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ABSTRACT 
. 

Following some recent works of Witten, we explore topological non-linear 

sigma models (TSM). W e construct 2-D topological gravity which is then coupled 

to the TSM resulting in a topological bosonic string theory. This theory has 

a nontachyonic vacuum and can be formulated on any even dimensional target 

manifold which admits some non-trivial topology. It is then shown that the metric 

independence of the target manifold can not be maintained at the quantum level. 

Quantum consistency at the one loop level of the sigma model requires that the 

Ricci scalar vanishes. 
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1. Introduction 

In the beginning of this year, Witten wrote a series of papers describing the 

construction of topological quantum field theories (TQFT). “I “I These are quan- 

tum field theories whose classical observables are topological invariants. Thus, 

in some sense, these TQFT’s represent a phase of quantum field theories where 

general covariance is unbroken. 12’ Witten then refers to the massless graviton as 

the Goldstone boson of general covariance. We have that the graviton is the fluc- 

tuation about a particular background metric (usually, Minkowski space). In the 

standard electroweak model considerations of renormalizability also require that 

the theory first be constructed in a gauge invariant symmetric phase. Perhaps, 

then, it is fruitful to formulate a theory in a phase of unbroken general covariance 

and then find a mechanism for the spontaneous breaking of this symmetry with 

the consequent generation of a graviton and thus local gravity. This may provide 
. 

a nice way to maintain renormalizability and unitarity in a quantum theory of 

gravity and was a major motivation for our work. 

In this paper we investigate a two dimensional nonlinear sigma model in a 

phase of unbroken general covariance. There has been recent speculation that 

such a nonlinear sigma model may describe string theory above the Hagedorn 

temperature!” This would be a topological string theory; i.e. a string theory 

where only world sheet instantons are physical states. Following the suggestions 

of Witten in ref. [l], we have suceeded in constructing such a sigma model 

without a critical dimension and with a non-tachyonic vacuum. Unfortunately, 

as in ref. [l] we must still require that the target manifold be symplectic. We 

also find, somewhat surprisingly, that consistent BRST quantization requires that 

the target manifold have a vanishing Ricci scalar. It thus appears impossible to 

quantum mechanically maintain the theory without a metric dependence. This 

constraint arises, as in string theory, by requiring that the world sheet scale 

invariance not be violated by quantum fluctuations. 

Our construction follows the one we used in ref. [4] where it was shown that 
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Witten’s TQFT’s of ref. [2] could be derived using a simple two stage gauge fix- 

ing procedure. The key ingredient in formulating a topological nonlinear sigma 

model was the construction of two-dimensional topological gravity. This was 

attempted without complete success in ref. [l]. The incorporation of topologi- 

cal 2-D gravity was essential, for this system cancels the central charge due to 

the reparametrization ghosts of the two dimensional metric. It is then straight- 

forward to add a topological matter Lagrangian (as given in ref. [l]) with a 

vanishing central charge. This is possible because the ghosts one introduces to 

project onto topological states (i.e. world sheet instantons) have a central charge 

which just cancels that of the matter fields. 

In section 2, we will describe the details of the construction of the 2-D topo- 

logical gravity. In section 3, we will review Witten’s topological nonlinear sigma 

model and its coupling to topological gravity. We will then, in section 4, discuss 

1 the one loop conformal invariance of this theory. Section 5 will be devoted to the 

possible observables. 

2. Topological Gravity in 2-D 

Following the procedure of ref. [4] we begin with a topological invariant as 

the action. In 2-D gravity the obvious choice is the Euler number: 

IO = 
I 

d2afiRt2), (2-l) 

where g is the determinant of the metric and Rc2) is the 2-D Ricci scalar. This 

action is clearly invariant under general coordinate transformations, 6g,p = 

D&p + D&x, and scale transformations, 6g,+ = 2g,@. But it is further 

invariant under 

hap = &p(4, (2.2) 

where Asp is an arbitrary, differentiable, world sheet symmetric tensor. Under 

the above variation, equation (2.1) changes by a total derivative. It is convenient 

3 



for some calculations to present (2.2) as a transformation of the zweibein: 

be: = ekAi(o), or se: = -erAi (2.3) 

One should note that even though (2.3) has the structure of a local Lorentz 

transformation it is different since for the latter A,b is antisymmetric. 

We will now gauge fix this symmetry using the standard BRST procedure as 

done in [4]. In the first stage we fix part of the symmetry by gauge fixing the 

Ricci scalar, Rc2). We introduce anticommuting ghosts +ap and v, and a scalar 

commuting ghost, B, with the following BRST transformations: 

where E is the anticommuting, BRST parameter. 

We then write the gauge fixing and Faddeev-Popov Lagrangians as follows: 

LI = L(GF+FP) = s^[d%d2)], (2.5) 

where 6 = ;c8. Using the transformation of gap, it is straightforward to derive 

the variation of the Ricci scalar: 

iiRt2) = -(Rt2) + 2A)B + 2DaDp@@, (24 

where 8 = $,“, D, is a world sheet covariant derivative and A is the corresponding 

Laplacian. In ref. [l] $&, was taken to be traceless, but for our derivation it 

was necessary that 0#0. Thus, eqn. (2.4) re p resents a larger symmetry. The 

Lagrangian (2.5) then takes the form: 

LI = ,/=j(BR t2) - 2rjD,Dp@ i- 2qA8). (2.7) 

Just as in ref. [4] we now observe that the fZ1 has a remaining ghostly symmetry. 
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The corresponding transformations are: 

sG$‘aa = ;(DaCp + Dpca), 

&B = it’d,, 
(2.8) 

where C, is a commuting vector ghost. The ghostly symmetry of $~~p looks very 

much like reparametrization invariance but with the opposite statistics. 

The next stage is then, obviously, to fix this symmetry. The reparametriza- 

tion invariance allows us to fix $J,P to conformal gauge (just as for the 2-D 

metric). We are thus led to the following gauge fixing Lagrangian: 

~ZI = &v{fi(raB&p+ nAB)}, (2-g) 

where 8~ = 81-t &, and 7‘@  and n are traceless symmetric tensor and scalar 

antighosts, respectively. -They transform as follows: 
. : 

6w7 ap = ieX”P, 
(2.10) 

&Cl = icq5 

It should be kept in mind that XQfi and n are anticommuting ghosts while 7@ 

and 4 are commuting. Then using eqns. (2.9) and (2.10) we get: 

&I =,/37”PD&p + 4AB + nAD&P) 

+ X”“$ap - 8(7”‘$aa + nAB)} 
(2.11) 

Using the equation of motion of the auxiliary field X we can eliminate all of $ap, 

except for its trace 8. Altogether, we get for the 2-D topological gravity the 

following Lagrangian: 

1 =Lo + LI + LII 

=fi{Rt2) + B(R12) - A$) + 2qA8 + 7”PD,C,. 

+ n[ADa(qCa) + eAB]} 

(2.12) 

We note that (2.12) is still reparametrization invariant. Fixing this last symme- 

try is standard and will not be repeated here. In addition, it is easy to verify 
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that (2.12) is classically invariant under a global U(1) “ghost number” sym- 

metry and under global scale transformation. The U(1) charges of the fields 

(eaa,hb,Ca,rl,B, n,7ab, Aab,4) are ( 0, 1, 2, -1, 0, -1, -2, -1, 0) rewec- 
tively, and their conformal dimensions are (-1, 0, -1, 0, 0, 2, 0, 0, 2). 

It was shown in ref. [l] that the algebra (&SE - 6,6,) is closed only upto 

a diffeomorphism generated by -2ivcC”, a local Lorentz transformation with 

a parameter qcA = -~E(P~$J~~@ + iEabD,Cb) and a Weyl resealing by DaCa. 

(In our derivation the scale transformation would not appear.) It is, therefore, 

necessary for the consistency of the theory that there is no anomaly in the con- 

formal symmetry. Obviously, this requirement also follows from the desire that 

the theory be topological. Hence, it is essential that the central charge of the 

Virasoro algebra vanish. Let us then list the contribution to the central charge 

from each of the kinetic t.erms in (2.12) : 

BArj : c=l commuting scalars 

?jA8 : c=-1 anticommuting scalars 

caDP70,p z c = 26 commuting vector and traceless tensor 

If we add to the above the central charge from the metric reparametrization 

ghosts we get a complete cancellation! There is no magic here. Since $,a~ and 

gap have the same gauge symmetry but opposite statistics, we expected that the 

contribution to the central charge from all of the ghosts would cancel. 
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3. Topological Sigma Models 

3.1. ON FLAT WORLD SHEETS 

In this section we review Witten’s topological sigma model (TSM) on flat two 

dimensional world sheets!‘lThe distinguishing property of these models is their 

BRST-like fermionic symmetry. This invariance indicates that the corresponding 

action is a BRST gauge fixed version of an action with a local symmetry. A sigma 

model is a theory of maps from a Riemann surface C to a Riemann manifold M 

expressed in terms of u;(a), the coordinates of M where i=l,...D and Q is a point 

on C. We, therefore, want to construct a TSM which is invariant under arbitrary 

local deformations of ui : 6ui = 0’(o). 

In analogy with the construction of the Lagrangian for Witten’s gauge fixed 

TQFT action,“‘we look for a topologically invariant action. Having in mind a 

world sheet without boundaries, we have to disregard actions which are world 

sheet total derivatives. We are then led to consider the following topological 

action: 

IO = d2aea’ Jijaauiap”’ = 
/ / 

J (3-l) 
T 

where Jij is the almost complex structure of the manifold M obeying Ji Jt = -6:; 

J is the associated two form J = a J;jduiAduj which we take to be closed dJ = 0, 

and T is the image of C in M. The condition, dJ = 0, which guarantees the topo- 

logical nature of (3.1) means that only symplectic manifolds will be considered. 

In ref.[l] the more general case of almost complex manifolds is presented, but 

even there eventually only the symplectic case is related to physical systems. 

Moreover, as will be clarified in section 4, the condition dJ = 0 is required to 

maintain conformal symmetry at the quantum level. 

We proceed now to the BRST-gauge fixing of the action (3.1), following 

the procedure developed in ref. [4]. Th ere, we fixed the gauge configurations 

to be (anti) self-dual, namely (anti) instantons Fap + kap = 0. In complete 
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analogy we want to fix the sigma model configurations to be self dual (world 

sheet instantons), namely 

aaui + cfJfi?pj = 0. (3-2) 

This is exactly Witten’s construction of the TSM action. The gauge fixing plus 

Faddeev Popov Lagrangian is 

l =  &F+FjD) = z [$(daUi + c~J;i3puj - iHi)], 
i8 (3.3) 

where pg is a self-dual anticommuting ghost (@ = c; J{pp) and Hi is a self-dual, 

commuting, auxiliary ghost. The BRST transformations of the various fields were 

constructed in ref. [l] in such a way that the closure of the algebra (Q2 = 0), 

self-duality, and covariance under reparametrization of the ui were assured. The 

resulting transformations are: 

. .> &ui = iqi, 

soxi = 0, 

where 60 denotes the variation on a flat world-sheet and Pik, Rijkl are the target 

manifold Christoffel connection and Riemann tensor, respectively. Indeed, as 

was shown in ref. [l], f or a Kahler manifold (i.e dJ = 0) there are two fermionic 

symmetries generated by QR and QL. In this work we discuss only the case where 

the two anticommuting symmetry parameters are taken to be the same. Inserting 

the above transformation (3.4) into the Lagrangian (3.3) and eliminating the 

auxiliary field, Hi, one gets: 

I= 
/ 

d2a[ i(gijaacL’LJau’ + cap Jijdau’dpu’) - ipqaaXi - ~XkXz~qpa~Rk~im]. 

(34 
It should be noted that unlike the case of the Yang-Mills TQFT”‘, the gauge fixed 

action (3.5) d oes not possess a further ghost symmetry. The reason being that 
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we have an equal number of symmetry parameters and degrees of freedom which 

were all fixed in (3.3). As was pointed out above, the physical configurations of 

the TSM are the world-sheet instantons. The BRST charge which annihilates 

the physical states is derived from the current: 

Ja = gik(aaU’ + cP, J~a,lLi)xk. P-6) 

Therefore, only the mappings from C to M which admit instantons (3.2) are 

relevant. This question of classifying the world sheet instantons was addressed 

in ref. [5]. H ere we want to only review some of the results: (i) The Manifold M 

must have, obviously, some non-trivial topology and more precisely zr(M) # 0 

or 7rz(M) # 0. (ii) D enoting by Nh the homotopy classes of h-genus Riemann 

surfaces, then No = 7r2 (M) ; and if M is simply connected, namely ?rr(M) = 0, . 
then Nh = 7r2(M). (iii) F or a simply connected manifold with non-trivial 7rz(M), 

it follows from Hurewicz’ theorem that H2 (M) # 0, indeed 7r~g(M) N Hz(M). 

Thus, there exists on M some closed forms which are not exact. Recall that 

one such form was our starting point in the construction of the TSM action. In 

section 4 a further constraints on the possible target manifolds will emerge from 

the requirement of quantum conformal symmetry. 

3.2. COUPLING THE TOPOLOGICAL SIGMA MODEL TO 2-D GRAVITY 

The coupling of the TSM to the gauge-fixed 2-D gravity that was described 

in section 2 follows the derivation of ref. [l]. We couple the TSM to the minimal 

gravity multiplet eaa,$,b and C”. 

Since the BRST algebra in the pure gravity case has Q2 = 0 only up to an 

infinitesimal diffeomorphism and local Lorentz transformation, we require the 

same condition also for the coupled system. The BRST transformations which 
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fulfil this conditions are 

iiua = &+‘, 

6x’ = ECadaui, 

&ipq = So@, P-7) 

6Hi = hoH; + ic(CbDbp’a + +bpbi), 

where the transformations 60 are given in eqn. (3.4) and A in section 2. To 

construct the Lagrangian we start with 

L: = &GF+JjTj,) = ;d[p;(D,u’ + c;JfDbuj - ;H:)], (3.8) 

which is just eqn (3.3) on a curved world sheet. Substituting the transformation 

laws (3.7) and eliminating the auxiliary fields we get: ’ 

I = . d2a det e[ i(g;jaauiaad + Eap Jij8auidpui) 

- iprD,x’ - ~Xk$paipamRlkim 

- ;ep;D,u’ 

;~abpai&cdD,cd i- fp;cbDbP6] 

(3-g) 

The first two lines are just eqn. (3.5) on a non-flat world sheet; the third line 

emerges from the transformation of eaa in the covariant derivative and det e, and 

the last line is generated by the modification of the transformations (3.7). Note 

the difference between this Lagrangian and the one of ref. [l]; here only the trace 

of $,” = 0 appears due to the equation of motion of X,p eqn.(2.11). The physical 

states for the coupled TSM are determined by the TSM part of the BRST charge 

whose associated current has now the form: 

J, = gik[(DbUi + E;J;DcUi)(b,bXk + &Cb - ipkbca) 

- ~fi(p~xk - ~rbcpbipkcEadCd) + ~P~C.T:,Xlprnb]* 

Thus again the BRST charge is projecting on to instanton configurations. 
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4. One Loop Conformal Invariance 

In ref. [l] it was shown that for a flat target manifold the central charge of the 

topological sigma model vanishes. It still remains to be seen what constraints, 

if any, have to be placed on the target manifold if the world sheet conformal 

invariance is to be maintained quantum mechanically. This question will be 

addressed in this section. 

We recall that in a general conformal field theory we have for the expectation 

value of the operator product expansion of the stress tensor: 

P++ w++ (4) = (z C/i)‘. (4.1) 

Only the TSM contributions to T++ are considered since we already showed 

that 2-D gravity contributes c = 0 and has no spacetime dependence. We now 

compute the central charge to one loop order in the sigma model. Following the 

work of ref. [6], we expand the background metric in normal coordinates,ti: 

daUi =aaUg + Oat’ + ~R:UELE’aau$ + earn, 

gijp’+D+xj =(&j + ~Rik~j~kEz)P’;a+Xj + ~Rijk~~+U1(kp$X' + m-s 

(4.2) 

where ug is the background field which satisfy the equation of motion. We make 

use of the following operator products 
. . . . 

~+uW+‘llj(4 - cz-sl,2, P)(4X+4 - czrw, 

nisi = i6’jA,(, - w), 
--a! 

Ian = lim - 
f--r0 27rc 

For the bosonic stress tensor of the sigma model, we then get straightforwardly: 

with (Y the renormalized coupling constant and R the Ricci scalar of the target 
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manifold . For the p - x ghosts we get the following contribution: 

We thus see that for conformal invariance at one loop level to be maintained quan- 

tum mechanically, we must have R = 0. It is important to point out again that 

the spacetime dimensionality drops out. The curvature constraint is a curious 

result because we know that T++ is a BRST commutator. This indicates that 

the BRST algebra does not close unless the background Ricci scalar vanishes. 

There will also be a possible constraint on the Ricci tensor from the metric beta 

function, but it will be multiplying a BRST commutator. We will thus have a di- 

vergent quantity multiplying a BRST commutator. This is somewhat ambiguous, 

but we believe that such a term may be neglected without loss of consistency. 

. What are we to make of all of this ? We began with a theory which was 

independent of the metric on the target manifold. The introduction of the metric 

arose in the gauge fixing procedure, since we needed a way to define an inner 

product. We must now conclude that the consistent BRST quantization of the 

topological sigma model requires that the target manifold has a vanishing Ricci 

scalar. 

It should be noted that we neglected the contribution of the almost complex 

structure, Jij, to the central charge correction, since it vanishes when dJ = 0. 

This is, of course, as expected since J only appears as a topological term. 
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5. Physical States 

We have constructed in the previous sections a nonlinear sigma model with- 

out a critical dimension but with the constraint that the target manifold has a 

vanishing Ricci scalar. This was a theory of world sheet instantons. We must 

now investigate the possible physical states. 

Firstly, it is simple to show that the vacuum state is not tachyonic. Let us 

reconsider the central charge cancellation in the world sheet Virasoro algebra. 

We write the algebras for the bosons, u;(z), and the spacetime ghosts, p - x: 

[Lg),LiB)] =(?72 - n)LffY, + %(m3 - m)&+n, 
(5.1) 

[&d, Lp] q m - n)Lp+ln + tA(px)(m)6,+,. 

. 
Here, A(PX)( m is the ghost anomaly term which is given by: ) 

Atpx)(m) = -$[(12J2 - 125 + 2)m3 - 2m] (5.2) 

where J is the conformal spin of p (and x has spin 1 - J). Thus, the cubic 

and linear terms in the anomaly cancel exactly. Then, LO will annihilate the 

vacuum. This is precisely the statement that the intercept (i.e. the normal 

ordering constant for LO, usually denoted by a) is zero. Typically, in string 

theory we require a non-vanishing intercept, a, so that the linear term in m 

is cancelled. This is the origin of the usual tachyonic vacuum. It is easy to 

check that since the topological Q-BRST (3.6) is 1 inear in the field ui, it cannot 

annihilate any of the ordinary oscillation modes of the bosonic string; therefore, 

these modes are not physical. 

Consequently, this theory has a degenerate world sheet instanton vacuum. 

What are the observables? Such a theory certainly probes quantities like the 

second cohmology group of the target manifold, as discussed earlier. Indeed, 
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Witten has shown that the global observables are of the form: I” 

W/47) = 
/ 

oy 

7 

where (5.3) 

and A is a closed form and 7 is a homology a-cycle on the world sheet. This can 

, of course, be rewritten as an integral over the target manifold. 

In the previous section we showed that one loop conformal invariance requires 

the vanishing of the Ricci scalar on the target manifold. We then expect that 

upon computing the partition function we will find states which are not only of 

topological origin. This will be interesting to see and will be ‘addressed in future 

work. 

6. Conclusion 

We have now completed a tour through the strange world of topological 

nonlinear sigma models. Clearly, much work remains to be done, but some inter- 

esting results have already appeared. We have seen how such theories naturally 

have nontachyonic vacua without the need for world sheet supersymmetry. They 

also require no critical dimension. These were expected consequences from the 

topological origin of the theory where only world-sheet instantons are allowed 

physical states. More interestingly, we have seen how the topological symmetry 

of the target manifold could not be maintained quantum mechanically. To one 

loop in the sigma model the target manifold had to have a vanishing Ricci scalar. 

We also needed manifolds that would have some nontrivial topology, in particu- 

lar, Hz(M)#O. Th e most general solution for the target manifold is a compact 

Ricci flat Kahler manifold. 

This brings us back to the question of whether these theories may be describ- 

ing a high temperature phase of string theory!‘] If so, a possible order parameter 
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could be the three form, H, given by the exterior derivative of the almost complex 

structure, J. In the symmetric phase H would be zero so that our initial La- 

grangian (3.1) would be a topological invariant. At some critical temperature H 

would get an expectation value and the topological symmetry would be broken. 

Finite temperature calculations of the sigma model beta functions might lead to 

a potential for H with a nonzero expectation value. It would be interesting to 

test the above ideas quantitatively. 

Finally, we would like to mention that it seems possible to extend this work 

to an arbitrary topological theory of extended objects. There are some subtleties 

that must be overcome. The theory of 4-D topological gravity of ref.[2] would 

have to be completed and generalized. Some of the results in this paper and in 

ref. [4] may be of some help in this respect. These would be theories that probe 

the higher even homotopy groups of the chosen target manifolds. 
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