
SLAC - PUB - 4660 

June 1988 
(4 

A Final Focus System for Flat-Beam Linear Colliders* 

KATSUNOBU OIDE 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94309 

. 
ABSTRACT 

A final focus system is designed for a flat-beam linear collider with the pa- 

rameters suggested by R. B. Palmer. A method of chromaticity correction which 

uses one family of sextupole is realized so as to correct both horizontal and 

vertical chromaticities simultaneously. A computer code has been written to find 

the solution, and a result with a momentum acceptance twice that of Palmer’s 

requirement is obtained. It is shown that the designed optics is almost at the limit 

of focusing which is given by the synchrotron radiation in the final quadrupole. 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515 



1. Introduction 

Among numbers of designs of future linear colliders, the flat-beam collider 

proposed by R. B. Palmer”’ seems to have a great feasibility with conventional 

technologies. He has shown that the flat beam scheme has a lot of advantages 

in various parts of the collider including the final focus system. In this paper I 

will present a design of a final focus optics which satisfies the following Palmer’s 

requirements: 

Center-of-mass energy ECM = 1 TeV, 

Beta function at collision point pi = 14 mm, 4 = 43 pm, 

Normalized emittance &Nx = 2.5 x10-' m, ‘&I$, =2.5 x lo-* m, 

Momentum acceptance [~/PI L 0.15 %, 

under the following restrictions: 

Pole-tip field of the final quadrupole Bo< 1.4 T, 

Length from the face of the final quad to the collision point e* = 0.4 m, 

Quadrupole half aperture a 2 100 pm. 

These values correspond to the 17 mm wavelength case of Ref. 1. It is expected 

to be possible to achieve these values using a scaling law from the SLC design”’ 

or the one-dimensional system, Is1 but this sti 11 needs verification by a detailed 

optics design. In particular, the synchrotron radiation from quadrupoles and 

bends requires a study with specific optics parameters, this yields a serious limit 

on focusing as we will see in Section 4. 
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2. Chromaticity-correction scheme 

The optics designed here uses a chromaticity-correction scheme with sextu- 

poles and bends. For the flat beam linear collider, where the ratio &/P,: is 

larger than 300, the vertical chromaticity is much larger than the horizontal 

one, so it is natural to use one family of sextupoles which mainly contributes 

to correct the vertical chromaticity. Decreasing the number of sextupoles in the 

system has the merit of making the total length of the system shorter and the 

residual geometric nonlinear aberration smaller. However, in the actual optics 

the horizontal chromaticity still needs a weak correction, and there is a special 

configuration of optics to correct both x and y chromaticities simultaneously by 

one family of sextupole as described below. 

Now let us consider a simplified model of a final focus system as shown in 

Fig. 1. 

Here we take account of the chromatic effect only from the final quadrupole 

and the sextupole, and ignore the chromaticity from the other parts of the system. 

Actually we have two sextupoles in the system, but their chromatic effects are 

equivalent owing to the -I transformation between them, and it enables us to 

represent them by one sextupole in this model. We choose the Twiss parameters 

at the entrance sextupole as cr: = crs = 0 and /3 = /3s, and at the exit collision 

point as cy* = 0 and /3 = @*. The transfer matrix from the entrance to the exit 

is written for the design particle as 

MO = , (2.1) 

where p is the phase advance between the sextupole and the collision point. We 

introduce a parameter x to represent momentum deviation as 

AP/P 
‘- WAllpIp ’ P-2) 
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which enables us to write the focusing strength of the final quad and the focusing 

component of the sextupole as 

k = (1 - x)ko and ks = xk’v , (2.3) 

where ko is the strength of the quadrupole for the design momentum, and k’ and 

Q are the strength of the sextupole and the horizontal dispersion at the sextupole, 

respectively. Thus we obtain the transfer matrix for off-momentum particles in 

terms of x: 

-=(: :) (:k :) [(A :) (-i. :)]-lMo(Tis :) 

1+ xkol = 
xko 

We can now calculate the off-momentum beta function at the collision point using 

(2.1) and (2.4): 

P* = @I Ps + Mf2 IPs 

=tG{[( l+xko~)cos~+x~sin~- xk’Pst7 ((I+ xkd) sinp - x~cosp)]~ 

+ [(I+ xkoe) sinp - x[cosp]2} , 

P-5) 
where we have defined the parameter 

E - koe2/P; , (2.6) 

which represents the amount of the chromaticity of the system. It is about 

1.5 x lo4 for vertical and 300 for horizontal in our design. The first order of x in 

(2.5) is 

,f?* = &J (1 + 2xkot - xk’/?,q sin2p) , P-7) 

where the second term is always small because kol is order of unity. In the third 

term the magnitude of k’psv will be set equal to 6 as shown later, therefore it is 
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much larger than unity, so that sin 21.1 must be close to zero to cancel the linear 

dependence of p* on x. This is satisfied by choosing the phase advance p as 

near (N + t)z or Nz, where N is an integer. We call them as Mode I and 

Mode II, respectively, and will see these two modes have different effects on the 

chromaticity correction. 

The Mode I (p k: (N + 3) ) z correction is achieved by setting 

k&sinp - 6~0s~ = 0 , P-8) 

which makes the momentum dependence of Ml2 zero. By substituting (2.8) into 

(2.5), we find that all the chromatic effects of p* disappear when we set the 

strength of the sextupole to be 

k’psv = sgn(E)dE2 + kze2 = E . (2-g) 

On the other hand, the Mode II (cl = Nz) correction is done by 

sinp=O . 

We substitute (2.10) into (2.5) and using E >> k& then obtain 

p* = ,9;(1+ x’E(2k’Psq + E) + x4t2(k’Pss)‘> - 

(2.10) 

(2.11) 

In the Mode II the chromatic effect on beta function is not completely can- 

celled, but there appears a momentum region where /3* is smaller than the nom- 

inal value /36 as shown in Fig. 2. This region is expressed as 

’ 
2 < 2k’Psrl+ t 

- - E(Wsr1)2 ’ 
(2.12) 
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and the size of this region becomes its maximum when we choose the sextupole 

strength as 

k’Psrl= -4 , (2.13) 

which has the same amplitude but opposite sign as the Mode I correction. Thus 

the maximum momentum acceptance of Mode II is given by 

(2.14) 

The fact that these two correction modes have the opposite sign to each 

other makes the one-family-sextupole chromaticity correction possible for both z 

and y planes simultaneously. Because the momentum acceptance is given by the 

Mode II as Eq. (2.14), and Er is much larger than & in the flat-beam collider, 

we should apply Mode II to the horizontal correction and Mode I to the vertical 

to get a large momentum acceptance. The conditions (2.9) and (2.13) are si- 

multaneously satisfied by setting the ratio of the beta functions at the sextupole 

as 

which is about 50 in our design. Since the momentum acceptance of the system is 

determined only by the horizontal chromaticity, a large horizontal/vertical ratio 

of ,8*‘s makes the chromaticity correction easier. 



3. Finding the solution 

The actual method of finding the solution I used here did not explicitly con- 

tain the conditions of the single-family-sextupole correction described in the pre- 

vious section. The reason being that we should include higher order chromatic 

effects that were ignored in the simplified model, from the doublet configura- 

tion of the final quadrupoles, the thickness of the lenses, the other parts in the 

system, and so on. Instead of making an analytic formula with these effects, I 

took a practical way to find the solution, but the obtained result clearly showed 

the characteristics of the single-family-sextupole correction scheme. This method 

consisted of two steps. In the first step, I picked five points +(j = -2..2) in 

the desired momentum acceptance 6 with an equal separation, namely, 

APj -36 --- 
P 2’ 

j = -2..2 . 

For each Apj/p I calculated the linear optics independently and I ignored the 

geometric nonlinearity from the sextupoles in this step. Then I searched an optics 

which would satisfy the following conditions simultaneously: 

P;(y I pcTy, AP “I(, = 0) = 0 , 

where j runs from -2 to 2. I made a computer code, named SAD/FFS,“l which 

applied a multi-dimension Newton’s method on finding the solution. Figure 3 

shows the final focus optics obtained by this method. I took the strength of 

quadrupoles QAl-3 and QCl-5, the length of the straight sections LAl-3 and 

LCl-5, and the strength of the sextupole SD1 as the variables. During the solu- 

tion search the optics between two sextupoles was kept as a -I transformation 

to cancel the geometric nonlinearity. The bending angle, the total length of the 
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system, and the mirror symmetry of the sextupole section were also preserved. 

The number of variables was chosen to be larger than the number of the imposed 

conditions. We chose the beta functions for the incoming beam to be pZ = 11.6 m 

and ,& = 5.8 m, those are near the values in the linac of Palmer’s design. Thus 

the demagnification ratio became l/29 for horizontal and l/370 for vertical. 

After a solution was found in the first step, I tested it in the second step 

by a particle-tracking simulation which took account of the nonlinearity of the 

sextupoles and the synchrotron radiation in the quadrupoles and bends. When 

this check failed, I changed the configurations bending angle etc., then backed 

up to the first step. After iterations a few I reached to the result of Fig. 3. The 

optics parameters are listed in Table 1. 

Although this method has not explicitly used the conditions obtained in the 

previous section, the result has clear evidences of the single-family-sextupole 

correction. For an example the chromaticities are & = 328 and eY = 14,800, 

those are nearly equal to the focusing components of the sextupole k’/3,q = 347 

and k’&q = 15,400, respectively. Here we have calculated the values of E’s using 

6 = s Kpds, where K is defined as K - k/to with the length of quadrupole 

.&-J, which is a generalization of (2.6) for thick lenses. The phase advances are 

resulted as pZ kc 27r and par = $r, which correspond to the Mode II and the 

Mode I correction, respectively. 

Figure 4 shows the momentum dependence of the obtained beta functions at 

the collision point. The horizontal beta behaves as a quartic function due to the 

Mode II correction described by (2.11). We also see the vertical beta has only 

higher order components than quartic owing to the Mode I correction, which 

cancels all the terms less than quartic as we have seen in Section 2. The achieved 

momentum acceptance is Ap/p 5 0.3%, which is twice better than Palmer’s 

requirement and agrees with the expectation by Eq. (2.14) if we substitute the 

value of the horizontal chromaticity E = tZ = 328. 
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4. Synchrotron radiation limit of focusing 

Synchrotron radiation, especially in the final quadrupole, seriously limits the 

focusing of the beam. The incoherent energy spread generated by the synchrotron 

radiation in the final quadrupole changes the final spot size due to 

effect of the final quadrupole itself. The vertical beam size of 

collider is almost at this limit. The minimum possible beam size 

almost only by the normalized emittance ~~~ as 151 

the chromatic 

the flat-beam 

is determined 

, P-1) 

where re and A, is the classical electron radius and Compton wavelength, respect- 

ively. Equation (4.1) contains a dimensionless function F, which is a function of 

the length J!Q and the strength K - k/lo of the quadrupole and J!*. This has the 

form as shown in Ref. 5: 

dm? 
= / (sin4+fil*cos4)’ ](sin4’+fit!*cos4’ 2d4 . (4’2) 

0 0 

These values for our system give F = 7.2, and the minimum beam size calculated 

by Eq. (4.1) is 1.3 nm, which is about 30 % larger than Palmer’s requirement. The 

dependence of the minimum beam size on F is 1/7th power, so that one cannot 

expect a big improve by changing the configuration of the final quadrupole. 

We have a little more complication in the actual system. The minimum beam 

size (4.1) does not include the radiation caused by the horizontal focusing, which 

especially in the second final quadrupole makes an energy spread comparable with 

the final quadrupole. Besides, the vertical distribution of the beam becomes non- 

Gaussian, because the expected number of photons emitted per electron in the 

final quadrupole is very small; hl = 0.35 for our design. Instead of making a 
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precise expression which includes these effects, I present here a numerical result 

in Fig. 5 obtained by the multi-particle tracking simulation. 

In this simulation a random number series which has the spectrum of the 

synchrotron radiation[61 is used, and the effective vertical beam size is calculated 

from the luminosity of the simulated beam collision in the (5,~) plane at the 

collision point. This result has the same characteristics as the estimate we have 

seen in this section. The effective beam size does not depends on .f!*, when we 

changed the thickness of the final two quadrupoles proportionally to !* and the 

strength k of the final quadrupole becomes proportional to the inverse of e*. This 

is a consequence from (4.1), which does not depend on the longitudinal scale of 

the system. The minimum effective vertical beam size for our parameters is about 

1.1 nm, which is not far-from the value given by Eq. (4.1). We see the effective 

vertical beam size of Palmer’s requirement is almost same as the limit of the 

focusing. 

In the sextupole-bending chromaticity-correction scheme, the synchrotron 

radiation in the bending magnets also limits the focusing. The energy spread 

made in the bends between the sextupole and the final quadrupole affects to 

the vertical focusing in the same way as the radiation in the quadrupoles. This 

effect depends on the bending angle; if we increase it, the energy spread makes 

the final beam size larger, on the contrary if we decrease the bending angle, the 

sextupoles become stronger and the residual geometric nonlinearity also causes 

the final spot size to increase. 

Figure 6 shows the dependence of the beam size on the total bending angle 

of the system, where the product of the bending angle and the strength of the 

sextupole is kept constant. There we find an optimum point for the bending 

angle near 1 mrad, which we adopted in this design. 

Figure 6 also shows the increase of the horizontal beam size, which is caused 

by the horizontal emittance growth in the bends as discussed in Ref. 3. It is 

not so difficult to choose the bending angle small enough to make the emittance 
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growth negligible, especially for the flat-beam linear collider whose horizontal 

emittance is not so small. We see in Fig. 6 the limit is about 4 mrad for our 

design. 
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5. Conclusion 

We have studied a design of a final focus system for flat-beam colliders. 

We have seen that the chromaticity correction is possible using a single-family- 

sextupole correction scheme. This design has reached a “final” focusing limit due 

to the quantized synchrotron radiation in the final quadrupole. Further studies of 

this approach to a final focus design are required with emphasis on the required 

tolerance on various machine errors. 
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TABLE CAPTIONS 

1. The list of parameters of the final focus system. This is written in SAD 

format: The keywords DRIFT, BEND, QUAD, and SEXT specify the type 

of the element. The keyword ‘L=’ is followed by the length of the element in 

meters. ‘ANGLE=’ specifies the bending angle in radians. ‘Kl=’ and ‘K2=’ 

are the strength of quadrupoles and sextupoles, namely $ and 9, 

respectively. Positive signs mean horizontal focusing. The alignment of 

these elements are specified by the ‘LINE’ command. The beam parameters 

at the entrance is written in the ‘ENTRANCE’ element. 



DRIFT LA1 
LA2 
LA3 
LS2 
LN2 
LNI 
LB0 
LX6 
LC5 
LC4 
LC3 
LX2 
LX1 

BEND BOI 
B02 

qUAD qAi 
qA2 
qA3 
qN3 
W2 

. WI 
w 
w4 
w3 
w2 
WI 

SEXT SD1 
MARK ENTRANCE=(ALPHAX=O BETAX=II.6 ALPHAY=O BETAY=5.8 

EMIX=2.5D-12 EMIY=2.5D-I4 DP=0.003); 
LINE FFS =(ENTRANCE 

B02 LA1 qA1 LA2 qA2 LA3 qA3 
LS2 SD1 SD1 SD1 SD1 LB2 qN3 
LNI qN2 LB0 BOI LB0 qN1 qNi 
LB0 BOI LB0 qN2 LNI qN3 LN2 
SD1 SD1 SD1 SD1 LS2 qA3 LA3 
qA2 LA2 qA1 LA1 B02 LX6 qC5 
LC5 qc4 LC4 qc3 LC3 qc2 LX2 
qc1 LX1 ); 

=(L= 6.9376806) 
=(L= 42.3379557) 
=(L= 0.6672333) 
=(L= 0.1000000) 
=(L= 18.2306990) 
=(L= 3.0470206) 
=(L= 0.1000000) 
=(L= 0.1000000) 
=(L= 10.1555125) 
=(L= 68.1836864) 
=(L= 13.2796225) 
=(L= 0.0400000) 
=(L= 0.4000000); 
=(L= 30.0000000 ANGLE= 0.0003300) 
=(L= 30.0000000 ANGLE= 0.0002600); 
=(L= 2.0000000 Kl= 0.0362053) 
=(L= 2.0000000 Kl= -0.0642490) 
=(L= 2.0000000 Ki= 0.0519296) 
=(L= 2.0000000 Kl= -0.0787193) 
=(L= 2.0000000 Kl= 0.0911798) 
=(L= 1.0000000 Kl= -0.0199090) 
=(L= 2.0000000 Kl= -0.0608614) 
=(L= 2.0000000 Kl= 0.0741367) 
=(L= 2.0000000 Kl= -0.0249200) 
=(L= 0.4000000 Kl= 1.9285500) 
=(L= 0.4000000 Ki= -3.4161196); 
=(L= 2.0000000 K2= -70.0000000); 

Table 1 



FIGURE CAPTIONS 

1. A simplified model for the final focus system. The final quadrupole of 

strength k is located at a distance e from the collision point and a sextupole 

of strength k’ is placed at the entrance of the system. MO is the transfer 

matrix from the sextupole to the collision point for the nominal momentum 

particle. 

2. The beta function behaves as a quartic function when the Mode II correc- 

tion is applied. 

. 

3. The final focus optics obtained by SAD/FFS. The upper figure shows the 

whole system of length 400 m and the lower around the collision point. The 

first character of each element specifies the type of the element as L:drift, 

B:bend, Q:quadrupole, and S:sextupole. The sextupole section has a mirror 

symmetry and the transformation between two sextupoles is -I for both x 

and y planes. 

4. Momentum dependence of the beta functions at the collision point. These 

exhibit the characteristics of the single-family-sextupole correction. 

5. The effective vertical beam size as a function of the nominal beta /3io. This 

result is obtained from multi-particle tracking with 2,000 particles. Three 

cases of e* are plotted, and there are no significant differences among them. 

The thickness of the final two quadrupoles are changed proportionally to 

.!*. The solid line shows the case without the synchrotron radiation in the 

final two quadrupoles. 

6. Vertical and horizontal beam sizes depend on the total bending angle of the 

system. These are also obtained from the tracking simulation. The product 

of the bending angle and the strength of the sextupole k’ is kept constant. 

Two cases with and without the radiation in the bends are shown. 
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