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ABSTRACT 

We introduce a novel operator renormalization group method. This is a new 

and more powerful variant of the t-expansion combining that method with the 

real space renormalization group approach. The aim is to extract infinite volume 

. physics at t + oo from calculations of only a few powers of t. Good results are 

obtained for the 1 + 1 dimensional Iking model. The method readily generalizes 

to higher dimensional spin theories and to a gauge invariant treatment of gauge 

theories. These theories will require greater computational power. 
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1. Introduction 

Despite advances in high speed computing, accurately extracting the physics 

from a lattice theory of gauge fields and fermions remains a problem. One hope 

is that Monte Carlo calculations based upon improved algorithms and run on 

more powerful machines will eventually remedy this situation. It is, however, 

important to ask if there are other ways to obtain information which can com- 

plement the insight one obtains from numerical simulations. In this paper we 

present a method for dealing with Hamiltonian systems which is analytic in 

nature, and which uses the computer primarily as a device for doing algebra. 

The technique we will discuss is, in its conception, a variational calculation; in 

execution, it combines the Hamiltonian real-space renormalization group with 

a scheme for systematically improving a variational calculation to any desired 

level of accuracy. While the Hamiltonian real-space renormalization group (192) 

has been discussed in the literature, and the improvement technique has been 

presented under the name t-expansion: the development of a conceptual and 

. 

computational framework for combining these ideas is new. In the process of 

presenting such a framework we broaden our understanding of the original t- 

expansion and clarify the relation between the new Hamiltonian renormalization 

group and the Euclidean renormalization group of Kadanoff and Wilson .4 We 

also develop a new way of extracting physical quantities which makes no use of 

the Pad4 approximation used in earlier versions of the t-expansion. 

:. : 
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1. TRUNCATION ALGORITHMS 

The Hamiltonian real-space renormalization group method is a variational 

calculation. To see this, consider a wavefunction which depends upon n param- 

eters, [or,..., cy,.J, and compute the expectation value 

E(cYl,...,cY,) = ( a19---, %p~w,...,QrJ 

( 
(1) 

Ql ,"', ~nI%~-,%J 

One can minimize over the CY’S in order to find the best bound on the ground 

state energy which can be obtained using a this class of trial wavefunctions. One 

way to choose a trial wavefunction is to consider a state of the form 

. ICYI,. . . , a,) = c (Yi Ii) (2) i 
where the states 1;) are some subset of a complete set of states. The problem of 

minimizing the function E(crr, . . . , a,) is equivalent to finding the lowest eigen- 

state of the truncated Hamiltonian 

[HI] = PHP+ 

where P is the projection operator 

P = c Ii) (iI 
i 

(3) 

(4 

This rewriting of the variational problem as the problem of diagonalizing a new 

Hamiltonian acting on a reduced number of degrees of freedom is the heart of 

the Hamiltonian real-space renormalization group procedure. One starts with 
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a complete set of states and then eliminates certain linear combinations of the 

initial states in a sequence of steps. The choice of which states to eliminate at 

each step is referred to as the renormalization group algorithm and the mapping 

from the Hamiltonian at step n to a new one at step n + 1 is the renormalization 

group transformation. If one parametrizes the states which one retains these pa- 

rameters can be thought of as the or,. . . , cy, appearing in the generic variational 

wavefunction. 

~.IMPROVING A VARIATIONAL CALCULATION 

Historically there has been no systematic way to improve upon a variational 

calculation. The trial wavefunction is typically not the lowest eigenstate of any 

. simply diagonalizable Hamiltonian; thus, one has no general procedure for set- 

ting up a perturbation expansion about the trial wavefunction which actually 

minimizes the expectation value of the Hamiltonian. One possible solution to 

this problem is the t-expansion. The physical concept behind the t-expansion is 

the observation3 that the quantity 

E(t) = (tilH esHtlll)) 
($+e-Htlti> 

converges to the ground state energy as t + oo for almost any wavefunction I$). 

To exploit this fact in practice, one calculates a finite number of terms in the 

Taylor-series expansion of (5) and then 

limit. 

extrapolates this series to obtain t + 00 

There are two difficulties inherent in the t-expansion. The first is the algebraic 

problem of computing high order terms in the expansion, since there are many 

such terms. The second is the problem of extrapolating the power series so 
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obtained to t + 00. Our approach to the first problem is to use a computer to 

carry out the analytic calculation of the coefficients of the power series for E(t). 

To handle the second question we introduce a new technique for reconstructing 

the large t behavior of physical quantities based upon known analytic properties 

of the function being computed. This extrapolation method yields much greater 

accuracy for fewer terms in the series. In the past we used Pad6 approximants 

to carry out this extrapolation, however the arbitrariness of that procedure for 

low powers of t led us to abandon that approach. 

~.COMBINED METHOD 

In past applications of the t-expansion the state I$) was chosen to be either 

. the strong coupling ground state, for the case of a lattice gauge theory, or a 

mean-field state, for the case of a quantum spin model. For those values of the 

coupling constant for which states of this form provide good approximations to 

the true ground state it is no surprise that one obtains good results for relatively 

few terms in the expansion; however, as we move further away from this region 

of couplings, convergence slows down. One expects the t-expansion to converge 

much faster if one starts with a trial state which has a large overlap with the 

true vacuum state. For this reason we have combined the t-expansion with the 

Hamiltonian real-space renormalization group procedure in order to construct a 

better wavefunction. We use the freedom in the choice of the parameters of the 

renormalization group transformation to improve the accuracy of the calculation. 

This paper reports on the application of this technique to the l+l-dimensional 

Ising model; the results show that the expectation that this procedure will pro- 

duce better results for fewer terms in the expansion is indeed correct. In addition, 

6 



by using the renormalization group, or block-spin, procedure, one eventually ar- 

rives at a simple effective Hamiltonian which describes not only the ground state, 

but also the low-lying excited states of the original system. We exploit this fact 

in the case of the Ising model. Clearly, the Ising model is of interest only as a 

simple system for testing out this new method. 

1.0 UTLINE 

Section 2 presents a brief derivation of the new operator t-expansion. This 

derivation is considerably simpler than the one presented in earlier papers and 

generalizes the results obtained in those papers in a way which allows us to 

use them with variational wavefunctions derived from a series of renormaliza- 

tion group transformations. The explicit application of the operator t-expansion 

formula to the case of the 1+1-Ising model is described in Section 3 and in the 

Appendix. In Section 4 we discuss a method for reconstructing the t + 00 behav- 

ior of physical quantities from a finite power series in t. In section 5 we present 

the results obtained by applying this method to the l+l-Ising model. Finally, 

in Section 6, we discuss the outlook for applying these methods to theories of 

greater interest to particle and condensed matter physics. In particular we dis- 

cuss the generalization of this approach to theories in higher dimensions and to 

those which involve gauge fields and fermions. We will show that by combining 

the operator t-expansion and real-space renormalization group methods one ob- 

tains, for the first time, a way of carrying out truly gauge invariant Hamiltonian 

renormalization group studies of this class of theories. 
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2. Operator t-Expansion 

The quantity, E(t), which appears in equation (1) is the the expectation value 

of the Hamiltonian in a specific state. Taking the expectation value reduces 

our minimization problem to studying the properties of an ordinary function 

of several variables. E(t) is proprotional to the volume and in the limit t + 

00 becomes the true groundstate energy. The simplest way of deriving the t- 

expansion for E(t) is to observe that 

E(t) = -f lnZ(t) 

where 

. z(t) = (tile-tHI+). 

If we define A(t) to be 

A(t) = lnZ(t) 
00 

=ln l+ 
[ 

c 
n=l 

WV $ 
n! 1 )I 

(1) 

(4 

(3) 

then E(t) is obtained by differentiating A(t) with respect to t; To obtain a t- 

expansion for expectation values of other operators, 0, one studies 

a2 
O(t) = - !iE ataj lnZ(t,j)Ij=o. 

where Z(t, j) is defined to be 

(4 

(5) 

Let us now consider a partial reduction of the problem; wherein we study 

the truncation of e -tH to a subspace of the original Hilbert space. This is the 
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problem which arises naturally when we attempt to apply the ideas of the t- 

expansion to a wavefunction which is constructed by performing a sequence of 

renormalization group transformations. In what follows the truncation of an 

operator to a subspace of the original Hilbert space will be indicated by enclosing 

them in double brackets, i.e., o[ I]. F or example we define an operator A(t), which 

acts upon the subspace spanned by the retained states by 

e--A(t) = Ue-Htn. 

The new Hamiltonian acting on this subspace is defined to be 

u(t) = ;A(t). 

(6) 

The formula for the t-expansion of the energy function E(t) is equivalent to a 

linked cluster expansion3- thus it corresponds to a summation over connected 

diagrams. This follows from the fact that the logarithm in Eq. (3) is an extensive 

function of the volume. (The definition of connected depends upon the wavefunc- 

tion $J, but in any wavefunction generated by a block-spin algorithm it will have 

a well-defined meaning.) Disconnected contributions always cancel in Eq.(4) and 

likewise in the operators A(t) and N(t) defined above. Thus, the logarithm of 

Eq. (6) will define A(t) as a sum of connected diagrams. This point is explained 

in the Appendix within the context of the block-spin method described in the 

next section. 
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3. Real-Space Renormalization Group 

The real-space renormalization group (block-spin) method develops a wave- 

function by successive thinning of degrees of freedom. The lattice is divided into 

non-overlapping blocks of sites. The Hilbert space is then thinned by a truncation 

to the same subset of states on each block of sites. The definition of this subset 

involves one or two parameters. An algorithm for fixing these parameters is 

needed to fully define the block-spin procedure. This algorithm is usually based 

on minimizing some variational estimate of the ground-state energy. 

For a l+l dimensional spin-a theory’s simple choice is to divide the space 

into two-site blocks. On each block one then retains only two states, for example 

. Ifi> = cos 13 Itt) + sin fllll> and I-u> + 
lU> = fi 

IU> 

which belong to two different sectors of Hilbert space within the block. The angle 

(1) 

8 is chosen variationally. One can readily calculate the result of this truncation 

for all possible operators on the block. For example 

where, on the right hand side, oZ denotes 

~0~0 +sin8 
fi O= (2) 

an operator in the basis of states (1). 

Table 1 contains the results of truncations for all possible pairs of operators. 

In the conventional block-spin formulation 2one generates consecutive Hamil- 

tonians by the definition 

u n+l = [Hnn (3) 

where Nn+i acts in the restricted basis (1) , and [ I] denotes the truncation to 
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this basis on every two site block. The Ising model defined by 

H = - c[o.(i) + Xa,(i)a,(i + l)] 
i 

generates consecutive effective Hamiltonians of the form 

Un = x[Ci + c”,c7&) + c~a,(i)a,(i + l)]. 

(4 

(5) 
i 

Given a starting Hamiltonian No = H one can perform successive truncations to 

define X,. The choice of angle 8, can be made at each step by minimizing the 

mean-field estimate of the ground state energy density in the resulting truncated 

theory. Each site of the truncated theory after n truncations represents 2n sites 

of the original lattice. The procedure thus gives a sequence of energy estimates 
. 

which converges to a fixed result as the recursion proceeds until either c”, or c: 

has become zero and the other has reached a finite value. At this point U,, can 

be trivially diagonalized and one can read off the energy density and the mass 

gap. Further recursions do not alter these results. 

We introduce a new mapping Jl,, ---) Un+r by considering exp( - Ht) as the 

basic quantity to be iterated. We define A0 = Ht and the recursion procedure 

An+l (t) = - ln[[cA=@)]l (6) 

where A, is an effective action, from which one may obtain an effective Hamil- 

tonian by 

Equation (6) produces an operator cumulant expansion for An+1 as shown in 

the Appendix. In general A, is an infinite power series in t involving an infinite 
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number of operators. However, the cumulant expansion guarantees that the only 

non-vanishing terms arise from connected products of the operators in An-l. 

Hence, if one calculates the terms in A, only up to some maximum power T of t, 

one obtains only a finite set of operators throughout the calculation. Successively 

higher values of T provide improved approximations to eq. (6). For T = 1 this 

procedure reproduces the previous mapping given by eq. (3), and one obtains for 

the Ising problem a generalized Hamiltonian of the type of eq. (5). For higher 

T further operators appear in A, and hence in J/n. For example at 2’ = 2 the 

generic form of A, is given by 

A,, = c[a; + a&(i) + a;a,(i)a,(i + 1) + az,P%,(i)a,(t + l)o,(i + 2)] (8) 
i 

where the coefficients obey the recursion relations 

I 
an+l = 2a, + cos2ena~ + i(l + sin28,)ur - sin2 2Sn(ai)2 + 3 sin48,a~a~ 

+ i(-5 + 2sin28, + 3sin228n)(ar)2 

a”,+1 = cos 28,aZ, - +(l - sin 2enjaz,z - sin2 2en(az,)2 

+ i sin48,a;Z,ar - i cos2 28, (ay ) 2 

ayZ+Z1 = i cos2 28n(a2,2)2 

xx 
%z+1= +(l + sin 2enjaF + cos 2enay + : sin 40,aral - + ~05~ 2en(ar)2 

Here 8, stands for the angle used in the definition of states in eq. (1) for this 

truncation step. The coefficients of the corresponding operators in U, are given 

a 
C n = 7Jh- 

12 



The coefficients afl, aZ,, and aiZ contain terms that are both linear and quadratic 

in t whereas aEzz is purely quadratic. Any higher t-powers are disregarded in the 

T = 2 approximation. 

For T = 3 one has to allow for two additional operators of the form zzzs 

and yy, leading to a more complicated set of recursion relations. The number 

of operators increases considerably as T is increased, thus this formulation of 

the renormalization-group procedure generates terms in a much bigger space 

of operators than the conventional block-spin method. We have developed a 

computer program which carries out the truncation calculation analytically. This 

generates the recursion relations which depend on the various parameters of the 

starting Xo = H as well as the values of On, the wavefunction parameters which 
. 

have to be chosen for each successive truncation. The choice of these parameters 

is guided by the ansatz for 2 described in the next section. 

4. Parametrizing 2 as a Sum of Exponential Factors 

When the t-expansion is calculated to finite order tT and the renormalization 

group procedure is carried out to n iterations, the connected diagrams have a 

range limited by 

V eff = zn(T + 1). (1) 

Thus, to this order, our calculation also gives the correct ZL(t) for the theory 

defined on a lattice of L sites with periodic boundary conditions provided L > 

Veff. A bound on the ground state energy of the finite-volume theory can be 
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derived exploiting the known analytic behavior 

(2) 
m 

which follows trivially from the definition of the finite quantum-mechanical sys- 

tem, where the & are the eigenvalues of the finite-volume Hamiltonian. By 

adding a large enough constant to H one can ensure that all eigenvalues are pos- 

L itive, as are the weights cy,. The lowest eigenvalue pf is an upper bound on the 

vacuum energy of the finite-volume theory. Since we have only a finite t-series 

we cannot retrieve all the rich structure of Eq. (2), we can however obtain an 

upper bound on &. 

Consider the approximation 
. 

ZL(t) M 2 p;e-“% 
m=l 

For 2P = T + 1 we can determine uniquely all parameters by matching the first 

2P terms of the Taylor expansion of the right hand side with the t-expansion for 

2. Working with the Laplace transform of 2’ which gives the resolvent operator 

(4 

Bessis and Villani 5proved that the true eigenvalues are bounded from above by 

the approximate ones 

m= l,...,P (5) 

and furthermore that the bounds decrease monotonically as P increases. Thus 

the smallest of the ui in (3) produces a strict bound on the energy density of 

the finite volume theory. 
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This method can be applied to the t-expansion about a mean field state (or 

strong coupling eigenstate for a gauge theory) and gives considerable improve- 

ment over the Pad4 approximants for the same series. 

The infinite volume theory can be approximated by the finite volume one in 

the following way 

GIL(t) = zL(ty + 0(tL). 

Thus we can use the approximation 

(6) 

where N = V/L diverges with the volume V. This gives us an estimate for the 
. 

vacuum energy density 

c=v1. 
L (8) 

Equation (7) may be interpreted as a mapping of our problem onto a non- 

interacting lattice theory with P levels per L-site block. Since there are originally 

2L states on L sites it is clear that approximating the spectrum by a set of P 

independent eigenvalues will work better for smaller L. This result was found 

empirically by Banks and Zaks?n their application of the resolvent operator 

method to lattice theories. The minimum L value for which there is guaranteed 

to be a fit of the form (7) with positive weights and eigenvalues is L = Veff. 

We could now proceed in the following way: after the n-th truncation choose 

a trial function 

COS&Z+~(COS&L+~ Itt)+ sink+1 Ill)) + sin&+i( Its> + Ilt)) fi (9) 
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and use it for evaluating 

ZL(t) = (?)“I emAntt) I$“> 

with L = V,ff. Vary the angles until the minimal vi is obtained. Then choose 

the ket multiplied by cos r&+r as the new Ifi),+i and the other combination as 

IU> n+l. These form the basis for the next truncation step. Using this procedure 

we find that the energy estimate decreases in the first few truncations then goes 

through a minimum and increases as one continues to iterate the procedure. The 

reason is that as V,ff increases the lowest exponent dominates in Eqs. (3) and 

(7) and the method loses its ability to discern the correct structure. 

One major advantage-of the t-expansion formulation is that one can avoid all 

volume dependence and derive results which are directly relevant to the infinite 

lattice. The problem one faces is that of reconstruction of the series. Pad6 

approximant techniques are general-purpose tools which may be applied to the 

energy as well as to other operators. An alternative procedure which we find 

more stable and which gives better numerical results is to use, at every level of 

the recursion procedure, an exponential ansatz of the type (7), but with fixed 

rather than increasing L. If we choose L = 2(T + 1) then in the first truncation 

step there are no connected diagrams of range greater than L, and thus we 

are guaranteed positive weights and eigenvalues. At subsequent truncation steps 

much information about the original theory has accumulated in the unit operator 

in A(t). When this dominates the fit no large error is made and the fitted weights 

and eigenvalues remain positive, even though there now exist a few connected 

diagrams with range greater than L. We require that the parameters obtained 

this way for Eq. (3) obey the positivity conditions necessary for the interpretation 
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of this method as a mapping onto an equivalent free Hamiltonian system. In fact 

we find for the Ising model that a procedure where the variational angles are 

chosen by minimizing the energy density from this fixed-L fit always satisfies 

the positivity test and gives extremely good results, provided L is chosen large 

enough. Below the phase transition the minimum value of L , L = 2(T + 1) 

is satisfactory. Above the phase transition the recoupling terms in N are not 

iterating away and thus at large values of X they can still cause significant wrap- 

around contributions after a few iterations. At large enough X this introduces 

instabilities into the fitting procedure and eventually gives results which violate 

the positivity requirements. We find that these problems are avoided by working 

with a slightly larger value of L, at the cost of a small decrease in accuracy. The 

.  
r 

investigation of the dependence of the final results on the value of L used in the 

reconstruction, and the determination of a description to use for choosing L as a 

function of the coupling constant, has not yet been made. 

5. Results of Calculations 

The calculation described in the preceeding sections produces a very accurate 

estimate of the ground state energy density using only a few powers of t. In this 

section we display our results and compare them with other calculations. Figure 

l(a) shows the energy density as a function of X for L = 9 as extracted from fits 

to the tl, t3, and t5 series about the state chosen by minimizing the t5 energy 

estimate. In this and subsequent figures we show results of the L = 9 calculation 

as a conservative choice. The L = 6 reconstructions are well behaved up to 

about X = 1.3, however the L = 9 reconstructions are well behaved to much 

larger values of X. Figure l(b) shows the error in the energy estimate extracted 
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from the t5 calculations for both L = 6 and L = 9; one clearly sees that some 

accuracy is lost by going to the larger L value. For comparison we also show 

here the result obtained from a t’ expansion about a mean field state using the 

dPade3method to reconstruct the t -+ oo value of the energy. We see that the 

improvement given by the new procedure is substantial, the lower order block- 

spin calculation is better than the higher order mean-field result, a fact that 

is also reflected in the value of the critical point. Figure 2 shows the quantity 

de/aX and again compares the L = 9 calculations with the exact results. In 

Figs. 3(a) and (b) we present a2e/aX2 as given by this Operater Renomalisation 

Group (ORG) calculation, compared to the exact result. We% see the behavior of 

the exact theory is is quite well reproduced by the t5 calculation except that the 

critical point is somewhat misplaced. In Table 2 we compare the values of the 

critical point and the energy density at X = 1 obtained with various approximate 

calculations. The rapid improvement in the location of the critical point is of 

particular interest since this quantity is not universal and depends upon the 

details of the specific Hamiltonian. 

Because we keep two distinct states per block, we can also make mass gap 

estimates from this calculation. Below the phase transition the effective action 

iterates to a form 

A(t) = a:(t) + af(t)a, 

with all other operator coefficients vanishing like (1/2n). We can then readily 

diagonalize the resulting theory after a sufficient number n of interactions. On 

a volume V = 2n, i.e. one block of sites, the two states It), and II), belong to 

distinct sectors of the Hilbert space of the starting Hamiltonian No. The state 
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It), contains only terms with even numbers of spins up and 11) n has only odd 

numbers of spins up and Uo only flips spins in pairs. Hence we can evaluate 

Z$=~R = ,( t leeuotl t >n 

and 

qL2?% = ,( 1 Ie--Uotl 1 )n ’ 

(2) 

For each of these we make an ansatz of the form of Eq.(7) with N = V/L and 

L = 9 as in the energy density calculation described previously. The mass gap is 

then given by 

m = f h(1) --w(t)) (4 
. 

where Q(L) is the lowest exponent for the state Ii), and similarly ZQ(~) for 

the state It),. This gives an estimate which stabilizes after sufficiently many 

iterations, since the corrections vanish as (1/2n). 

To see that this estimate is also valid for 

blocks of sites. If all blocks are in the state 

of the original theory and 

the infinite volume case, consider K 

It), then we have the ground state 

ZV=K.p = ( irct ) nie -‘Ot 
i=l 

s[tnJi) = (Z$t12.)K 
i=l 

whereas the first excited state is given by (K - 1) blocks in the state It), and 

any one block in the state II),. For this state 

ZV=K.p% = z(E [ v 2n]K-1 [e24 (6) 

and the mass gap given by (5) and (6) is exactly that of Eq. (4). 
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Above the phase transition the iteration converges to 

A(t) = a:(t) + =Ez(t)azaz 

All other coefficients iterate to zero. Now there are clearly two degenerate ground 

states on a block of V = 2n sites; namely, 

WE> = 5 (l-r), + Il>n) 
. 

Il>n) I+;) = $ (It>, - 
(8) 

On a volume V = 2n+1 we can estimate the gap to the single kink state by 

calculating 

and 

(10) 

Again we use an ansatz of the form of Eq. (7) with L = 9. 

The mass of the kink state is again given by (4). The results for the mass gap 

are shown in Fig. 4. These are calculated from the (t5, L = 9) ORG calculation. 

The set of mass values corresponding to the points denoted by circles in Fig.4 

are obtained using the full J/n. The second set of values, indicated by squares, 

are calculated by dropping the terms in X, that are proportional to the unit 

operator. These terms should contribute equally to the energy of each of the two 

states. Since these terms include some higher powers of t the two mass estimates 

are not identical. The region where the two methods agree is where we expect 
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the mass estimate to be most reliable,and indeed this turns out to be the case 

for the Ising model. 

We see that the results for the mass obtained below the phase transition are 

much better than results obtained above the phase transition. This difference is 

built into our choice of states in the recursion calculation. Below the phase tran- 

sition, even our restricted Hilbert space includes the lowest excitation, a single 

flipped spin in a zero momentum plane wave on the original lattice. Because we 

keep both degenerate ground states above the phase transition we can construct 

kink-like excitations, but only with the kink at a block boundary, we cannot 

fully reconstruct a kink state with zero momentum on the original lattice. There 

are clearly ways to improve this calculation above the phase transition, one could 

even choose a block spin algorithm which is explicitly self-dual. Since the purpose 

of this paper is to show the efficacy of the new calculation method, and not to 

utilize our knowledge of the Ising model to the fullest, we think it is preferable to 

show results obtained using a single choice of block spin algorithm and the same 

value of L, for all values of the coupling constant A. It is clear, however, that in 

future applications of this method it would be useful to explore the freedom to 

vary the truncation algorithm and the choice of L with coupling constant. 
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6. Outlook 

As the results of the previous section show the combination of t-expansion 

and block-spin methods is considerably more powerful than either approach used 

separately. In this section we discuss the application of this technique to more 

interesting theories. The method can readily be used for higher dimensional spin 

theories. Furthermore, if one keeps only a number of gauge inuariant states per 

block, a gauge theory is mapped, in a single block-spin step, into a spin theory. 

Thus, the method allows us to use block-spin ideas in a gauge theory while at the 

same time maintaining full gauge-invariance at every step. Let us discuss these 

points in some further detail. 

In any block spin calculation there are two choices which must be made at 

the start of the calculation 

(i) How will the lattice be divided into blocks. 

(;z) How many states per block will be retained. 

In general it is desirable to choose blocks of p sites so that the new lattice 

formed by treating the center of each block as a new site has the same structure 

as the original lattices. On a regular d-dimensional cubic lattice blocks of p = 2d 

or p = 3d sites have this property and either can be used. 

If one retains N states per block then the generic recursion is a truncation 

from pN states to N states chosen from these pN with some set of variational 

parameters. The accuracy of the calculation at a given maximum power of t will 

depend on how these states are chosen-the variational parameters should allow 

one to span the lowest lying states of the generic Hamiltonian restricted to a 

single block for all choices of Hamiltonian parameters. 
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If the starting theory is not a spin-S theory (N = 2s + 1) then the first 

block spin step will be different from the generic recursion step; i.e., it will map 

the initial theory into a theory with N states per site. For example when the 

starting theory is a pure gauge theory there are originally only link operators and 

there is an infinite spectrum of link excitations. A gauge invariant prescription 

can be obtained by choosing to keep only states which can be created from the 

strong coupling ground state by acting with any superposition of those plaquette 

operators which act only on plaquettes totally within the block of sites. Any 

set of N orthogonal states within this subset of the Hilbert space of a single 

block is an acceptable prescription. It is preferable to use states which belong to 

different sectors of the single block Hilbert space, thus representing excitations 

w  with different quantum numbers. The variational parameters will appear as the 

relative weightings of various strong coupling eigenstates in the definition of the 

N retained states. 

For a gauge theory with fermions this prescription can readily be generalized. 

One again starts from the strong coupling ground state and forms superpositions 

of states created from this state by the action of gauge invariant operators which 

are totally contained within the block, either tr (UUUt Ut) on internal plaquettes, 

or $f(ll{U)$~~ h w ere the sites and the links addressed by these operators are all 

internal to a single block. 

There is clearly a great deal of arbitrariness in these prescriptions; the es- 

sential point to realize is that this does not matter. In principle if one keeps a 

sufficient number of powers oft in the expansion for all interesting gauge invariant 

operators in the original theory one can obtain the desired information about the 

ground state of the original theory with any choice of blocking algorithm. The 
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only way in which the choice of retained states affects the calculation is in the 

question of how many powers of t must be calculated to obtain reliable results. 

Clearly there are trade-offs which one makes in this kind of calculation. If 

one keeps more states or introduces more variational parameters in the choice 

of retained states one can achieve better results from calculating fewer powers 

of t. However, the work involved in calculating each power of t is greater when 

there are more states or more variational parameters. The answer as to what 

procedure works most effectively awaits further study. 

In all these generalizations the necessary computing power will be consid- 

erably greater than that used in our Ising model example. However, compared 

with the huge expenditure of computer time in Monte Carlo calculations these 

methods could be quite efficient. Furthermore, the method is algebraic in nature 

and should be pursued as an alternative which is complementary to the Monte 

Carlo method. 

APPENDIX 

Consider a l-dimensional lattice. We associate any string of operators on this 

lattice with the left-most site i addressed by these operators. Thus we can write 

the effective action as 

An= C anm(t - 

sites i 

The coefficients anm (t) are polynomials in t. The calculation is carried out keep- 

ing terms only up to some power T of t. Then a given starting Hamiltonian 

(A0 = Ht) generates a finite set of operators 0, which appear in A, for any n. 
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We seek to calculate An+1 from A, using 

(A.4 

When the Hamiltonian contains only finite-range interactions the ground-state 

energy of the system grows linearly with V. Hence the logarithm of Eq. (A.2) is 

guaranteed to produce an expression for A,, which can be written in the form of 

Eq. (A.l). Thus in the expansion 

(A-3) 

+u$n-f u?$n uAnn+uAnn usn ( . . > 

terms which arise from products of strings of operators on separated regions of the 

lattice must vanish, that is disconnected graphs must cancel. This was discussed 

for the t-expansion about a mean-field state in ref. 1. Here we must simply 

generalize the notion of connectedness for a block-spin calculation. One finds that 

diagrams cancel unless they correspond to operators acting on a neighboring set 

of blocks with at least one string of operators overlapping each block boundary. 

To show how terms appear in A, that are not present in the starting AC, = Ht, 

let us study a term quadratic in A, of eq. (A.3) which arises from the operators 
. :.: 
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a,(+J,(i + 1) and o,(i’)o,(i’ + 1). Let us examine the contribution 

--&(2; + l)a,(2i + 2)0,(2i + 3)a,(2i + 4)n 
. 

(A-4 
+ f [oz(2i + l)a,(2i + 2)n [a,(2i + 3)a,(2i + 4)n . 

where the Gth block contains the sites 2i and 2i + 1 . From Table 1 we can read 

off the results. The first term gives 

1 cosB+sinB * -- 
2! ( a > 

a&)1(; + l)a,(i + 2) 

+; ( cosB+sin8 2 cot38 - sin8 2 
. 4 > ( fi ) 

a,(i)a,(i + l)a,(i + 2) 

P-5) 

while the second term is 

1 ( 8 + sin 8 
) 

* cos 
5 fi 

a,(i)a,(i + 1) - a& + l)a& + 2) . (A-6) 

This cancels the first term in (A.5) and the result is simply 

cos; 2e a,(i)a,(i + l)a& + 2) . 

Thus we see that starting from the operators uzoz at order t in A, we generate 

the operator oz~z~z at order t2 in An+l. 

We have written a program in the language C which can perform this calcu- 

lation systematically up to A7 or T = 7, the principal limitation being computer 

time. Each successive power of t requires an order of magnitude greater com- 

putation time than the preceeding power, both because more operators appear 

in the general form of A, and because there are clearly many more terms to be 

computed for (Ht) P+l than for (Ht)P. For the Ising model at T = 5 the analytic 

operator truncation calculation takes only a few IBM 3081 CPU minutes. The 

T = 6 calculation requires a several of hours. 
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TABLE 1 

Truncation of operators in the basis (3.1) 

Original operators Block operator 
(on two sites) (result of truncation) 

1-l 1 

case - sin8 
l/5 uy 

co;2e 1 + G+@ a; 

, cod - sin8 Qz 
lh 

UY - uY 
- -y-l+wj@,z 1 - sin20 
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Table 2 

Method of Calculation I x crit 

Mean Field I .5 

Naive Block-spin .78 

t-expansion about Mean Field, T=7 .87 

ORG T=3 L=4 .89 

ORG T=5 L=9 .93 

ORG T=5 L=6 I .94 
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FIGURE CAPTIONS 

1) (a) Energy density as a function of X for the L = 9 calculation. Angles have 

been chosen to minimize the t5 energy density. (b) Fractional error in 

the energy density as a function of X for both the L = 6 and L = 9 t5 

calculations. For comparision we also show the results of a t7 expansion 

about a mean-field state using Pad6 reconstruction. 

2) First derivative of the energy density as a function of X for the L = 9 

calculation, showing the tl, t3 and t5 results. 

3) (a) Second derivative of the energy density as a function of X for L = 

9 calculation showing tl, t3 and t5 results. 

-d2E/dX2 compared to the exact result. 

(b) The t5 results for 

4) Mass gap as a function of X. 
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TABLE CAPTIONS 

1: Truncation table. 

2: Comparison of Calculations. 
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