 

Interval R/L Ratio PL pu 

[0.030, 0.3301 1.207 0.032 0.055 

[0.029, 0.3031 1.000 0.028 0.101 

10.048, 0.2961 1.104 0.046 0.115 

10.050, 0.3571 1.649 0.048 0.027 

IO.051, 0.3201 1.337 0.050 0.068 

(0.051, 0.3401 1.513 0.048 0.041 

10.024, 0.3961 1.618 0.024 0.009 

(0.071, 0.6361 4.935 0.072 0.000 

[0.098,0.441] 4.080 0.128 0.002 

[0.037, 0.3081 1.106 0.035 0.092 
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A.2 Situation 2, B=30,000 using the maximum-likelihood estimator 

Outcome 1: T  = 39.0 and ST > 0 

Interval R/L Ratio PL RJ 

Siegmund (0.160, 0.7401 0.708 0.043 0.036 

Standard [0.236, 0.7631 1.000 0.100 0.024 

DiCiccio-Roman0 1 [0.131, 0.7981 0.808 0.029 0.014 

DiCiccio-Roman0 2 [0.234, 0.7501 0.940 0.098 0.033 

DiCiccio-Roman0 3 [0.131, 0.7251 0.611 0.029 0.044 

DiCiccio-Roman0 4 [0.258, 0.7161 0.896 0.121 0.049 

Percentile 10.351, 0.9131 2.779 0.272 0.002 

BC [so=-0.3291 [0.304, 0.7801 1.432 0.186 0.020 

BCa 10.177, 0.6841 0.571 0.050 0.074 

Bootstrap-t [0.235, 0.7161 0.816 0.100 0.050 

Outcome 2: T  = 61.0 and ST > 0 

Interval R/L Ratio PL RJ 

Siegmund [0.130, 0.590) 0.707 0.049 0.037 

Standard (0.189, 0.610] 1.000 0.110 0.026 

DiCiccio-Roman0 1 (0.050, 0.6541 0.729 0.014 0.011 

DiCiccio-Roman0 2 [0.273,0.583] 1.451 0.260 0.043 

DiCiccio-Roman0 3 [0.050, 0.5791 0.514 0.013 0.043 

DiCiccio-Roman0 4 (0.272, 0.577) 1.387 0.266 0.046 

Percentile [0.279, 0.8211 3.515 0.281 0.000 

BC [So=-0.3251 [0.211,0.666) 1.412 0.140 0.008 

BCa [0.077, 0.5611 0.502 0.022 0.060 

Bootstrap-t 10.179, 0.5741 0.788 0.094 0.049 
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A.2 Situation 2, B=30,000 using the m.l.e., cont. 

. 

Outcome 3: T  > m and Sm = 36.0 

Interval R/L Ratio PL RJ 

Siegmund (0.080, 0.3801 0.765 0.054 0.045 

Standard [0.113, 0.387) 1.000 0.098 0.037 

DiCiccio-Roman0 1 [0.012, 0.3761 0.531 0.011 0.047 

DiCiccio-Roman0 2 [0.106, 0.3721 0.852 0.088 0.051 

DiCiccio-Roman0 3 [0.024, 0.3721 0.539 0.015 0.054 

DiCiccio-Roman0 4 [0.106, 0.3741 0.862 0.086 0.048 

’ Percentile [0.113, 0.6511 2.920 0.099 0.000 

BC [So=-0.2221 [0;076, 0.5011 1.443 0.048 0.001 

BG [ -0.034, 0.4141 0.578 0.004 0.017 

Bootstrap-t (0.084, 0.3871 0.827 0.057 0.036 

Outcome 4: T  > m and Sm = 28.8 

Interval R/L Ratio PL pu 

Siegmund [0.030,0.330] 0.765 0.032 0.055 

Standard (0.063, 0.3371 1.000 0.063 0.046 

DiCiccio-Roman0 1 (0.046, 0.2981 0.636 0.042 0.109 

DiCiccio-Roman0 2 (0.057, 0.3681 1.174 0.054 0.021 

DiCiccio-Roman0 3 [0.053, 0.3071 0.725 0.050 0.092 

DiCiccbRomano 4 [0.054,0.357] 1.071 0.053 0.028 

Percentile [0.063, 0.5541 2.579 0.062 0.000 

BC [&,=-0.0511 [0.054, 0.5171 2.174 0.051 0.000 

BG 10.041, 0.4721 1.707 0.036 0.000 

Bootstrap-t [0.029, 0.3371 0.803 0.029 0.047 
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A.3 Summary 

The interval names are abbreviated: Si (Siegmund), St (Standard), DR 

(DiCiccio-Romano), Pe (Percentile)), BC, BCa, and Bt (Bootstrap-t). 

In the summary below, ‘*’ denotes a tail probability in in [0.035,0.065], ‘+' 

in (0.065,0.080], ‘++’ above 0.080, ‘-’ in [0.020,0.035), ‘--’ below 0.020. The 

DiCiccio-Roman0 intervals consist of the best endpoints chosen independently 

from the 4 steps where a ‘- ’ is considered better than a ‘+‘, a ‘+’ better than 

a ‘--‘, and a ‘--’ better than ‘++‘, as over-coverage is considered better than 

under-coverage. 

Situation 1, B=30,000 using the maximum-likelihood estimator 

Interval Si St DR Pe BC BCa Bt 

Outcome 1 ( *,- ) ( ++,- ) ( *,* ) ( ++,-- ) ( ++,-- ) ( +>* ) ( *,* ) 

-Outcome 2!( *,- ) ( ++,- ) ( *,* ) ( ++,-- ) ( ++,-- ) ( +,* ) ( *,* ) 1 

Outcome 3 ( *,* ) ( ++,- ) ( --,* ) ( ++,-- ) ( ++,-- ) ( --,* ) ( *,* ) 

Outcome 4 ( *,* ) ( ++,* ) ( -,* ) ( ++,-- 1 ( *,-- ) ( --s-- ) ( *,* ) 

Outcome 5 ( *,* ) ( *,* ) ( *,- ) ( *,-- ) ( *,-- ) ( *,-- ) ( -,* ) 

Situation 1, B=30,000 using the unbiased estimator 

Interval Si St DR Pe BC BCa Bt 

Outcome 1 ( *,- ) ( *,+ ) ( *,* ) ( ++,-- ) ( ++,-- ) ( ++,-- ) ( *,* ) 

Outcome 2 ( *,- ) ( *,+ ) ( *,* ) ( ++,-- ) ( ++,-- ) ( ++,-- 1 ( *,* 1 

Outcome 3 ( *,* ) ( *,+ ) ( *,* I 1 ( +,--I (++,-- 1 (++,--m 

Outcome 4 ( *,* ) ( *,++ ) ( I *,- 1 ( -s-- 1 ( +,-- 1 ( ++,-- 1 ( *r+ II 

Outcome 5 ( *,* ) ( -,++ ) ( *,* 1 ( ->- ) ( +,--I ( ++,--I ( -,++I 
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Situation 2, B=30,000 using the maximum-likelihood estimator 

Interval Si St DR Pe BC BCa Bt 

Outcome 1 ( *,* ) ( ++,- ) ( -,* ) ( ++,-- ) ( ++,- ) ( *,+ 1 ( ++1* 1 

Outcome 2 ( *,* ) ( ++,- ) ( --,* ) ( ++,-- ) ( ++,-- ) ( -,* ) ( ++,* ) 

Outcome 3 ( *,* ) ( ++,* ) ( --,* ) ( ++,-- ) ( *,-- ) ( --,-- ) ( *,* ) 

Outcome 4 ( -,* ) ( *1* 1 ( *,- ) ( +,-- ) ( *,-- ) ( *,-- ) ( -1* 1 

Situation 2, B=30,000 using the unbiased estimator 

Interval Si St DR Pe BC ’ BC, Bt 

Outcome 1 ( *,* ) ( *,-t ) ( *,* ) ( ++,+ ) ( ++,- ) ( ++,-- ) ( ++,* ) 

1 Outcome 2 ( *,* ) ( *,+ ) ( *,* ) ( +,-- ) ( ++,-- ) ( -t-t,-- ) ( ++,* ) 

Outcome 3 ( *,* ) ( *,++ ) ( *,* ) ( +,-- ) ( +,-- ) ( ++,-- ) ( *,+ ) 

Outcome 4 ( -,* ) ( -,++ ) ( *,* ) ( -,-- ) ( +,--I ( ++,-- ) ( *,++I 
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A.4 Situation 2,‘B=5,000 using the unbiased estimator 

Outcome 1: T  = 39.0 and ST > 0 

Interval R/L Ratio PL pu 

Siegmund [0.160, 0.7401 1.279 0.042 0.038 

Standard 10.151, 0.6781 1.000 0.040 0.078 

DiCiccio-Roman0 1 IO.127, 0.6871 0.951 0.023 0.071 

DiCiccio-Roman0 2 [0.204, 0.6901 1.306 0.072 0.068 

DiCiccio-Roman0 3 [0.165, 0.6901 1.104 0.043 0.068 

DiCiccio-Roman0 4 [0.182, 0.6871 . 1.173 0.057 0.066 

Percentile IO.241, 0.6871 1.574 0.101 0.070 

BC [P,,=O.208] IO.265, 0.7741 2.410 0.142 0.025 

BG [0.290, 0.9591 4.356 0.163 0.001 

Bootstrap-t 10.239, 0.7181 1.726 0.101 0.045 

I Outcome 2: T  = 61.0 and ST > 0 I 

Siegmund 

Standard 

Interval 

10.130, 0.5901 

(0.121, 0.5421 

R/L Ratio 

1.284 

1.000 

PL pu 

0.045 0.038 

0.039 0.082 

DiCiccio-Roman0 1 [0.127, 0.6871 0.951 0.023 0.071 

DiCiccio-Roman0 2 IO.204, 0.6901 1.306 0.072 0.068 

DiCiccio-Roman0 3 [O-165, 0.6901 1.104 0.043 0.068 

DiCiccio-Roman0 4 (0.182, 0.6871 1.173 0.057 0.066 

Percentile [0.167, 0.6461 1.917 0.083 0.014 

BC [&,=0.180] IO.197, 0.6951 2.713 0.121 0.004 

BC, IO.229, 0.8841 5.391 0.171 0.000 

I Bootstrap-t I f 0.164, 0.5841 1.509 0.080 0.041 
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A.4 Situation 2, B=5,000 using the unbiased estimator, cont. 

Outcome 3: T  > m and S, = 36.0 

Interval R/L Ratio PL RJ 

Siegmund jO.080, 0.3801 1.355 0.051 0.044 

Standard [0.070, 0.3441 1.000 0.043 0.091 

DiCiccio-Roman0 1 (0.089, 0.3701 I.378 0.065 0.052 

DiCiccio-Roman0 2 10.056, 0.3721 1.089 0.034 0.053 

DiCiccio-Roman0 3 [0.092, 0.3671 1.387 0.065 0.058 

DiCiccic-Roman0 4 (0.053, 0.3791 1.110 0.032 0.045 

Percentile jO.059, 0.466) 1.739 0.033 b.003 

BC [&=0.255] [0.094, 0.6351 3.756 0.062 0.000 

BG 10.120, 0.6511 5.050 0.111 0.000 

Bootstrap-t 10.083, 0.356) 1.198 0.051 0.074 

Outcome 4: T  > m and Sm = 28.8 

Interval R/L Ratio PL pu 

Siegmund [0.030, 0.3301 1.207 0.034 0.061 

Standard [0.029, 0.3031 1.000 0.034 0.106 

DiCiccio-Roman0 1 10.048, 0.3031 1.160 0.045 0.103 

DiCiccio-Roman0 2 10.048, 0.3521 1.579 0.046 0.032 

DiCiccio-Roman0 3 /0.047,0.327] 1.357 0.045 0.057 

DiCiccio-Roman0 4 [0.049,0.329] 1.396 0.045 0.057 

Percentile [0.024, 0.4131 1.747 0.026 0.003 

BC [&,=0.319) [0.070,0.624] 4.769 0.072 0.000 

BG I0.096, 0.4251 3.726 0.129 0.003 

Bootstrap-t (0.033, 0.3071 1.068 0.032 0.092 
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