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Introduction 

i r 
As a-distinct field, elementary particle physics is now approximately forty 

. 
years old. In all that time, only a few of the thousands of experiments that have 

been performed have made use of spin polarized particle beams (with apologies 

to those who have studied neutrino interactions, we choose to define the term 

polarized beam to refer to the case in which the experimenter has control over 

the polarization direction). If we restrict the discussion to spin polarized elec- 

tron beams, the number of experiments becomes countable with the fingers of 

one hand (with several to spare)! There are two reasons for this lack of interest. 

The first is that spin polarized beams are difficult to produce, accelerate, and 

transport. The second reason is that any physical process that can occur during 

the collision of a polarized particle with another (polarized or not) can also occur 

during the collision of unpolarized particles. One might ask then, why has any 

effort been expended on the subject? The answer, at least in the case of polar- 

ized electron beams, is that electron accelerators and storage rings have in recent 

years achieved sufficient energy to begin to probe the weak interaction directly. 

The weak interaction distinguishes between left- and right-handed fermionic cur- 

rents. Left-handed particles interact in a fundamentally different way than their _ .- . c right-handed counterparts. If the experimenter wishes to explore or exploit this 

difference, he (or she) must either prepare the spin state of the incident particles 

or analyze the spin state of outgoing particles. For reasons of generality and 

improved statistical precision, the former is usually preferable to the latter. 

- 

_ _=. 

The first of these lectures will review some of the techniques necessary for 

the production, transport, and monitoring of polarized electron (or positron) 

beams. The second lecture will survey some of the physics possibilities of polar- 

ized electron-positron collisions. 

1. 



LECTURE I: EXPERIMENTAL TECHNIQUES 

i ” 
1. Definitions . 

Before discussing the gory experimental details of polarized electron physics 

it is worthwhile to review a few simple definitions. Let’s consider an ensemble of 

electrons at rest. We can define a function f of some arbitrary direction (given 

by the unit vector C) as the difference between the number of electrons that 

have spin parallel to A and the number of those that have spin anti-parallel to A, 

normalized to the total number of electrons, 

mi) = 
N,(spins parallel 6) - N,(spins anti-parallel ii) 
N,(spins parallel 6) + N,(spins anti-parallel ii) ’ (14 

Let 3 be the direction for which f is maximum, then the polarization of the 

ensemble is defined as 

f = f(i)& P-2) 

- Note that the magnitude of p represents the fraction of the ensemble that is 

polarized. 

L Under Lorentz transformations, 8 (and F) transforms like the space compo- 

nent of a contravariant 4-vector. In the rest frame of the ensemble, we can write 

-.w 
the spin 4-vector s& as 

SC1 = 0 - 
cm 

0 s - 

The spin 4-vector is therefore orthogonal to the 

this fact to write sp in an arbitrary frame as 

P-3) 

momentum 4-vector. We can use 

c 

where 7 and /? are the familiar Lorentz parameters describing ensemble boost 

and velocity, and s^ is the rest frame spin vector. Note that since s^ defines an 
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intrinsic property of each particle, sp has physical meaning only in the rest frame 

,c- and is used only for constructing Lorentz invarian.t quantities. 

. The spin direction of a particle or ensemble is the subject of considerable ter- 

minology and sometimes, much confusion. A distinction must be made between 

the term polarization as applied to fermions and the term as applied to photons 

and other gauge bosons. Longitudinally polarized fermions have their spin vectors 

8 colinear to their direction of travel. The spin direction may be parallel to the 

momentum direction (in which case the particle is right-handed) or antiparallel 

to the momentum direction (the particle is left-handed). These states are also 

called helicity states. If the spin vector is orthogonal to the direction of motion, 

the polarization is called transverse. 

- 

c 

-._ 

For photons and gauge bosons, the term polarization refers to a vector field 

which is related to the particle spin in a more complex manner. In this document, 

we shall only consider definite spin states. The state with photon spin along the 

particle direction will be called the right-circularly polarized state. The state 

with the photon spin antiparallel to the direction of motion will be called the 

left-circularly polarized state.* These states are also called helicity states. The 

reader who is easily confused can skip to the next section now. Otherwise, we note 

that the helicity states are special cases of transversely polarized photons. Not 

all transversely polarized photons are helicity states, of course. Longitudinally 

polarized photons are, naturally, spin 0 states. 

Units 

The units used in these lectures are Gaussian CGS. Usually, but not always, 

we will use the convention ti = c = 1. Occasionally, other units and conventions 

may slip in. Please accept my apologies in advance. 

- 

c 

* Note that particle physicists use a convention that is the opposite of that used by spec- 
troscopists who (understandably) view the world aa coming toward themselves. 
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2. Motion in Electromagnetic Fields 

i ,c- 
The--acceleration and -transport of our ensemble of electrons inevitably re- 

. quires that we subject it to various electromagnetic fields. In general, the evolu- 

tion of the polarization state in the presence of such fields is a quantum mechan- 

ical problem. However, if the frequencies of all fields are small as compared with 

the quantum precession frequency of the spin vector, we can treat the problem 

classically. The precession frequency up (also called the Larmor frequency) is 

given by the following expression 

VP = geB, 
47rm 

= 2.8 MHz/gauss. B, (24 

where: g is the gyromagnetic ratio of the electron; e is the charge of the electron; 

m is the mass of the electron; and B, is the applied magnetic field. There- 

fore, if the frequencies are less than RF or microwave frequencies, we can use a 

classical analysis. The classical evolution of a spin vector in the presence of an 

electromagnetic field is given by the BMT 111 equation, 

- 

(2.2) 

--..._ . - where: r is the proper time, PV is the electromagnetic field tensor, and VP is the 

-.u 

velocity four-vector. While it is encouraging that the time evolution of the spin 

vector is described by a covariant equation, the BMT equation is inconvenient 

for practical calculations. Normally, we desire to calculate the rest frame spin 

orientation as a function of laboratory variables. This can be done by substituting 

Equation (1.4) into Equation (2.2) and grinding through a bit of algebra? The 

result, originally derived by Thomas in 19271” is 

- -- -where t is the laboratory time variable and I?, I? are the laboratory magnetic 

t The interested reader is invited to follow the details of the calculation in Jackson, P’ PP 
558-559. 
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and electric fields. Since the fields experienced by a particle depend upon its 

i ” trajectory and since we often desire to know the spin direction relative to the 

. direction of motion of the particle, it is essential that we also solve the equations 

of motion for the particle momentum p’ and energy E, 

d& -1 e$.z. 
dt 

(2.4 

The solutions of Equations (2.3) and (2.4) can, in general, be quite complex. 

While numerical solutions are usually required for practical problems, we can 

gain much intuitive understanding by considering three special cases: - 

1. /Y along Z, E’ 

If we assume that the particle motion is parallel to the direction of an electric 

and/or magnetic field, Equations (2.3) and (2.4) become . 

- 

-.- 

ds^ eZ 
t=” m7 L-1 

!F=eg 
dt 

d& 
- = e/3E. 
dt 

(2.5) 

Equations (2.5) imply that the particle is accelerated along the electric field and 

that the spin vector precesses about the magnetic field direction at a rate given 

by the Lorentz-dilated rest frame rate. 
& 

. _T_ 2. g transverse to a B’ field 
;. 

Since nearly all beam transport systems utilize magnetic dipole fields, this 

case is very important. The equations of motion for a transverse magnetic field 
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are 

i ” 

. 

dt 0 -= 
dt 
dp’ e + 
dt = p’x 3,, i$, = GB 

ds^ _ 
dt = s x J,, J, = 

P-6) 

We observe that both the momentum vector and perpendicular component of the 

spin vector (to the magnetic field) rotate about an axis defined by the magnetic 

field direction. Note, however, that the rotation frequencies are different. If we 

assume that the spin vector lies in the same plane as the momentum vector, then 

we can write that the angular difference occurring after a time T is 

- 
T 

A8 = (wd - J w,)dt = i(v) [Bdt. (2.7) 
0 0 

The integral of the magnetic field over the path of the particle is related to the 

- bend angle of the particle trajectory 8b by the expression, 

T 
t+, = -?- Bdt. 

7m J 
0 

-__ We can therefore rewrite Equation (2.7) as 
- 

(2.8) 

Don’t be mislead by the simple appearance of Equation (2.9). It has enormous 

physical content. Note that if the gyromagnetic ratio of the electron were exactly 

-two, the spin vector would exactly. follow the momentum vector as the particle 

passed through the transverse, but not necessarily uniform, magnetic field. As we - =* 
know, the electron g-factor deviates from two due to virtual quantum corrections. 
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This causes the spin vector to precess as the electron passes through the field. 

,c- The factor a, . . _ 

. 
a= &$ = (1.159652209f0.000000031) x 10d3 - 

is called the anomalous magnetic moment of the electron and is one of the most 

precisely measured physical constants of nature. Although a is quite small, the 

7 factor of a high energy electron beam can be quite large (7 ti lo5 at 50 GeV) 

and the precession of the spin vector can be considerable. This phenomenon is a 

substantial nuisance to anyone attempting to transport a spin polarized electron 

beam. 

Equation (2.9) h as enabled very precise measurements of the muon magnetic 

moment. These experiments work by trapping polarized muons in a storage ring 

and detecting the decay electrons. The spin precession causes a modulation of the 

electron momentum spectrum. By measuring the modulation rate, it is possible 

to infer the precession rate and therefore the anomalous magnetic moment. 

- We shall see in the next chapter that Equation (2.9) is responsible for the 

presence of depolarizing spin resonances in electron-positron storage rings. These 

_. . .- resonances have been used to calibrate the energy scale of most operational ma- . c 
chines. Indeed, the masses of many heavy vector mesons have been measured to 

within few parts in lo5 with this technique. 

-__ 3. $ transverse to an E’ field 

Let’s assume that our electron traverses a transverse electric field for a suf- 

ficiently short time, that it is deflected but not accelerated. The equations of 

motion for this case are 

d& 
x=0 

_ -2. 
- w eg :- = L. 

dt 
(2.10) 

- I..-- d8 A w+ 
dt = s x wg9 ,-,=e s- ( m2 -&)8x I?. 
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After traversing the field for a time T, the particle is deflected by an angle 6$, 

” where . . _ 
eET eET ‘. e,=-=-. 

P 74 
(2.11) 

Assuming that the spin vector lies in the plane defined by the electric field and 

the velocity vector, it is rotated in the same direction as p by an angle 8, where 

f&=Qc-(;-+ 
m 7+1 

(2.12) 

Subtracting the above two equations, we can then write that the angular preces- 

sion AtJ is 

Ak&,-db= [(9)7 - +$,. (2.13) 

We note that as 7 ---) 1, the precession angle becomes A8 = -8b. The spin 

vector remains undeflected. Low energy electrons become depolarized as they 

p-ass through matter because multiple scattering randomizes their directions but 

not their spins. For 7 >> 1, Equation (2.13) b ecomes identical to Equation (2.9) 

and the precession is the same as for a transverse magnetic field. 

3. Polarized Electron Sources 

L Polarized electron sources have been under development for quite some time. - 
Since a proper survey of all known techniques could easily fill the entire content 

of these two lectures, we shall discuss only the two techniques currently being 

used-at electron accelerators. The reader who is interested in a more complete 

description of the field is referred to the extensive literature that is available. 

It is worth mentioning at this point, that the traditional Stern-Gerlach filter _ -9. 
- ._ -does not-work for charged beams.:-The reader will recall that Stern and Gerlach 

performed their classic experiment by passing a beam of neutral silver atoms 

through an inhomogenous magnetic field. The only force acting upon the atoms 
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was that due to the coupling of the atomic magnetic moment with the gradient 

i ,; of the field. Since the two spin states of the J = l/2 ground state have opposite . . _ 
magnetic moments, the beam was split into two’ transversely polarized beams. . 
Unfortunately, the Lorentz force and the uncertainty principle conspire to destroy 

the effect for charged particles.*+ 

In 1976, Pierce and Meier IQ’ observed the photoemission of polarized electrons 

from negative electron affinity gallium arsenide (NEA GaAs). Since then, nearly 

all polarized electron sources that have been used with accelerators have been 

based on this technique. These sources have the advantages of relative simplicity, 

easy reversibility, and good beam characteristics, but are limited to a maximum 

polarization of fifty percent. They will be described in the first section of this 

chapter. - 

- 

--..._ . c 

._ 

The other source of polarized electrons that figures prominently in current 

planning is the storage ring. The emission of synchrotron radiation causes the 

slow buildup of transverse polarization in nearly all suitably tuned machines. 

As was mentioned in the last chapter, this phenomenon has enabled the precise 

calibration of all of the electron-positron storage rings that are now in operation. 

It is currently planned to use this technique to produce longitudinally polarized 

beams at the HERA electron-proton collider. Much study has been devoted to 

the possible polarization of the LEP electron-positron storage ring. It is sufficient 

to say that the feasibility of polarization at LEP is unclear. The second section 

of this chapter will discuss the theory of storage ring polarization in its simplest 

(and most naive) form. 

_ -2. 

[‘I’ -k The interested reader can find this discussed in Baym, pp 324-330, and in Kessler,18’ pp 
2-6. 

t Many sources of polarized electron beams have made use of Stern-Gerlach filters to state 
select beams of neutral atoms. The atoms are then ionized to produce polarized electrons. 

- Whire such sources have achieved high beam polarization, they usually employ magnetic 
and/or electric fields in a region traversed by low energy electrons. The effect is to increase 

- 1c 

4 

the emittance and/or energy spread of these sources which tends to make them unsuitable 
for use with accelerators. 
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3.1. GALLIUM ARSENIDE SOURCES 

,; 
Gallium arsenide is a well-known semiconductor with two very important 

properties that make it useful as a polarized electron source: 

1. Its band structure permits a given spin state to be preferentially pumped 

into the conduction band. 

2. Its surface can be treated to develop a negative work function (hence the 

term, negative electron afinity). 

- 

The band structure of GaAs at the energy maximum of the valence band 

and energy minimum of the conduction band is shown in Figure 1. The band 

energy versus momentum is shown on the left-hand side and the energy level 

structure is shown on the right-hand side of the figure. We note that the band 

gap of the material is E, = 1.52 eV. At the minimum of the conduction band 

and the maximum of the valence band, the electron wavefunctions have S and 

P symmetry, respectively. Spin-orbit splitting causes the Ps/z states to reside 

in energy above the PI/z states by an amount A = 0.34 eV. The selection 

rules for the absorption of right- and left-handed circularly polarized photons are 

- 

- . . . .- . Amj = +l and Amj = -1, respectively. The selection rules are indicated by the 
- 

-__ 

solid and dashed arrows in Figure 1. The reader will recall from undergraduate 

quantum mechanics that these electric dipole transitions proceed via an operator 

that changes the orbital angular momentum of the inital state by one unit. The 

<pin of the electron remains unchanged in the process. 

Let’s consider what happens when a right-circularly polarized photon is inci- 

dent upon a GaAs crystal. The photon direction is the only vector in the system. 

All angular momentum projections refer to the incident photon direction. If the 

photon energy E, is in the range E, 5 E, 5 E, + A, then transitions can only _ ._T. 
- ._ if--- occur from the Ps/z states to the Sl/z states. Specifically, -the P state with 

- =* Mj = -3/2 can make a transition to the S state with mj = -l/2 and the P 

state with mj = -l/2 can make a transition to the S state with mj = +1/2. In 
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the former case, the emitted electron has spin antiparallel to the incident pho- 

f ,; ton direction (or parallel to its ejected direction). In the latter case, the spin 

. of the emitted electron is-parallel to the incident photon direction (antiparallel 

to its ejected direction). Due to Clebsch-Gordon coefficients (the P state with 

mj = -3/2 is a pure spin state whereas state with mj = -l/2 is not), the former 

transition is three times more likely than the latter. The relative transition rates 

are indicated by circled numbers in Figure 1. This implies that the absorption 

of a right circularly polarized photon produces a right-handed electron with a 

polarization 

P= 
3-l 
- = 50%. 
3+1 (34 

Actually, all we’ve shown so far is that we can create polarized electrons in 

the conduction band with a beam of circularly polarized photons. In order to 

make a polarized source, the electrons must leave the material. In normal GaAs, 

the energy gap from the bottom of the conduction band to the free electron 

- 

-__ 

- 

_._._ . - 

state is approximately 2.5 electron volts. Even with a large applied electric field, 

pure GaAs is a poor photoemitter. The magic that is necessary to make it an 

efficient photoemitter is shown in Figure 2. The energy of the various bands is 

shown as a function of depth near the surface for several materials: pure GaAs, 

GaAs with a cesiated surface, and GaAs with a surface layer of CsaO . The 

energy of the free electron state is shown as E,. The addition of cesium to the 
- 
surface causes the energy gap between the conduction band and the free electron 

state to decrease to zero. The addition of CszO to the surface causes the gap to 

become negative! Quantum efficiencies* as large as 5% have been been observed 

for GaAs photocathodes that have been treated with CsnO (actually CsF is 

currently used instead). At photon energies that are appropriate for polarized 
_ ._=. electron production, quantum efficiencies in the range 0.1% + 0.5% are typical. 

--- L.. 

- I..-- * The definition of quantum efficiency is the probability that an electron is emitted when a 
photon is incident upon the photocathode surface. 
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In practice, the photoexcited electrons can become depolarized from spin 

,; flip scattering processes that occur before emission from the photocathode. The . . _ 
. result of an actual measurement of P as a function of photon energy is shown 

in Figure 3. We note that the polarization increases to a value in the range 

40% -+ 45% as the photon energy is decreased. Although the systematic error 

in such measurements is typically lo%, the degradation of the polarization from 

the theoretical 50% is well established. 

The Future 

The development of the polarized photoemission source is still continuing!+] 

Much work has gone into improving the polarization, efficiency, and lifetime 

of GaAs sources. Another very interesting direction involves the development 

of semiconductor materials with band structures that are capable of providing 

completely polarized beams. Much work has already gone into the investigation 

of the II-IV - Vz family of chalcopyrite semiconductors. Members of this family 

have a band structure that does not have a polarization defeating degeneracy. 

The band structure of one such semiconductor is shown in Figure 4. In principle, 

such materials can provide electrons of 100% polarization. However, to be useful 

as a high current source of electrons, a material must possess several other prop- 

erties. A relatively large bandgap is important both for optical pumping reasons 

and because it is necessary to make NEA surfaces. Good physical and chemical 

properties are also required. To date, no good rival for GaAs has been developed. 
- 

- 

_...._ _ - 

._ 

3.2. STORAGE RINGS 

It has been known since the early 1960’s that the emission of synchrotron ra- 

diation could lead to the gradual transverse polarization of the beams in electron- 

positron storage rings?” A small fraction of the synchrotron-radiation emitted by _ ._-. 
- ._ if- the circulating electrons and positrons causes them to change their spin states. 

Effectively, the particles make magnetic dipole transitions to the lower energy - I..-- 
state (all magnetic moments aligned with the guide field). The electron spins 
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preferentially become antiparallel to the magnetic field and the positron spins 

.;-. become parallel to the field. This physical picture is somewhat too naive? The . . _ 
interested reader is referred to an excellent review’article by Jackson Ill’ for more . 
details. 

The correct 

first derived by 

and general result for the spin flip probability per unit time was 

Baier and Katkov:121 

where 8 refers to the spin of the particle before the transition and the ti su- 

perscripts refer to the spin direction after the transition. We can substitute this 

expression into the time evolution equation for the number of electrons with spin 

antiparallel to the guide field, 

(3.3) 

- 

_._._ _ - 

where NJ (Art) is the number of electrons with spin antiparallel (parallel) to 

the guide field. For simplicity, let’s assume that the ring is circular and that . 
p = -cj?/p where p (3) is the radius (radius unit vector) of the ring. Solving 

Equation (3.3)) we can write that the polarization of the storage ring as a function 

of time is 

-__ 
‘@I= Nl+Nt 

Nl -Nt = p, 

The. polarization approaches an asymptotic value PO with a characteristic time 

t,. These parameters are 

Po= 8 - = 0.9238 
5fi 

t = 5fi e2ky5 -’ 0 
[ 8 m2c2p3 1 ’ (3.5) 

- ._ i* Note- that the ‘maximum polarization obtainable in -a storage ring is 92%. 

t Note that if the electron gyromagnetic ratio were less than 1.2, the opposite spin orienta- 
tions would result... so much for simple pictures. 
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This is very much an idealized number since it assumes that the only depolarizing 

,; process is reverse spin flip synchrotron emission. The expression for t, has been . . _ 
. written to simplify its generalization to a real storage ring. In a real machine, 

the bending radius of the the dipole magnets differs from the average radius of 

the particle orbits. In a correct treatment, one must replace pm3 with its average, 

taken over a closed orbit. For a storage ring consisting only of identical bending 

magnets of bending radius p and straight sections, we can write that 

P 
-3 

+P 
-3 

( > aw 
= 5 p-3 ( > P-6) 

where R is the average orbit radius. Substituting Equation (3.6) into the expres- 

sion for t,, we can write that the polarizing time is 

t,(sec) = 98.66 ‘p(m)13 g. 
I& (GWP P 

P-7) 

- 
To get a feeling for the magnitude of t,, let’s consider several machines: * 

Table I -. ._ .- . 
- 

- 

- 

Machine Beam Energy Polarizing Time 

SPEAR 4 GeV 10 min. 
HERA 30 GeV 20 min. 
LEP 46.5 GeV 300 min. 
SLC Damping Ring 1.21 GeV 15 min. 

We note that these times are enormous as compared with most of the time 

scales that govern storage ring operation. The reason is that the spin flip photon 
_ ._T. emissions are a tiny fraction of the total synchrotron radiation emission. The - ._ - L. 

e 

- =* * The proposed installation of wiggler magnets into LEP would reduce the average bend 
radius and therefore, the polarizing time to 90 minutes. 
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ratio of the power radiated in spin flip transitions to the power radiated in spin 

i .-- conserving emissions, R, is given by the expression . . -. 

. 
R=3(9J2(1+gy (3.8) 

where the two signs refer to the two spin flip directions. This number is normally 

quite small. For example, the value of the ratio for the SPEAR storage ring is 

RYE 10-11. 

Depolarizing Effects 

Thus far, we have discussed only the relatively simple physics that drives the 

polarizing process. We have remarked how subtle the process is and how slowly 

it proceeds. We must be concerned, therefore, that the system is quite sensitive 

to any depolarizing processes. If these proceed with a characteristic rate l/td, 

the asymptotic polarization P, is reduced to 

- 

P, = PO l 
1 + t&d’ (3.9) 

The theory of depolarization.in storage rings has advanced substantially in 

[6’131 recent years. Unfortunately, a complete description of it is beyond the scope 

of these lectures. What follows is a rather heurisitic description of the underlying 

physical processes. 

-__ 
The most dramatic depolarizing effects that occur in storage rings are spin 

resonances. Whenever the circulating electrons see any electromagnetic distur- 

bance that has a substantial Fourier component at the spin precession frequency 

or at an integral multiple of it, resonant spin flipping can occur. Using Equation 

(2.9), we can write that the number of spin precessions per orbit of each particle, 

v (called the spin tune of the machine), is given by the expression 

&(MeV) . 
(3.10) 

- - It is clear that whenever u is an integer, all of the machine imperfections will 

conspire to produce a strong depolarizing resonance. The spacing between the 
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primary resonances is fixed at 440 MeV. This fact causes major problems for 
r 

very high energy storage rings like LEP. The energy spread of the stored beams 

is normally a fixed fraction of the beam energy. As a machine becomes more 

energetic, the energy spread becomes a larger fraction of 440 MeV and it becomes 

progressively more difficult to avoid resonances. 

Unfortunately, the beam orbit is not the only periodic phenonemon in the 

storage ring. The beams make betatron oscillations and experience energy oscil- 

lations. The horizontal (vertical) betatron tune v, (var) is the number of such 

oscillations per orbit. The synchrotron tune uB refers to the number of energy 

oscillations per orbit. The condition for these effects to produce disturbances 

that are phased with the Larmor precession is 

u=nfiu,fju,fku, 

- 

_._._ _ - 

where n, i, j, k are integers. The resonances for which i, j, k = 0 are called primary 

resonances and those for which they are nonzero are called sideband resonances. 

Since u, and uy are normally greater than one, there are several sideband reso- 

nances between the primary resonances. The sideband resonances are normally 

much weaker than the primaries. This fact makes them useful for calibration 

purposes (the primary resonances are very broad). 

Even if our storage ring is carefully tuned to avoid resonances, other pro- 

cesses can cause depolarization. Since the beam has a transverse emittance, the 

particles are subject to random transverse fields. These can cause depolarization. 

Similarly, the passage of one beam through the other produces magnetic fields 

which can cause mutual depolarization. In practice, the measured polarization 

of a storage ring never exceeds - 70%. Even then, some witchcraft in the tuning 

of the machine is often required. 

- -- -Longitudinal Spin at Storage Rings 

Most of the current physics interest in polarized electron beams involves the 

use of longitudinally polarized beams. This has lead to the development of several 
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[‘*I schemes to install spin rotation systems in storage rings. These devices usually 

consist of several bending magnets that are installed in an experimental straight 

section. Both vertical and horizontal bend magnets are required to perform the 

spin rotation. After the interaction point, a mirror rotation must be performed 

to restore the vertical polarization before the beam enters the next machine arc. 

The designer of such a system faces a number of problems: 

1. Depolarization will result from the vertical bending magnets (due to spin 

flip photon emission). 

2. The spin rotation and anti-rotation must be precisely matched to avoid 

depolarizing the system. 

3. The bending magnets produce synchrotron radiation which can interfere 

with the experiment. 

4. The bend magnets introduce dispersion into the beam optics just before 

the interaction point. 

A scheme which solves all of the above problems is a non-trivial undertaking. 

At this time, no spin rotation scheme has yet been implemented. However, there 

are plans to do so at the HERA electron-protron collider and several schemes are 

under study for the LEP electron-positron collider. 

- 
4. Polarimetry 

The degree of polarization obtained from most electron sources often depends 

upon details of the source construction that the experimenter cannot control. The 

polarization of the beam from a given source can also vary in time. Depolarization 

effects can be caused by the acceleration and transport systems. It is therefore 
;. 

essential to be able to measure the polarization of an electron or positron beam. 

How are such measurements made? A polarized electron bunch has no macro- 
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scopic properties that could be useful.* We are inevitably lead to consider mi- 

z ,c- croscopic processes, i. e., spin-dependent scattering processes. The simplest such 

. processes are the elastic processes. These have a number of very useful properties: 

1. The cross sections for elastic scattering are normally quite large. 

2. Elastic scattering processes have simple kinematical properties. 

3. The physics of elastic electron (positron) scattering is quite well understood. 

The most easily provided targets for an electron (or positron) beam are the 

most mundane ones: nuclei, electrons, and photons. All are currently being used 

to analyze the polarization of electron beams. This chapter is divided into three 

sections, one for each target type: 

1. e--nucleus scattering - also called Mott Scattering 

2. e*-electron scattering - also called Moller (Bhabha) Scattering 

3. e*-photon scattering - also called Compton Scattering 

- 

--..._ _ - 

mu 

There are other techniques that have been used to measure the polarization 

of electron (positron) beams. These exceptions to the elastic scattering rule do 

have potential for use in some situations but are not currently being pursued 

in high energy work. One technique is to analyze the polarization of photons 

emitted in the bremsstrahlung process. Another is to examine the rate of two 

photon annihilation produced when a polarized positron beam strikes a polarized 

target .t 

-  * A polarized eleciron bunch is a V.&J weak magnetic dipole. -Unfortunately its strength 
is roughly seven orders of magnitude less than a piece of magnetized iron of comparable - ?..e- 
size. 

t This technique is useful only at rather low positron energies. 
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4.1. MOTT SCATTERING 

i ” 

The scattering of relativistic electrons by nuclei was first considered by Mott 
. 

in the late 1920’s!“’ He discovered that, due to the coupling of the electron spin 

to its orbital motion, the cross section for the transversely polarized electrons 

has a right-left asymmetry? The cross section can be written as 

g = ($)unpol[l+s(0)CiL] (4.1) 

where the unpolarized cross section is 

da ( > - 
dfl unpol = 4rn2PW sin4(e/2) 

[l - p2 sin2(8/2)] (1 - p”) (4.2) 
.Z2e4 

- 

and where S (0) is an asymmetry function (now called the Sherman function) and 

A is the axial vector that is normal to the scattering plane, R = p’ x p"/(p'x 3’1. 

Note that A has different signs for right-scattered electrons and left-scattered 

electrons. As advertised, the cross section is larger for right-scattered particles. . 
Mott was able to calculate the asymmetry function for B = 90°, 

--..._ _ 
S2(900) = (&) 2p2;l$2). (4.3) : 

Equation (4.3) manifests many of the properties of a complete calculation of 
._ S(0),. The results of a more complete calculation are shown in Figure 5. We can 

conclude the following: 

1. The asymmetry function becomes zero as p --+ 0 and as ,B + 1. It is 

typically maximum in the region p = 0.6 --) 0.8. 

2. The asymmetry function increases with increasing 2. Heavy .nuclei are & 
_ _Y. favored for polarization analysis. 

- L. 
$ The sign of the effect is most easily seen by considering the coupling of the electron 

magnetic moment to the magnetic field generated by the nucleus in the rest frame of the 
electron. 

20 



3. The asymmetry function is largest near 0 = 120”, in the backward hemi- 
,c- sphere. 

. 
Since S(0) is large for low energy electrons (kinetic energies in the range 

100 KeV to 300 KeV), it is most useful for studying the polarization of electron 

sources. A schematic of a hypothetical Mott polarimeter is shown in Figure 6. 

The electrons from a longitudinally polarized source are electrostatically deflected 

by 90”. Since the energy is very low, this has the effect of rotating the beam 

direction but not its polarization vector. The now transversely polarized electrons 

are then scattered from a gold foil. Gold has the virtue that it is a high Z material 

and can be made into very thin targets. The scattered electrons are detected in 

two electron detectors that are placed symmetrically about the beam axis at 

0 = 120”. The counting rates in the right and left detectors, NL and NR, are 

related to the beam polarization by the expression, 

p=L NR-NL 
s(e) > NRtNL - P-4 

- 
We note that the analyzing power of the polarimeter is given by S(8). For 100 

KeV electrons that are incident upon gold nuclei, S(120”) = 0.4. 

Systematics 

-__ 
Since the Mott scattering cross section is quite large, polarization measure- 

ments are nearly always limited by systematic uncertainties. The following is a 

discussion of some of the problems. 

Equation (4.4) leads to an immediate concern about how well the asymmetry 

function is known. It has been calculated to a precision of about 1% for several 

nuclei!171 The asymmetry function has also been measured (although not to very 

_ -1. high precision). The measurements make use of the fact that an unpolarized 

- .- -electron beam acquires a transverse polarization from Mott Scattering that is 

- .a.--- equal to S(0) (th is is obvious if one considers an unpolarized beam to be composed 

of two oppositely polarized beams of equal intensity). Therefore, if one performs 
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a double scattering experiment by requiring two coplanar scatterings of 81 and 02 

,%- degrees, an asymmetry 6 = S(&)S(&) will b e measured. All such measurements . . - 

. have confirmed the more precise calculations. 

Systematic errors that arise from left-right differences in the spectrometer are 

normally easy to measure and correct. This can be done by reversing the source 

polarization (if possible) and by using targets of a low Z material (for which the 

asymmetry is small). 

The most serious systematic errors that arise in Mott polarimeters come from 

multiple and plural scattering.* Low energy electrons can scatter by substantial 

angles in even the thinnest foil targets. Since the asymmetry function has a 

strong angular dependence, the effective function S(0) for a given foil can differ 

substantially from the theoretical value. The normal technique is to measure P 

with targets of several thicknesses and extrapolate the result to zero thickness. 

With care, one can measure the absolute polarization of a given source to about 

5% with this technique. 

- 

Archeology 

--..._ _ - 

.u 

An interesting but obscure experiment was performed by R.T. Cox, C.G. 

McIlwraith, and B. Kurrelmeyer in 1928!18’ They knew that electrons could 

be described by waves that are analogous to light waves. They also knew that 

electrons have two spin states. The obvious question was, are the two spin states 

analogous to the two transverse polarization states of light? They decided to try 

a double scattering experiment with electrons that was the analog of one done 

with x-rays. 

_ _T_ 

Their apparatus is shown in Figure 7. It consisted of two coaxial solid cylin- 

ders which could be rotated about a hollow tubular axis. Horizontal tubes were 

drilled into both the upper and the lower cylinders. A radium source was in- 

- - ---stalled in the upper horizontal tube. It produced electrons that were scattered 

* The term plural scattering is used to refer to the case in which the electron suffers a few 
large angle scatterings. 
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downward from a gold target mounted at the top of the vertical tube. A second 

* ,c- gold target scattered the beam into the lower horizontal tube. The electrons were . . . 
detected in a spark gap located at the end of the’.second tube. They observed a . 
significant right-left asymmetry in the plane that was normal to the source tube! 

The asymmetry was produced from a completely symmetrical arrangement of the 

detector. The reader is reminded that double Mott scattering produces an asym- 

metry that is maximal when the two scatterings are coplanar. It produces no 

effect when the scattering planes are orthogonal. The source of the asymmetry 

was, of course, the source. The electrons from a beta source are longitudinally 

polarized. The effect of the first scattering was to change the electron direction 

by 90°. The spin vector, unchanged by the first scattering, was therefore normal 

to the plane of the second scattering. The observed right-left asymmetry was 

due to the Mott scattering process that we’ve just discussed. 

- 

- 

Cox et al. performed the experiment a year or so before Mott published his 

theory. They did, however, understand that the electron spin had to be normal 

to the second scattering plane to explain the result. Instead, they presumed 

that the transverse polarization. of the emitted beam was somehow becoming 

exchanged with the incident beam direction during the first scattering. It was 

recognized at the time that their result violated parity. Unfortunately, their 

follow-up experiments were somewhat inconclusive and there was considerable 

bias in favor of parity conservation. Nevertheless, parity violation was observed 

-in 1928, nearly thirty years before it was appreciated. 

4.2. MBLLER (BHABHA) SCATTERING 

It is clear that the spin-orbit interaction can cause appreciable effects only 

at low energies. Since-the electromagnetic interaction conserves parity, we have ; 
_ _-. 

-little choice but to,provide a polarized target for our electron or positron beam. 

The most easily provided polarized target consists of magnetized iron. At mag- - z* 
netic saturation, 2 of the 26 valence electrons of each atom align their magnetic 
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moments with the macroscopic field (their spins are anti-aligned). We are there- 

.?- fore interested in considering polarized electron-electron (Mgller) scattering and 

. polarized positron-electron (Bhabha) scattering. 

The Feynman diagrams for both processes are shown in Figure 8. In lowest 

order, both processes proceed via two subprocesses. Bhabha scattering involves 

a t-channel photon exchange and an s-channel intermediate photon state. The 

lowest order Moller scattering diagrams are a t-channel exchange and a u-channel 

exchange. It is required by Fermi-Dirac statistics that the relative phase between 

the two subprocesses of both Bhabha scattering and Moller scattering is negative: 

This has important consequences in the spin dependence of both cross sections. 

For Bhabha scattering, the t-channel exchange contributes to the cross section 

both when the electron and positron spins are parallel (the spin 1 state) and when 

they are antiparallel (the spin 0 state). The s-channel diagram vanishes for the 

antiparallel spin configuration (because the electromagnetic current is a vector 

c.urrent). Because of the negative relative phase, the cross section is larger for 

the antiparallel (spin 0) configuration. This result is counter-intuitive to those 

accustomed to s-channel electron-positron physics. 

--. .- . For Meller scattering, both diagrams contribute to both spin configurations. 

The relative phase of the two diagrams insures the correct exchange asymme- 

try of the wave function. Note that when the incident spins are antiparallel, 

the ,scattered spins are also antiparallel. The antiparallel spin state contains an 

additional negative phase between the two possible orientations of the outgoing 

spins. The result is that the amplitudes add and the cross section is again larger 

for the antiparallel spin configuration. 

The preceding arguments assume that all particles in the center-of-mass frame 
_ _Y_ are sufficiently relativistic that we can ignore the mass effects. This happens for 

““-beam energies larger than several-MeV. In the high energy limit and to lowest 
- i* 

* The relative phase angle between the amplitudes of the two subprocesses is m. 

- 
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order, we can write the cross sections for Mgller and Bhabha scattering in the 

,c- cm- frame as . . - 

. da 
( > 

a2 (3 + cos28)2 - 
dR Mollei = S sin48 { 1 - P,lP$L(e) - P,‘P~At(8)cos(24 - & - 42)} 

P-5) 
cY2 (3 + cos2q2 

~tuzaa = 4s (1 - cose)2 
{ 1 - P,‘P;Az(e) - Pt’P;At(e)COs(24 - 41 - f$,)} 

(4.6) 
where: 8 is the cm frame scattering angle; C#J is the azimuth of the scattered 

electron (the definition of C$ = 0 is arbitrary); Pi, Pz are the longitudinal po- 

larizations of the beam and target, respectively; Pt, Pz are the transverse po- 

larizations of the beam and target, respectively; ~$1, ~$2 are the azimuths of the 

transverse polarization vectors; and A,(e) and At(e) are the longitudinal and 

transverse asymmetry functions which are defined as 

- 

- 

AZ(e) = 
(7 + c0s2B)sin2B 

(3 + cos2e)2 
sin48 

At(e). = (3 + cos2e)2. 

(4.7) 

_...._ _ - 

-__ 

Both cross sections have the form of an unpolarized cross section multiplied 

by the sum of one and a polarization dependent term. In fact, it is the Same po- 

larization dependent term. This polarization dependent part is odd in either the 

beam or target polarizations. Therefore, if we form an asymmetry by reversing - 
the sign of one of the polarizations, we get that 

A -= a(P1P2) - a(-PlP2) 
ee - a(PlP2) + a(-PlP2) 

= -P,lPj%(e) - P,‘P,2At(B)cos(24 - cp1 - 42). 

(4.8) 
_ _Y_ 

The experimental polarization asymmetry is given by the product of A,(e), At(e) 

and the beam and target polarizations. - 1. 

We note that unpolarized cross sections for the two processes are quite dif- 

ferent, as one would expect. It is therefore a bit surprising that the polarization 
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asymmetries are identical. The unpolarized cross sections and the longitudinal 

i- ,c- and transverse asymmetry functions are plotted as a function of cos 8 in Figure . . - 
9. Both cross sections peak in the forward direction due to the t-channel sub- . 
process. The M@ller cross section involves the scattering of identical particles 

and is therefore symmetric about cos8 = 0. Since they apply to the polarized 

Meller cross section, the longitudinal and transverse asymmetry functions have 

the same symmetry. In fact, both asymmetry functions are maximal at cos 8 = 0. 

The longitudinal asymmetry at this angle is 7/9 and the transverse asymmetry is 

l/9. The optimal angle for polarimetry is the one that maximizes the analyzing 

power. The analyzing power is proportional to the product of the unpolarized 

cross section and the square of the asymmetry. For longitudinal polarization 

analysis, the analyzing power is also maximal at 8 = 90”. 

- 

We should not be surprised that the asymmetry functions become small in 

the forward direction. They depend upon the relative size of the two subprocesses 

of each scattering process. As the magnitudes of the two diagrams become more 

equal, the asymmetries become larger. Since t-channel diagrams dominate both 

processes in the forward direction, the asymmetries must become small there. 

_...._ _ - Polarized Targets 

-__ 

Equation (4.8) f orms the basis of a polarization measurement. One need 

only measure the experimental asymmetry A,,, calculate the value[s] of A,(8) 

br At(d)], and know the target polarization. Wait a moment, know the target 

polarization? It would be extremely dangerous to assume that an iron target was 

magnetically saturated to the theoretical maximum. In practice, the degree of 

electron polarization within a piece of iron depends upon: 

1. The precise composition of the material. 
. _Y_ 

~ 2. The procedure by which the material is prepared. It is critically important 

that the material be annealed. Any mishandling can cause work hardening - i* 
and destroy the magnetic properties. 
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3. The magnitude of the saturating field. 

h. The shape of the target (the effect of edgescan be very large). 
. 

- 

_...._ _ - 

The only practical method of understanding these effects is to measure the 

magnetization density of the target and to extract the electron polarization from 

that number. A diagram of a polarized electron target is shown in Figure 10. 

A- modest (100 gauss) magnetic field can be applied along any of the three axes 

of the device to magnetize one of several foil targets (of various thicknesses). 

Because the external field is rather weak, it is important that the length of each 

target be much larger than the width (the reader is reminded that the boundary 

conditions at the iron-air interface make it much easier to magnetize an iron 

needle along its axis than transverse to its axis). The magnetization density is 

measured placing a pickup coil about the middle of a target. As the applied field 

is reversed, the total magnetic field linked by the coil can be measured. This is 

composed of two components: the internal field of the iron (the 2 field), and the 

driving field just outside of the target (the I? field). The target is then removed, 

leaving the pickup coil in place. The measurement is then repeated. This time, 

the I? field both inside and outside the target is measured. Taking the difference 

of the measurements, one can extract the magnetization density $ of the target 

- 
The magnetic moment of an atom consists of an orbital part and and a spin 

related part. It is therefore necessary to correct the measured magnetization 

density to extract that part due to the electron spins. The relationship between 

the spin related magnetization, A&, and the measured magnetization is D” 

- 

where g is the measured gyromagnetic ratio for the target material. For iron, 
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g’ N 1.90!20’ The polarization of the target is then given by the relationship 

i ;- . . - 
M, ,-- 

ptgt = - 
NePe 

(4.11) 

where N, is the electron density and pe is the electron magnetic moment. In 

practice, the measurement of P tgt is limited by systematic effects to a few percent. 

Kinematics of the e*-e- Svstem 

In the high energy limit, the laboratory frame variables are very simply re- 

lated to the center-of-mass frame scattering angle. Let P and P’ be the incident 

and scattered electron (positron) momenta in the laboratory frame. They are 

related the cm scattering angle, 8, by the expression - 

P= ~(l+cose). (4.12) 

The scattered momentum ranges from zero to the full beam momentum. At 

0 = 90”, the scattered momentum is l/2 of the beam momentum. The laboratory - 
scattering angle t&b is related to. the momentum variables by an equally simple 

equation (valid for small angles) -. . ..- . - 

(4.13) 

This angle is normally quite small. At a beam energy of 47 GeV, the laboratory 

scattering angle that corresponds to a cm angle of 90” is 4.7 milliradians (0.27”). 

Polarimetry 

We have thus far sketched the ideas that a Meller or fixed target Bhabha 

_ .Y. 
polarimeter is based upon. We can measure the polarization along each of d 

-three axes by simply providing a magnetized target for each direction (although 

not simultaneously) and by measuring the asymmetry in the rate of electrons - A...- 
(positrons) scattered into a well defined solid angle. A scheme for doing this is 
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shown schematically in Figure 11. Note that the horizontal bending magnets have 

r ,c- no function for the polarimeter (they make synchrotron radiation for the SLC . . . 

. energy spectrometer and background for the polarimeter). The main elements of 

the polarimeter are: 

1. A magnetized foil target. 

-2. A collimator to define a scattering plane (defines the azimuth of the scat- 

tered particles). 

3. A magnet and aperture that select the momentum range to be accepted 

(by Equation (4.12), this is equivalent to selecting the cm scattering angle). 

Note that the bending plane of the magnet is perpendicular to the scattering 

plane defined by the collimator. This is done to decouple P’ from &at,. 

- 

4. A detector that is capable of measuring the electron rate as a function of 

position. Since the cross sections are fairly large, the detector must typi- 

cally count many particles simultaneously (at SLC, the Meller polarimeters 

accept about 50 electrons/pulse). 

Backgrounds 

A magnetized foil target contains more than polarized electrons. It contains 

a substantial number of nuclei as well. Elastic electron (positron)-iron nucleus 

scattering produces no background to a well-designed polarimeter (the scattered 

electrons have the entire beam momentum whereas the Moller electrons have - 
about half the beam momentum). Since the cross section for deeply inelastic 

scattering is very small as compared with the Moller and Bhabha cross sec- 

tions; it also is not a serious source of background. Note, however, that the 

radiative elastic scattering process does have a large cross section and produces 

off-momentum electrons. The cross section for e* + N --+ & + N + 7 was first 

calculated by Beth:e and Heitleri211 in 1934.* The exact size of this background - 

* Because most people are interested in the photon spectrum, their result is normally pre- 
sented in a form that has had the scattered electron variables integrated away. 
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depends upon the polarimeter design but is in the range 10% --, 20%. An elec- 

r ,c- tron signal that was measured in an actual Mgller polarimeter is shown in Figure . . . . 

. 12. The number of detected electrons is shown as a a function of scattering angle 

(the upper plot). Th ere is a peak at the angle which corresponds to the accepted 

momentum. The background is well described by the Bethe-Heitler process. Note 

that this background is much more serious for a Bhabha polarimeter. The cross 

section for Bhabha scattering at 8,, = 90” is smaller than the Mgller scattering 

cross section by a factor of four. The signal-to-noise ratio is therefore decreased 

by the same factor. 

Systematic Errors 

The ability to operate a polarimeter in four polarization modes (two beam 

polarization directions x two target polarization directions), helps to study many 

possible systematic problems. Nevertheless, any polarization measurement will 

be limited by a number of possible systematic errors. The following is a partial 

list: 

- 

- 
1. It is relatively straightforward to measure the target polarization to a pre- 

cision of two or three percent. There is no conceptual reason why this could 

not be improved with a sufficiently well designed target. 

2. The intrinsic background discussed in the last section must be subtracted. 

The resulting uncertainty can certainly be less than two percent (for Mdller 
- scattering). 

3. A complete set of radiative corrections for polarized Moller and and Bhabha 

-scattering has not been calculated. The effect on the size of the cross 

sections is quite large (of order 20%). The effect on the asymmetry is 

estimated to be quite small (less than 1%). 
. _T_ 

- 4. The measurement of an asymmetry is sensitive to the linearity of the de- 

- a..-- tector. The non-linearities must be controlled to the one or two percent 

level. 
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5. The passage of the beam through the target can disrupt the spin alignment 

- z ,c- of the electrons. At SLC, the effect is estimated to be less than a one percent . . . . 

. uncertainty on the target polarization. However, the problem could become 

severe at future linear colliders (actually this problem is a red herring since 

beam conditions that are extreme enough to depolarize a target are likely 

to destroy it). 

Summary 

Moller and Bhabha scattering can be used to perform three-axis polarimetry 

on non-recirculated beams of arbitrarily high energy. The analyzing power in the 

transverse directions is usually smaller than that for the longitudinal direction 

by a factor of (1/7)2 = l/49. E ven for the longitudinal case, the measured 

asymmetry is small. At SLC, Equation (4.8) becomes 

A,, = P,'P,2A,(90°) N 0.4 -0.077.7/9 = 2.4%. (4.14) 

- 

_..~._ . c 

The cross sections are quite large. At SLC, several tens of scattered electrons can 

be detected per machine pulse. And finally, the technique can provide moderate 

precision. Systematic uncertainties on the beam polarization of 5% have been 

achieved. It is possible that 2% could be achieved in the future. 

4.3. COMPTON SCATTERING 

- 
Another easily provided, polarizable target for an electron or positron beam 

is a beam of photons. Electron (positron) - photon elastic scattering is normally 

called Compton scattering. Feynman diagrams of the two lowest order subpro- 

cesses are shown in Figure 13. The scattering process proceeds via s-channel and 

t-channel electron exchanges. The relative phase of the two diagrams is positive? 
_ _T_ Both diagrams contribute to the scattering process when the incident spins are 

- 
antiparallel (spin i/2 case). However, when the spins are parallel (the spin 3/2 

* The relative phase angle of the two amplitudes is zero. 
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case), the s-channel amplitude becomes zero. Therefore, the cross section is again 

z ,c- larger for the antiparallel spin configuration. 

. Because optical photons have very little energy, the total energy in the center- 

of-mass frame is quite small. The collision of a 46 GeV electron with a photon of 

energy 2.23 eV (from a Nd:YAG laser) has a total center-of-mass energy (squared) 

of 

s = m2 + 4E,E, N (2.6 + 4.1) x lo-’ GeV2 (4.15) 

where E, and E, are the electron and photon energies, respectively. Note that 

the ratio m2/s is not small. We cannot ignore mass terms in this frame. The 

center-of-mass frame therefore has no particular advantage for simplifying the 

form of the cross section. Making use of the idiom, if you can’t beat them, then 

you might as well join them, we’ll consider the differential cross section in the 

frame of maximal mass effects, the rest frame of the electron. 

- 

- 

The differential cross section for the scattered photon in the rest frame of the 

electron is given by the expression ml 

_.-._ 
- 

= -r 2 

(I[ 

Ict 2 tk - kr)2 +1+cos2fj 
Ok kk’ 0 11 1- PVeAe7(& i’)} (4.16) 

where: r0 is the classical radius of the electron (r, = 2.82 x lo-l3 cm); $ and 

I? are the momenta of the incident and scattered photons, respectively; 8, is 

The ‘photon scattering angle (the famous relationship between 8, and k, k’ is 

1 - cdi?, = m[l/k’ - l/k]); P7 is the circular polarization of the photon; P” is 

the electron polarization; and the asymmetry function Ae7(g, 2) is defined as 

_ _=. 
Ae7(&,) = (j$-$ )[~cose,+P] 4 

w Se + i + cos2eo 
(4.17) ; 

- L-. 

We note that only photon helicity states couple to the electron polarization. - A* 
(The scattering of linearly polarized photons by electrons produces an azimuthal 
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asymmetry that is independent of the electron spin.) The asymmetry function 

i i-. depends upon the scalar product of a linear combination of z and 2’ with the . . - 
. electron spin direction. In principle, this permits three axis polarimetry. In 

practice, however, such a device would be difficult to construct and operate. 

Comnton Scattering Kinematics 

The kinematical properties of the scattering of a high energy electron with an 

optical photon seem quite strange to those accustomed to working in reference 

frames that are nearer the center-of-mass frame. The energy of the electron is 

typically 10 orders of magnitude larger than that of the photon. It is clear that 

all final state particles are swept into the forward direction (along the incident 

electron direction). It is therefore convenient to define all angles with respect to 

the incident electron direction. The direction of the outgoing photon, OK, differs 

from the normal definition of the scattering angle by 180” (if the colliding e-7 are 

collinear). If we let E, E’, K, and K’ be the incident electron energy, scattered 

electron energy, incident photon energy, and scattered photon energy, we can 

write the maximum energy of the scattered photon KiaZ and the minimum 

energy of the scattered electron Eli, as 

__ 

K’ maz = E(l - y) 

ELain = Ey 

where the parameter y is defined as 

(4.18) 

- 
y= - ( 

1+4EK -l -y& - > 
The emission angle of the scattered photon 0K is related to the scattered photon 

energy by the following expression, 

_ _=. 
- 

K’=K;az[l+y($)2]-1=K;az-2. 
L- 

(4.19) 

- 

- A* The parameter x varies from unity at zero emission angle to zero at larger angles. 

The scale of the angular range is set by the angle for which the energy has been 
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reduced by a factor of two. This occurs when E&fi/m = 1 or at the angle 

z ,c-. eK- = m/E@. A s an example, we’ll assume that a 46 GeV electron collides . . . . 

. with a photon from a frequency doubled Nd:YAG laser (the photon energy is 

2.23 eV). The value of y in this case is 0.389 which implies that the maximum 

photon energy is 28.1 GeV and that the minimum electron energy is 17.9 GeV. 

The angle at which the photon energy has been decreased by a factor of two is 

1.8 x 10S5 radians. We see that the high energy photons remain along the beam 

direction. 

The Tranformation from the Electron Rest Frame to the Laboratory Frame 

The transformation from the electron rest frame variables to the laboratory 

variables is given by the following equations: 

K=gk 
m 

K’ i - coseo (4.20) 
xc-= 

Kkaaz 29 + (I - y) (I - cos e,) . 

- 
Using Equations (4.20), we can express the Compton cross section as given in 

Equations (4.16) and (4.17) in terms of the laboratory variables x, y, and the 

azimuth of the photon with respect to the electron transverse polarization di231 
- . ..- . 

d2a ( > dxd4 Compton 
= (G)unpo,(l - P7[P,“A;7(x) + P;cos~A;~(x)]} (4.21) 

where the unpolarized cross section is defined as 

and where the longitudinal and transverse asymmetries are defined as 

Ai7(x) = 2Y [l - x(1+ Y)] { 1 - [l _ .(: _ y)]2} * (&j);;p;l 
. . _-. [4xy(l - x)]lj2 

- Ac7(x) = r,2yx(l - y) 
1 - ~(1 - y) ’ 

- 

These equations are difficult to visualize and interpret without a bit of assis- 
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tance. The unpolarized cross section and the longitudinal and transverse asym- 

i ,c- metries are plotted as functions of x in Figure 14 for the case of a 2.33 eV photon 

. incident upon a 46 GeV electron (y = 0.389). W ‘. e note that the cross section is 

very large (several hundred millibarns) and peaked at x = 1. The longitudinal 

asymmetry has a maximum of 75% also at x = 1. Note, however, that as x is 

decreased, AZ7 decreases rapidly and becomes negative near x = 0.72. It reaches 

a minimum of -25% near x = 0.47 and returns to zero at x = 0. The trans- 

verse asymmetry is zero at both endpoints and reaches a maximum of 33% near 

x L 0.75. 

Compton Polarimetry 

A greatly simplified diagram of a generic Compton Polarimeter is shown in 

Figure 15. The electron (positron) beam is brought into collision with a circularly 

polarized laser beam at a small angle. 

- 

The current laser of choice is the frequency doubled Nd:YAG laser which 

produces red photons of energy 2.23 eV. They are capable of producing short 

(less than 10 ns) p u ses 1 of several millijoules to several hundred millijoules. The 

repetition rate of these devices is normally in the range of ten to one hundred 
- . ..- . pulses per second. The rate of Compton scatters is typically 100 to 10,000 per c 

pulse, depending upon the electron current. The linearly polarized laser light 

is converted to a circularly polarized beam by passing it through an electrically 
-__ reversible birefringent cell known as a Pockel’s cell. The voltage is adjusted to - 

produce a l/4 wave shift and can be reversed (reversing the polarization) each 

pulse. With care, the polarization of the photon beam can be nearly 100%. 

The scattered electrons and photons travel with the unscattered electron 

beam until they are separated by a bending magnet. The photons, -of course, 

continue to travel in the same direction. The trajectories of the scattered electrons 

- ._ --are bent by larger angles than the unscattered beam. Normally, one detects either 

the photons or the scattered electrons. Attempting to detect electron photon 

coincidences would severely limit the rate which could be counted. 

- 
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Detecting the electrons has a number of advantages and limitations. The 

z ;- largest analyzing power occurs at large x. This is where the electrons have the 

. smallest energy and are easiest to separate from the beam. A simple position 

sensitive detector can easily measure the rate as a function of electron energy. 

This provides many systematic checks and allows for the direct measurement 

of background (the signal and background have very different energy spectra). 

Unfortunately, it is generally not possible to measure the transverse polarization 

of the incident beam by detecting the electrons. Referring to Equation (4.21), we 

note that the transverse asymmetry is modulated by the factor cos 4 . Accepting 

electrons from the entire azimuth causes the transverse cross section to integrate 

- 

to zero. It is necessary to split the azimuth into at least two parts to make a 

transverse measurement. We have seen that the laboratory scattering angle of 

the electrons (which is similar to the emission angle of the photons) is very small 

(tens of microradians). It is therefore necessary to have a very parallel incident 

electron beam and to let the scattered electrons drift a large distance before any 

attempt is made to separate the beams. In any real accelerator, this is impossible. 

Quadrupoles are normally needed in straight sections. 

- 

Detecting the photons also has advantages and limitations. The energy spec- 
- . ..- . c trum of a photon flux is more difficult to measure than that of an electron flux. 

One can integrate the entire photon energy and measure the polarized energy 

asymmetry. This has the unfortunate result of severely reducing the analyzing 

-power. The advantage of photon detection is that it permits transverse polarime- 

try. As we have seen, storage rings develop vertical polarization. The coupling of 

the electron polarization to the photon helicity produces an up-down asymmetry 

in the scattered particles. A detector placed above and/or below the beam plane 

can measure the transverse polarization. This also avoids the intense synchrotron 

_ _-. radiation present in the beam plane. Note that averaging over azimuth effectively 

- -- -reduces the working asymmetry from more than 30% to less than 15%. 

i 

Backgrounds 
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Unlike the Mgller technique, Compton scattering doesn’t have an intrinsic 

z ,s-’ background problem but machine-related backgrounds are quite common. Since 

. nearly all Compton polarimeters are near an electron-positron collision point, ra- 

diative Bhabha scattering usually provides a significant background of off-energy 

electrons and photons. These depend very much on the particulars of the po- 

larimeter and the machine. However, background levels of a few percent to ten 

percent are typical for a well-designed system. Such backgrounds can, of course, 

be measured (by not firing the laser). 

Radiative Corrections 

A complete set of first order radiative corrections to polarized Compton scat- 

tering has been calculated by Gongora and Stuart!241 The effect on the tree 

level cross section is to change it by less than three percent. The effect on the 

asymmetries is less than one precent. 

- 

Systematic Uncertainties 
- 

The kinds of systematic uncertainty that affect a Compton scattering based 

polarization measurement are very similar to those that apply to Meller scatter- 
- . ..- . c ing. The following is a short list: 

-__ 

1. As with Mgller scattering, it is essential to understand the degree of po- 

larization of the target. Normally, the laser beam must be passed through 
- 

windows and reflected from mirrors. This can easily cause depolarization 

and must be done very carefully. It appears that the uncertainty on the 

beam polarization can be controlled to AP7/P7 2 1%. 

2. As was mentioned previously, there is no intrinsic background to Comp- 

ton scattering. Most Compton polarimeters must deal with machine back- ; 
_ _T_ 

- grounds. The rate of such backgrounds can easily be measured with suffi- 

cient precision to reduce their effect upon polarization measurement to less 

than a few tenths of a percent. 
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3. As with the Moller case, it is essential to monitor non-linearities of the 

i ,c- - detection system. Most detection systems care not linear to better than 

a percent or several percent. These must be corrected to a level that is . 
compatible with the other uncertainties. 

4. Since the longitudinal asymmetry is a strong function of the scattered par- 

ticle momentum, it is very important to understand the energy scale of the 

detector. If we take the case of a 46 GeV electron incident upon a 2.33 

eV photon, an energy shift of 100 MeV causes a fractional change in the 

asymmetry of 1.1 %. The transverse asymmetry has a much smaller energy 

dependence about the maximum and this effect becomes negligible. 

- Bottom Line 

The Compton scattering technique has several advantages and several disad- 

vantages as compared with the Moller technique. The advantages are: 

- 

1. The target polarization of a Compton polarimeter is 13 times larger than 

that of a Moller polarimeter. The measured asymmetry is larger by roughly 

the same factor (because the theoretical asymmetries are comparable). The 

number of events needed to measure the beam polarization to a given preci- 

sion scales with the square of the measured asymmetry. Therefore, a given 

Meller measurement requires a sample of data that is more than 100 times 

larger than a comparable Compton measurement. 
-__ 

- 2.. The systematic error in the degree of target polarization is probably smaller 

for a Compton polarimeter. 

3. The Compton process does not have an intrinsic background problem. 

4. Compton devices are non-destructive to circulating beams and can be used 

at storage rings. 
_ _=. 

- ._ iap_ The disadvantages of the Compton process are: L. 

1. All Compton polarimeters built thus far are single axis devices. A two _ =* 
axis device is conceptually possible but would be non-optimal. (This is 
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2. 

3. 

obvious if one compares the longitudinal and transverse asymmetries as 

shown in Figure 14. The maxima of the asymmetries tend to occur at the . . _ 
zero points of the other asymmetry.) Three axis Moller polarimeters are 

relatively straightforward to build and operate. 

The longitudinal polarization asymmetry of Compton scattering is a strong 

function of the scattered particle energy. Very good detector resolution and 

calibration are required. The dependence of the longitudinal Moller asym- 

metry upon the scattered particle energy is much weaker. The requirements 

upon the detection system can be relaxed considerably. 

The laser targets used in Compton scattering are complex and expensive 

devices as compared to the foil targets used for Moller scattering. - 

5. The Polarized SLC 

-__ - The electrons must be stored in the North Damping Ring for one machine 

cycle (the cycle time is 2 5.5 ms). As we have already seen, only vertical polar- 

ization can be maintained in a storage ring. It is therefore necessary to rotate 

the spins into the vertical direction. The angle of the initial LTR bend has been 

chosen to precess the spins of 1.21 GeV electrons by 5 x 90” (requires. a bending 

angle of 5 x 32.8O). The electron spins are therefore rotated into the horizontal ; 
_ _ ._-. 

- ._ direction. - A superconducting solenoid (of strength 6.34 Tm) is then used to ro- 

- - tate the spins into the vertical direction and the bunch is stored in the damping 

ring. After one machine cycle, the bunch is extracted and passed through another 

- 

--_.- . - 

Considerable is being made to polarize the electron beam of the SLAC Linear 

Collider. The machine is shown schematically in Figure 16. A gallium arsenide 

based photon emission source produces pulses of up to 1011 longitudinally po- 

larized electrons at repetition rates of up to 180 Hz. The electrons are then 

accelerated in the first sector of the linac. The beam pulse achieves an energy of 

1.21 GeV as it arrives at the entrance of the LTR (Linac To Ring) transfer line. 
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superconducting solenoid of the same strength. The spins are rotated back into 

;- the horizontal plane. The bend angle of the RTL (Ring To Linac) transfer line . . _ 
. has been chosen to precess the spins by 3 x 90”. The beam pulse arrives back in 

the linac with its original longitudinal polarization. It is necessary, in general, to 

accelerate beams of arbitrary spin direction in the linac. The addition of a third 

superconducting solenoid into sector 2 of the linac, downstream of the RTL-linac 

interface, provides sufficient flexibility to do this (it must be used in combination 

with the RTL optics). 

The beam pulse is then accelerated to nearly 50 GeV in the linac. To insure 

that the spin gymnastics in the damping ring have worked properly and to study 

many of the potential sources of depolarization, a Moller polarimeter is located 

at the end of the linac near the PEP injection line. This polarimeter is used 

primarily for diagnostic purposes. 

- 

The beam pulse is then transported through the north machine arc and the 

final focus section to the interaction point. At full energy, the spin vectors precess 

roughly 26 times. Since the arcs are not planar, vertical precession also occurs. 

Since longitudinal polarization is required at the interaction point, the precession 

--_.- . - 
must be calculated for the exact machine energy and the polarization at the arc 

entrance appropriately adjusted. 

-__ 

After colliding with the unpolarized positron bunch, the electron beam is 

transported through the south final focus system where a Compton polarimeter 

is located. The beam continues to the south extraction line where a second Moller 

polarimeter is located. The bending magnets of the final focus and extraction 

line cause an additional spin precession of roughly 540° between the interaction 

point and the M@ller target. Both polarimeters continuously monitor the beam 

polarization. 
_ ._ -. 

--- 

- 
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LECTURE II: POLARIZED ELECTRON-POSITRON PHYSICS 

,a-. -In the first lecture, we discussed some of the,: techniques that are currently 

being used to produce, transport, and monitor polarized electron and positron 

beams. This lecture will survey some of the physical applications to which such 

beams can be put. As was discussed in the introduction to the first lecture, 

electron-positron colliders have now achieved sufficient energy that the weak in- 

teractions can be observed directly. The 2” pole represents the beginning of 

this energy regime. The pole is a rich source of information about the Standard 

Model and its range of validity. For the purposes of this lecture, we therefore 

choose to redefine the title of this Institute to Looking At and Beyond The 2”. 

6. Definitions 

- 

--_.- . - 

-__ 

It is convenient, for the purposes of this lecture, to slightly change the co- 

ordinate system convention that we have been using. The momentum variables 

are still described by a right-handed coordinate system. The incident electron 

direction defines the z-axis. The y-axis points vertically upward and the x-axis is 

horizontal. However, the longitudinal polarizations of the electron and positron 

beams will be described in terms of a helicity basis rather than in terms of a 

spatial coordinate system. Right-handed particles have P, = +l and left-handed 

particles have P, = -1. The transverse polarizations will still be described in 

terms of the spatial coordinate system. These conventions are shown in Figure 

17. 

_ 
_ _-. 

- ._ nh 
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7. The Cross Section for e+e- + ff 
i .-- 

The-‘dominant electron-positron annihilation cross sections at energies that 
. 

are comparable to or less than the threshold for W boson pair production are 

those that produce fermion-antifermion (ffl p airs. It is quite instructive to study 

the polarization dependence of the f f cross section. 

Let us assume that the matrix elements for annihilation of a left-handed 

electron with a left-handed positron and a right-handed electron with a right- 

handed positron are zero (vector and axial vector currents have this property). 

The matrix element for the process e+e- - + f f is then given by the following 

expression, 

x IN2 - Cl- Pi-)( 1+ P,+)p4LI” + (1+ Pp((1 - &+)(&I2 
final 

spins 

+ 2Pt-Pt+ [Re(MLMh) cos Cp + Im(MLMk) sin@] 
(74 

- 

---.- . - 

where: Pz*, Pt* are th e 1 ongitudinal and transverse polarizations of the positron 

and electron beams; ML is the matrix element for annihilation of a left-handed 

electron with a right-handed positron; and MR is the matrix element for the 

annihilation of a right-handed electron with a left-handed positron. The quantity 

@  is defined by the expression 

.._ 
0=2f$-qr-4S+ (7.2) _ 

- 

where 4 is the azimuth of the outgoing fermion and d* is the azimuth of the 

positron(electron) transverse polarization vector. 

Using Equation (7.1), we can write the cross section for e+e- + ff in the 

center-of-mass frame as ‘25’ 
_ . 

_ ._r. 

- ._ w 2% = (1 - P,+P;)a, + (P$-- P;)a, + Pt+Ptw [atcos@ +&sin@] (7.3) 

e 

where s is the square of the center-of-mass frame energy and where the various 
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helicity cross sections and their matrix element compositions are listed in Table 

z ,L- II: - . . _ 

. Table II 

The Helicity Cross Sections for the Process e+e- -+ ff 

1 Symbol 1 Helicity Cross Section Matrix Element Structure I 
Unpolarized glb - (IML12 + IMR12) 
Longitudinal oz - (IhI - IMRI~) 
Real Transverse q - Re(MLMk) 
Imaginary Transverse 6t - Im(MLMk). 

We note that the longitudinal cross section is non-zero whenever parity is 

violated (i.e., whenever the left- and right-handed cross sections are different). 

The longitudinal polarization of either beam (or both beams) will cause the 

differential cross section to manifest uZ. Transverse polarization effects are only 

possible if both beams are polarized.* 

- 

- 

--_.- . - 

Let us assume that the process e+e- + jf is mediated by photon and 2” 

exchange only. Although the tree-level cross sections are substantially modified 

by real and virtual first order corrections, it is very useful to consider only the 

lowest order terms. We shall discuss the effect of radiative corrections in a later 

.__ 
chapter. Each of the four helicity cross sections then contains a photon exchange 

term, a 2” exchange term, and a photon-Z” interference term. 

In general, the helicity cross sections depend upon: v and a, the vector and 

axial-vector couplings of the 2” to the electron; of and at, the vector and axial 

vector couplings of the 2” to the fermionic current; &p, the electric charge of the 

fermion (in units of~e); I’(s), th e normalized 2” propagator (I’(s) = s/[s - Mg + 
_ _ ._-. iMzI’z]); and c, the cosine of the polar angle of the outgoing fermion. We have - ._ w -. 

* Transverse polarization of a single beam leads to effects of order m/,/S. 
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chosen the following definition for the vector and axial vector coupling constants, 

z .-- . . -_ Vf = (Ii - 2Qfsin20w)/sin28, 
. (7-4 

af = - I,f/ sin 26, 

where I$ is the third component of fermion weak isospin and sin28, is the well- 

known electroweak mixing parameter. The following section lists the tree-level 

terms of the four helicity cross sections! The reader’s indulgence is requested. 

1. The unpolarized cross section can be decomposed as follows: 

u, = a: -I- tq= -I- a$ (7.5) 

a,r = Q;(l + c2) 

2. The longitudinal cross section can also be decomposed into three parts: 

_--.- . - a; = 0 

- 

02~ = 2QfRe{I’(s)} [(l + c2)avf + 2cvaf] 

uz = -Il?(s)12 [2(1+ c2)va(vF + a;) + 4c(v2 + a2)vfaf] z 

3. The real transverse cross section can be decomposed as follows: 

ut = a; + ut 7z + u,Z, V-7) 

a: = Q;(l - c”) 

. ut 7z = -2QfRe{I’(s)}(l - C~)VV~ 

Qt z = -p-ysj~2(l - c”)(v” - a”)($ i a;). 

e 

t It is assumed that the mass of the fermion rnf is small as compared with 6. 
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4. The imaginary transverse cross section can be decomposed as follows: 

z ,z- . . -. -7= iit = iq + ut + .-Gt” , (7.8) 

q = 0 

iYzz = 2Im{l+)}(i - c2)avf 

Qt -= = 0. 

Most of our discussion will involve the remarkable properties of polarized 2” 

production. At the 2” pole, the various helicity cross sections can be simplified 

considerably. The pure photon exchange terms (denoted by ~7) are quite small 

as compared with the pure 2” exchange terms (denoted by a=). Most of the 

electroweak interference terms (denoted by ~7~) are proportional to the real 

part of the 2” propagator 

s(s - M&q 
Re{r(s)) = (s _ ~;)2 + M;ri 

- 
which vanishes at s = iWj$. The only electroweak interference term that doesn’t 

vanish at the 2” pole is the one in the imaginary transverse cross section, 

_--.- 
- 

The imaginary part of the propagator is equal to the ratio of the 2” width to its 

mass. This term is therefore very small. The complete, polarization-dependent 

zross section for e+e- + ff at the 2” pole can thus be written as 

- 

(l- P:P;)[(l+ c2)(v2 + a")($ + a;)+ 8cvavfaf] 

- (P,+ - P;)[2(1+c2)va(vj + a7)+4c(v2 +a2)tifaf] 

+ Pt+Ptdcos9(1- c2)(V' - a")($ + a;) 
> 

- . 

(7-g) ec 

The interpretation of this mess is aided by a brief discussion of coupling constants. 
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Coupling Constants 

.-- -It is often quite convenient to transform the vector and axial vector coupling 
. constants to a left- and right-handed helicity basis.* The definitions of the left- 

and right-handed couplings to the 2” current are 

gi = vf - af = (2l;f - 2Qfsin28,)/ sin 28, 

gi = vf + af = -2Qfsin2B,/ sin 28,. 
(7.10) 

To get a feeling for the magnitude of the couplings of the various fermions to the 

Z”, Equations (7.4) and (7.10) are evaluated in Table III for a complete quark 

and lepton generation. 

Table III 

- 

_-_- . 
- 

The coupling constants of various fermions to the 2”. The value of 
sin2B, is assumed to be 0.230. All coupling constants are listed in units 
of [sin 28,1-l. 

Fermion I a I V I SlL I &‘R I 

Neutrino -0.5 0.5 1.0 0 

Charged Lepton 0.5 -0.04 -0.54 0.46 

u Type Quark -0.5 0.19 0.69 -0.31 

d Type Quark 0.5 -0.35 -0.85 0.15 

- 

.__ Note that the vector coupling for charged leptons is quite small (equivalently, 

ie could say that ]gL ] N ]gR 1). Th e consequences of this fact will be discussed in 

the next chapter on asymmetries. 

* Technically this is a chirality basis and not a helicity basis. However, since we have assumed 
that all fermion masses are small, this distinction remains one of terminology rather than 
one of physics. 
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8. Asymmetries 

i ,-- 
At low-energies, the differential cross sectiorr’for the process e+e- ---) ff is 

. 
dominated by photon exchange. As a consequence, the cross section has a sym- 

metrical angular distribution and no particular polarization dependence. Search- 

ing for asymmetries of the cross section was therefore a useful technique for 

searching for new physics. The differential cross section at the 2” is expected to 

have nearly symmetrical leptonic angular distributions and to be nearly symmet- 

ric in the beam helicity. The deviations from symmetry are sensitive functions 

of the weak mixing parameter, sin26,. Measurements of the various asymme- 

tries are expected to provide sensitive tests of the Standard Model. They are 

also expected to be sensitive to the presence of new physical phenomena. In the 

following sections, we shall discuss several of these asymmetries. 

8.1. THE UNPOLARIZED FORWARD-BACKWARD ASYMMETRY 

- 

*--.- . - 

The unpolarized forward-backward asymmetry has been used for some time 

to search for electroweak interference effects. At the 2” pole, it still retains some 

utility. The forward-backward asymmetry for the process e+e- + ff, AgB, is 

defined by the expression 

(84 

where x is an integration limit imposed by the acceptance of the detector. At 

the 3” pole, we can substitute Equation (7.9) into Equation (8.1). The resulting 

prediction of the Standard Model for AiB is 

_ _ _-e. AiB(x) = F(x) - 
- ._ - ;. 

- I* = F(x) - 

3avaf vf 

(a2 + v2)(a; + v;) _ 

3 (s2 - sb)(& - & 

i (SZ + gf&d” + !$, 

(8.4 
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where the function F(x) is 

I .-- . . - F(x) = &. ,( (8-3) 

Since F(l)-= 1, we choose to define the symbol AcB (1) = AiB. 

We can make several observations about the forward-backward asymmetry. 

1. The forward-backward asymmetry depends upon the couplings of both the 

electron and fermion to the 2”. 

2. Since the flavor of a hadron jet is difficult to tag, precision measurements 

of AiB are inevitably made with muons (or perhaps with tau leptons). 

3. The forward-backward asymmetry for lepton final states* is quite small. 

Assuming lepton universality, the asymmetry is 

- 

AiB = 3a2v2 
(a2 + v2)2 

N 2% (at sin28, = 0.230). 

*--.- 
- 

The small size is caused by the quadratic appearance of the leptonic vector 

coupling. 

8.2. THE LEFT-RIGHT POLARIZATION ASYMMETRY 

- 
The forward-backward asymmetry is designed to select those parts of the 

differential cross section that are odd under spatial reflection. It is therefore 

useful for studying parity violating components of the cross section. As we have 

already seen, the longitudinal helicity cross section also violates parity. It has 

a spatially symmetric part and a spatially antisymmetric part. We shall find it 
_ _ _-. useful to select the spatially symmetric part. - ._ - ;.. 

* We note AbB is sometimes called the leptonic charge asymmetry because the negative 
particles are found preferentially in the forward (electron) hemisphere. 
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The effect of the longitudinal helicity cross section up on the differential 

z .-- cross section is odd in the difference P, + - P.J. It is therefore useful to define a . . -. 
. generalized beam polarization Pg that has the same property and a convenient 

normalization, 

p 
B 

- pz+ - pz- 
1 - P,+P,-’ (8.4 

Note that Pg is positive whenever the electron beam is left-handed and/or the 

positron beam is right-handed. It is negative whenever the reverse is true. The 

generalized polarization becomes unity when either beam is completely polarized. 

At SLC, the positron beam will be unpolarized. The generalized polarization 

therefore has the simple form, Pg = -Pzm. 

The left-right asymmetry can now be defined by the following expression, - 

Af ( 
LR x 

) = s_“, dcg(Pg = 1) - J:, dcg(Pg = -1) 

s_“, d&PSI = 1) + s_“, dc$$‘g = -1)’ (8.5) 

- 

---.- . - 

We can use the tree-level cross section given by Equation (7.9) to evaluate the 

left-right asymmetry at the 2” pole. Before doing so, it is convenient to rewrite 

the differential cross section in terms of the generalized polarization. Ignoring 

the transverse polarization terms and the normalization details, we can express 

the cross section as 

.._ $ cc (1 + c2) [(v” + a”)($ + a;) - Pg2va(vf + a?)] 
- P-6) 

+c [8vavfaf - Pg4vfaf(v2 + a”)]. 

Substituting this expression into Equation (8.5)) we can write that the tree-level 

expression for AiR(x) at the 2” pole is 

- ._ w ;. 

- 1-r- This equation is full of surprises! First of all, it does not have any dependence 

upon the final state fermion couplings. It depends only upon the initial state 
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electron couplings. Nor does it depend upon the acceptance of our detector. The 

I  ,=- x dependence of the cross section integrals has cancelled from the ratio. Finally, . . -. 

. we note that the asymmetry is linear in the electron vector coupling. This has 

the advantage that the left-right asymmetry is much larger than the leptonic 

forward-backward asymmetry. At sin28, = 0.230, the left-right asymmetry is 

0.16 which is about eight times larger than AbB. 

One might ask just how general these results are. Does the inclusion of final 

state hadronic interactions spoil the result? What is the result of adding all final 

state fermions (except the electron final states)? The following section sketches 
- I=31 an argument due to Lynn and Verzegnassl. 

The effect of final state interactions and fragmentation can be incorporated 

into Equation (8.6) by replacing the factors (1 + c2) and c with f dependent 

functions, 

1 + c2 + Sym(c, f) 

c + Antisym(c, f) 
(8.8) 

- 

_--.- . - 

where Sym(c, f) is a symmetric function of c and Antisym(c, f) is an antisymmet- 

ric function of c. We now form the left-right asymmetry of the total event sample 

(which is obtained by summing symmetric integrals for each fermion type), 

- 

- 

A LR = 
Cf {ST;, dcg(P, = 1) - s_“‘,, dcg(Pg = -l)} 

C/ {s_“:, dc&Pg = 1) + j+:‘,, dcg(P, = A)} 

-2va Cf s_“& dc(vT + a;)%-& f) 
= (v2 + a2) Cf s_“L, dc($ + $)Sym(c, f) 

(8.9) 

-2va = = sz - szi 
_ _ ._T. v2 +a2 sZ+&’ 

--- ;. 

- 1* Note that in spite of final state effects and the use of different integration limits 

for each fermion type, the form of asymmetry is unchanged. It is a remarkably 
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robust quantity. We can use the entire sample of hadronic 2” decays as well as 

,=- the muon and tau lepton final states to measure ALR. The electron final states . . -. 

. must be excluded because we have excluded the t-channel processes from our 

analysis. 

Sensitivity to sin28, 

The left-right asymmetry has a very simple dependence on the electroweak 

mixing parameter sin2B,, 

A 
2(1 - 4sin2B,) 

LR = 1 + (1 - 4sin2f3,)2’ 
(8.10) 

The asymmetry is a very sensitive function of sin28,. Small changes in sin28, 

lead to very large changes in ALR, 

~ALR N 86sin28,. 

- 

_--.- . - 

In constrast, the leptonic forward-backward asymmetry is much less sensitive to 

sin28,. A comparision of AkB and ALR is shown in Figure 18 as a function 

of sin2ecu. The advantage of ALR is particularly pronounced in the region near 

sin28, = 0.25. 

.__ 

_ 
_ ._P. 

The Experimental Asymmetry 
- 

In a real experiment, one never has completely polarized beams. This causes 

the measured asymmetry AyL to differ from the theoretical asymmetry. The 

relationship of A:; to ALR is given by the expression 

A ev _ Neu(pS) - Neu(-Pg) _ p A 

LR - Neu(Pg) + Neu(-P,) - g LR - 
(8.11) 

-.._ - ;. 

_ 1* where Neu ( Pg) is the rate of events measured with a beam polarization of Pg. 

The size of the measured asymmetry is equal to the product of the theoretical 
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asymmetry and the generalized polarization.* 

,=- It is. rather simple to derive the error on theytheoretical asymmetry that is 
. expected after Ntot events, 

AALR= A,, [ 2 (~)'+jgl" (8.12) 

where we have assumed that (PgALR)2 < 1. The first term in the square brackets 

gives the error on the left-right asymmetry in the limit of large statistics. The 

fractional uncertainty on ALR is limited by the fractional uncertainty of the beam 

polarization. The second term gives the statistical error. Note that the rate of 

convergence to the asymptotic limit is governed by the size of Pg. 

_ 

- 

- 

_--.- . - 

.__ 

The expected uncertainty of a measurement of the right-left asymmetry is 

shown in Figure 19 as a function of the number of 2” events collected. The 

beam polarization is taken to be 45%. The 2” mass is assumed to be 92.5 GeV. 

The corresponding uncertainty on sin28, and on Mz is shown on the right- 

hand scales. The three branches of the A LR curve refer to the precision of the 

polarization monitoring. From top to bottom, AA LR is shown for API P = 

5%, 3%, and l%, respectively. A sample of lo5 to lo6 events is sufficient to 

saturate the asymptotic limit, depending upon the precision of the polarization 

monitoring. The expected uncertainty on sin28, from a measurement of the 

leptonic forward-backward asymmetry is also shown. The beams are assumed to 

be unpolarized and the number of muonic decays is assumed to be given correctly - 
by the Standard Model. We note that the measurement of ALR outperforms the 

forward-backward measurement in all cases. 

The current and proposed precision of several other measurements of the 

electroweak parameters is also summarized in Figure 19. Note that only the left- 

right asymmetry measurement will provide information that is as precise as the 

-.._ *p * A more sophisticated scheme to extiact A LR from various event rates has been proposed 
for LEP. 12” In principle, this scheme measures the beam polarization and the spin 0 cross 

1c section in addition to the theoretical asymmetry. It places rather different requirements 
on the beam polarimetry than those discussed in this section. 

52 



2” mass measurement. We shall see in the next chapter that several independent 

r-‘ and precise measurements are necessary to properly test the Standard Model. . . _ 

8.3. THE POLARIZED FORWARD-BACKWARD ASYMMETRY 

It is clear that the left-right asymmetry enables the efficient and precise 

measurement of the couplings of the weak neutral current to the electron. The 

predictions of the Standard Model can be given close scrutiny by this technique. 

However, it is still important to measure the coupling of the 2” to all possible 

fermions. It is certainly straightforward to detect and measure muon and tau 

lepton final states. Heavy quark final states aren’t too difficult if semileptonic de- 

cays are used for tagging. Good microvertex detectors and particle identification 

appear to be very useful for this purpose as well. 

We recall that the unpolarized forward-backward asymmetry was sensitive to 

the final state fermion couplings. In fact, we can rewrite the expression for AiB 

(Equation (8.2)) as 

--_.- 
- 

3 g;-g; gi’ -gi2 3 & = - . . =-. 
4 s;+s; gr+g; 4 ALR&~ (8.13) 

where we have defined Af LR to be the combination of fermionic coupling constants 

that is equal to ALR in the case that f denotes an electron. Table IV lists AfLR - 
and AgB for each type of detectable fermionic final state. It is assumed that 

sin2B, = 0.230. 

Table IV 

_=. 
Fermion 4R _ AiB 

Charged Lepton 0.16 0.02 ;. 
u Type Quark 0.67 il.08 

d Type Quark 0.94 0.11 
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Note that the small size of ALR reduces the potentially large size of the 

,?- forward-backward asymmetry. . . _ 

. We are lead to an obvious question, what happens to the forward-backward 

asymmetry when polarized beams are used? Substituting Equation (8.6) into 

Equation (8.1) (with x = l), we can derive the forward-backward asymmetry for 

a beam polarization Pg, 

&(pg) = 3. pg + ALR . AfLR = a. peff . AfLR. 
4 l+PgALR (8.14) 

We note that the factor ALR in the unpolarized case (which is the natural electron 

polarization caused by the 2” couplings) has now been replaced by the factor 

P 
P,+ALR 

eff = 1 + PgALR’ 

- 
Because ALR > 0, the forward-backward asymmetry becomes much larger 

when left-handed beam (Pg > 0) is used. For example, when sin2B, = 0.230 and 

Pg = 0.40, the forward-backward asymmetries are all increased by a factor of 3.3! 
.._... . 
c 

-__ 

In practice, it is not desirable to operate a polarized electron-positron collider 

with only one helicity state. The study of other physical processes benefits by 

the use of both helicity states. Many polarimeters need both helicity states to 

function. Unfortunately, the effective beam polarization, P,ff, becomes less than 

the beam polarization Pg when the right-handed helicity state is selected. We 

must pay a price in analyzing power. Can we do something more clever than 

study the traditional forward-backward asymmetries? 

An Improved Forward-Backward Symmetry 
_ _Yz_ 

- ._ - The answer to the above question is yes. It is possibleto define a combination 

of the forward-backward and left-right asymmetries that selects just the final - r 

- 

state couplings and has a simple dependence upon the beam polarization. This 
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improved forward-backward asymmetry, ii, ( Ps), is defined as 

(8.15) 

where we have used the shorthand notation 

1 
c&Pg) = J dcdc daf (44 

b 
0 

&(Pg) = J dcdc daf (PJ. 

-1 

Substituting Equation (8.6) into Equation (8.15), we derive the following tree- 

level expression for the improved forward-backward asymmetry 

(8.16) 

As advertised, the improved forward-backward asymmetry, depends only 

upon the final state couplings. Comparing Equation (8.16) with Equation (8.14), 

we see that the factor Peff has been replaced with the beam polarization Pg. The 

magnitude of our improved asymmetry is therefore between the simple polarized 

forward-backward asymmetry with left-handed beam and that with right-handed 

beam. There is no particular statistical advantage in using it. It is sometimes 

claimed that the absence of ALR from Equation (8.16) implies that A{R can be - 

--_.- . - 

-__ 

measured with a smaller error. Actually, this may not be the case. If we assume 

that the statistical error is small as compared with the beam polarization un- 

certainty, the uncertainty on A{R from a measurement of 26, is given by the 

following simple expression 
f 

AALR sApi7 _ --- _n. 
- & ‘g ’ 

- IC If we were to perform the same measurement with left-handed beam only, the 

error on ALR is likely to be highly correlated with the polarization uncertainty. 
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If we assume that the polarization uncertainty dominates both quantities, then 

i ,-- the uncertainty on A{R is given by the following expression . . -. 

. 

for Pg = 0.4, sin26, = 0.230. 

We note that the experiment with left-handed beam has a systematic as well as 

an advantage in analyzing power. Of what advantage is the improved forward- 

backward asymmetry? We must discuss the effect of initial state radiative effects 

before drawing any conclusions. 

The Effect of Initial State Radiation 
- 

- 

_--.- . - 

It is well-known that initial state bremsstrahlung has an enormous effect 

on high energy electron-positron cross sections. The standard treatment of the 

problem involves describing the electron and positron with structure functions. 

The electron and positron are assumed to radiate the fractions (1 - Z-) and 

(1 - z+) of their initial energies. ‘It is assumed that all radiation is collinear with 

the beam directions. The square of the electron-positron center-of-mass energy, 

s, can therefore be written as 

5 = x-x+s” (8.17) 

.__ 
where so is the square of the nominal center-of-mass energy. The observed cross 

section o&e can then be written as a convolution of the tree-level cross section 

CQ.&S) and two structure functions, 

oobe = .J dx-dx+D(x-,s”)D(x+, S”)o~ree(x-x+So) (8.18) 
; 

_ _ _-. 
- ._ - where the electron,(positron) structure function D(x, s) represents the probability 

- - that the particle retains a fraction x of its original momentum. Since the 2” pole 

is a strong resonance, we need concern ourselves only with relatively soft photon 
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emission (the total photon energy E, 2 I’z). The structure function has been 

i ,-- calculated by Nicosini and Trentadue 1281 to be . . -. 

. 
D(x,s) o( (1 - x)%-l 

q = -6 In [l - gln(s/m’)] . 
(8.19) 

- 

_--.- . - 

-__ 

It is clear from Equation (8.18), that the sensitivity of an asymmetry to ini- 

tial state radiative corrections depends upon the steepness of its variation with 

center-of-mass energy fi. The energy dependence of the various asymmetries 

(and many of the electroweak corrections) has been calculated by Blondel, Lynn, 

Renard, and Verzegnassi!201 Their results are shown in Figure 20. The asym- 

metries AiB(P), iiB(P), and ALR are shown as functions of @  for several 

final state fermions. The unimproved forward-backward asymmetry is shown for 

the beam polarization Pg = 0.5, 0, and - 0.5. The improved forward-backward 

asymmetry is shown for complete beam polarization. The unimproved forward- 

backward asymmetries are much more sensitive to ,/S than are the improved 

varieties or the left-right asymmetry. This implies that initial state radiative cor- 

rections are significantly more important for the unimproved forward-backward 

asymmetries than they are for the other asymmetries. As a concrete example, 

a recent calculation by Kennedy, Lynn, and Irn13” finds that initial state radia- 

tive corrections alter the unpolarized forward-backward asymmetry for muons by 

32%. The corresponding corrections to the left-right asymmetry shift it by less 

than 0.7%. 

Technology with the Forward-Backward Asymmetry 

The measurement of various forward-backward asymmetries will permit tests 

of lepton universality and measurements of the 2” coupling to the heavier quarks. 

Do they have any other utility? 
. _ _Yz_ 

-.._ w Once the fermion forward-backward asymmetries have been measured, the 

- - answer is yes. A positive value for AFB implies that the fermion moves pref- 

erentially along the electron direction and the antifermion along the positron 
- _ 
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. 

- 

----- 

direction. For heavy quarks, this means that the jet direction can serve as a tag 

,?- of baryon number. Normally, the semileptonic decays of heavy hadrons are re- . . -. 
quired to tag the baryon number of a jet. For mixing and CP violation searches, 

this implies that two semileptonic decays are required. Since semileptonic branch- 

ing ratios are typically about lo%, the efficiency of such techniques can be quite 

small. If AFB for the process is reasonably large (like 30% or so), a considerable 

gain in efficiency can be had by using the forward-backward asymmetry and re- 

quiring only one semileptonic decay to tag baryon number. The application of 

this technique to b-quark CP violation is discussed in an accompanying document 

by P. Grosse-Wiesmann!311 

8.4. THE TRANSVERSE A SYMMETRIES 

As we discussed in the first lecture, storage rings naturally develop transverse 

beam polarization. A difficult and expensive spin rotation scheme is necessary to 

make longitudinally polarized beams. We should investigate then, what physical 

measurements can be made with transversely polarized beams. 

The transverse asymmetries .are defined as azimuthal moments of the cross 

section. They are defined to select the ratios of the real 

cross sections to the unpolarized cross section, 

and imaginary transverse 

- (8.20) 

Substituting the tree-level cross section for e+e- + ff (Equation (7.9)) into the 

above definitions, we can write that 

Atf = 
v2 - a2 
v2 If a2 = 

29, QR 
s; + s; 

2avf l-Z 
A[ = (v2 + a”)($ + a;) ’ K’ 

(8.21) 

- 
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The asymmetry Af is, like ALR, independent of the couplings to the final state 

i ,=-- fermions, It is quite large (At = -0.99 at sin28, = 0.230) and it is relatively 

. insensitive to sin26,. For small changes in sin2ecu, we can write that 

(8.22) 
6At N - 16 (1 - 4sin2B,)6sin20, 

- - 1.28 6sin28, - at sin2B, = 0.230. 

Recall that the coefficient of 6sin28, was eight for the left-right asymmetry. 

The asymmetry A{ does have some sensitivity to the vector coupling of the 

final state fermions. Unfortunately, the asymmetry is fairly small (about 8% for 

u type quarks) and is therefore of limited utility. 

9. Radiative Corrections 

---.- . - 

All of our discussion has thus far involved the use of tree-level expressions. We 

have shown that initial state radiative corrections make small changes in the tree- 

level expressions for the left-right and improved forward-backward asymmetries. 

However, we certainly cannot ignore the full spectrum of electroweak corrections. 

The interpretation of precise measurements will require that all corrections be 

included. 

-.-. The Lagrangian of the Standard Model contains three parameters of direct - 
relevance to 2” physics: the coupling constant of the SU(2) group of weak isospin, 

g; the coupling~constant of the U(1) g rou o weak hypercharge, g’; and the vac- p f 

uum-expectation value of the Higgs field, (&),. I n order to specify the Standard 

Model precisely, it is necessary to provide three precisely measured physical quan- 

tities that are related to the three parameters. 
_ 

.1. 

--- At the current time, there are- only two well-measured physical quantities. 

The first quantity is electric charge which has been measured by Thompson - ic 
scattering with a fractional error of less than 3 x lo-*. It is related to the 
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coupling constants by the expression 

e2 =4ra= g2d2 i 
g2 -I- gf2 * (94 

The second quantity, the Fermi coupling constant GF, has been been extracted 

from measurements of the muon lifetime. The fractional uncertainty is less than 

2 x 10m6. It is related to the vacuum expectation value of the Higgs field by the 

foilowing expression 

It is expected that SLC and LEP will soon provide a precision measurement 

of a third necessary quantity, the 2” mass. At tree level, Mz is related to the - 
Standard Model parameters by the expression 

j,,f2 = b2 + g”) . (4)” 2 2 0. P-3) 

- 
Unfortunately, the 2” mass is measured at a much higher energy scale than either 

a or GF. The running of the electromagnetic coupling (due to photon vacuum 

polarization processes) is a large effect. It is useful, at this point, to introduce 
---- . an auxiliary parameter, 6,. At tree level, we can write that - 

(9.4) I 

The’ photon vacuum polarization effects can now be incorporated into the defi- 

nition of 8,. We shall follow the convention of Lynn, Peskin, and Stuart B” by 

defining the weak mixing angle as follows, 

1 
1 

471-a ‘z 
sin28, = 

&GFM$ -0.06) ’ _ P-5) 
_ 

_T.  

- -_ --Note the presence:of the term O.Q6. It has the effect of removing the photon 

- - polarization corrections from any quantity that is expressed in terms of 6,. These 

corrections are the largest ones that we shall make. 
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We note that a precision measurement of a fourth physical quantity (such as 

i ,--- ALR or the W boson mass) will test the Standard Model. Actually, there are at -. -. 
. least two unknown parameters of the Standard Model that enter the electroweak 

corrections at the loop level: the top quark mass, mt, and the the Higgs boson 

mass, ?nH. A test that does not contradict the Standard Model would would 

merely place constraints on the masses. 

A-Word About Precision 

- 

The expected precision of an experimental measurement of the left-right 

asymmetry was given in Equation (8.12). Note that if the uncertainty is domi- 

nated by the statistical term, the error AALR is absolute (i.e., it is independent 

of the size of A&R). We should therefore compare the absolute size of the virtual 

corrections to the expected precision of the measurement. The reader is reminded 

that an uncertainty of AALR = 0.01 is possible at a polarized SLC with an event 

sample of roughly 60,000 2” decays. If high precision monitoring of the beam po- 

larization is achieved (AP /P 2 1%)) an ultimate error of AALR N 0.002 + 0.003 

is conceivable. 

9.1. STANDARD MODEL CORRECTIONS TO ALR 
---- . - 

-__ 

The virtual corrections to the left-right asymmetry have been calculated on 

numerous occasions by a large community of people. Any attempt to give a 

proper account and accounting of all of the work would take several lectures and 

still be incomplete. The following is therefore a review of the content of only 

one publication [321 which this author regards as exceptional in its clarity and its 

completeness. 

- ._T. 

Several calculations of the left-right asymmetry are shown in Figure 21 as 

functions of the center-of-mass energy. The tree-level asymmetry is shown for 

__ -Z” masses of 98 GeV, 94 GeV, and 90 GeV as a family pf three dashed curves. 

The photon vacuum polarization correction is incorporated into ALR by using - - 
Equation (9.5) to define sin2Bw. The corrected asymmetry is shown for the three 

- 

c 
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mass values by the dotted curves. The result of a complete first order treatment of 

r all virtual corrections is shown as a solid curve for each mass value. The top quark 

. and Higgs boson masses are assumed to be 30 GeV and 100 GeV, respectively. 

We note that the photon vacuum polarization correction is indeed the dominant 

correction. The theoretical uncertainty on the vacuum polarization correction has 

been analyzed by Lynn and Verzegnassi!“’ They find that the uncertainty on 

the asymmetry is AALR 2 0.005, due mostly to strong interaction uncertainties. 

The result of the complete first order calculation for the left-right asymmetry 

at the 2” pole is summarized in Table V for several values of Mz, mt, and w&H. 

The asymmetry is very sensitive to large values of the top quark mass and is 

much less sensitive to the Higgs mass. 

The sensitivity of the virtual corrections to the presence of a massive top 

quark is related to the symmetry of the SU(2) x U(1) Lagrangian. Because the 

Higgs fields form an SU(2) doublet, the Lagrangian possesses an additional global 

SU(2) symmetry. This additional symmetry is what causes the p parameter, 

MiG 
’ = M;cos~&, (9.6) 

---.- . 
- 

to be unity at tree level. The addition of isodoublets of particles with large mass 

splittings breaks the symmetry and causes the p parameter to deviate from one, 
-.u. p +. 1 + 6~. Within our chosen renormalization scheme 

sin2ew), it can be shown that small changes in p affect 

as follows 

(i.e., chosen definition of 

the left-right asymmetry 

64 sin46wcos28u, r 
OnLR = 

[l + (1 - 4sin2B,)2] 2oP’ 
P-7) 

. _=. Therefore, the addition of isodoublets with large mass splittings also affects the 
--- 

left-right asymmetry. 
L- 

The size of the effect on ALR increases quadratically with the top quark mass 
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Table V 

i r The r&tilt of a complete first order calculatioti[321 for the left-right asym- 
. metry at the 2” pole. It is tabulated for several values of Mz, mt, and 

mH- 

&R(q2 = -AI;) 

MZ mH=lo rnH =lOO mH = 1000 

mt = 30 

mt = 60 

- 

_-_.- . 
- 

mt = 90 

- 

mt = 130 

.  - 
_F.  

-- - - 

mt = 180 .‘ 

90 .0613 .0536 .0423 
92 .1762 .1691 .1590 
94 -2756 .2692 .2602 
96 .3615 .3557 .3475 
98 .4354 .4302 .4229 

90 .0640 
92 .1786 
94 .2777 
96 -3633 
98 -4370 . 

90 .0703 .0626 .0513 
92 .1844 .1773 .1672 
94 .2830 .2767 .2676 
96 -3681 .3624 .3543 
98 .4414 .4362 .4290 

90 .0805 .0728 -0616 
92 .1936 .1866 .1765 
94 .2914 .2851 .2760 
96 .3757 .3699 .3619 
98 .4482 .4430 .4358 

90 
92 
94 

.0975 

.2087 ;- 

.3048 

.0563 .0451 
-1716 .1615 
-2714 .2624 
.3575 .3495 
.4318 -4246 _ 

- 
WE 

.0898 .0786 

.2018 .1918 

.2986 .2897 
- ;-c 96 .3876 .3819 .3741 

98 .4589 .4537 .4467 
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(except in a complicated region of mt near Mz/2), 

where rnb is the b quark mass. For very large top quark masses, mt > mb, Mz, 

the shift in the asymmetry approaches the value 

4sin26, [ 1 2 
~ALR--+ ?N,. mt 

[l + (1 - 4sin26,)212 ’ G Mz P-9) 

where NC is the number of quark colors (three). The shift in the left-right asym- 

metry is shown in Figure 22 for various mb/mt ratios as a function of the top 

quark mass. Note that the effect does not vanish for unsplit doublets of arbitrar- 

ily large mass! This is certainly a surprise. Intuitively, we would expect that as 

the mass of a particle in a loop becomes larger, the mass terms in the propagator 

denominators cause it to decouple from the physics of the lower energy scale. 

It turns out that particles with axial vector couplings are permitted to violate 

our intuition as well as a mathematical theorem (the decoupling theorem). The 

asymptotic shift in ALR caused by a very heavy degenerate quark isodoublet is 

given by the following expression, 

- 

---.- . 
- 

~ALR + - 
8NCsin26, 

[l + (1 - 4sin26,)2] 2 (9.10) 

= -.w. - 0.004 for sin26, = 0.230. 
- 

Everything that has been said about the presence of largely split and unsplit 

quark doublets is also true for lepton doublets. The size of shift in the left-right 

asymmetry is reduced by the absence of a color factor. This is shown in Figure 23. 

The asymptotic shift in the asymmetry caused by the addition of a very heavy 

generation of quarks and leptons is ~ALR c -0.005. The ultimate sensitivity 

- _ -of a measurement of ALR will probably not permit strong statements about the 

- - presence of very heavy extra generations. However, it is conceivable that limits 

could be placed on extra heavy generations. 

64 



Other Asymmetries 

i ,;‘ The-size of the virtual corrections to other asymmetries can be estimated from 
. the corrections to ALR. For example, the leptonic forward-backward asymmetry 

(without polarization) can be written as 

The shift caused by the virtual corrections can be written as 

We see that the shift caused by the interesting physics in the loop corrections is 

suppressed by a factor ALR. This is especially important in the regime where the 

measurements are limited by statistics and the error on AfFB is absolute. It is 

ironic that AfFB is very sensitive to the very uninteresting initial state radiative 

c-orrections and is very insensitive to the interesting physics. 

- 

We note that the sensitivity. of the polarized forward-backward asymmetry 

for leptons does not suffer from this disease. 
---.- . - 

9.2. SENSITIVITY To NEW PHYSICS 

We’ve just seen that the left-right asymmetry is sensitive to the top quark 

mass, the Higgs boson mass, and to extra doublets of quarks and leptons. How 

sensitive is it to other manifestations of new physics? Let’s consider a few of the 

more popular topics. 

Scalar Quarks and Leptons 

Since supersymmetric quarks and leptons come in isodoublets, the argument . _z. 
----r* of the last section about large splittings still applies. I_ndeed., if the mass of a 

squark or slepton is much larger than the mass of its partner and the 2” mass, - i* 
then Equation (9.10) still applies (with mt replaced by the mass of the heavy 
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SUSY particle, and N, set the appropriate number of colors). Scalar particles 

i ,c- do-not, of course, have axial vector couplings. They must therefore decouple 

. from the radiative correct-ions at high mass. The shift in ALR for various mass 

splittings is shown as a function of the heavy particle mass in Figures 24 and 

25 for scalar quarks and leptons, respectively. The effect can be large for widely 

split doublets. 

Extra 2” Bosons 

Extra 2” bosons are currently quite popular in theoretical circles. Most su- 

perstring motivated models involve the addition of at least one extra hypercharge- 

like degree of freedom. An extra neutral current is thus inevitable. Extra Z”‘s 

have also been predicted by right-left symmetric models for some time. Addi- 

tional neutral currents can contribute to the left-right asymmetry at tree level. 

Cvetic and Lynn ‘331 have considered the effects of both types of additional neutral 

currents on ALR. The results of their calculations are shown in Figures 26 and 27 

for the extra hypercharge and the broken right-left symmetric cases, respectively. 

In both cases, a measurement of ALR would be sensitive to the presence of extra 

2” bosons of mass up to 6 ---+ 7 times the normal 2” mass. 
---.- . 
- 

10. Conclusions 

- We have seen that the measurement of the left-right polarization asymmetry 

at the 2” pole will be a powerful tool for testing the Standard Model. The 

use of polarized beams to enhance the forward-backward asymmetry will permit 

precision tests of lepton universality and measurements of the the Z”-heavy quark 

couplings. It was asserted that the polarized forward-backward asymmetries may 

greatly aid the separation of particles and antiparticles. The ability to control 

~_ _ -the spin degree of freedom of an electron or positron beam will be useful to the 

experimentalist and is likely to penetrate much of the physics to be done at the - A..-- 
next generation of electron-positron colliders. 
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FIGURE CAPTIONS 

i r 
1) The band structure of GaAs near the bandgap minimum (from references 

. 
9 and 4). The energy levels of the states are shown on the right. Allowed 

transitions for the absorption of right (left) circularly polarized photons are 

shown as solid (dashed) arrows. The circled numbers indicate the relative 

transition rates. 

2) The band structure of Gallium Arsenide near its surface[g1 for: (a) pure 

GaAs, (b) G A a s with a cesiated surface, and (c) GaAs with a layer of 

CsnO on its surface. 

3) The polarization of electrons emitted from a GaAs photocathode as a func- 

tion of photon wavelength and energy (from reference 4). 

- 

4) A comparision of the band structures of GaAs and the chalcopyrite semi- 

conductor CdSiAsz (from reference 4). 
.[lS] . 5) The asymmetry function for mercury nuclei is shown: (a) as a function 

of /3 for fixed scattering angle and (b) as a function of angle for fixed ,f3. 

_--.-. . - 

6) A simplified Mott Polarimeter. 

7) The 1928 experiment of Cox, McIlwraith, and Kurrelmeyer. A description 

of the apparatus can be found in the text. 

-__ 8) The lowest order Feynman diagrams for (a) Bhabha Scattering and (b) 
- 

Moller Scattering. 

9) The unpolarized differential cross sections for Moller and Bhabha scattering 

mare presented as a function of the center-of-mass scattering angle. The 

longitudinal and transverse asymmetry functions for both processes are 

also shown. 
_ .P. 

- ._ - 10) The beam’s eye view of a M$ller scattering target. to be used at SLC. A 

- -* holder containing four iron foils can be moved through the beam. Two foils 

are transverse to the beam and two are tilted at angle of 20” with respect 

- 
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to the beam axis. A set of three Hemholz coils can produce a 100 gauss 

r - field along any of the three axes. . . -. 
. 11) A schematical representation of a Moller polarimeter for the SLC extraction 

line. 

12) The electron signal as measured in a Moller polarimeter. The top part of 

the figure shows the number of scattered electrons as a function of scattering 

angle. The signal appears at the angle that corresponds to the scattered 

momentum. The background is well described by the Bethe-Heitler process. 

13) Feynman diagrams of the lowest order Compton scattering subprocesses. 

14) The unpolarized cross section and the longitudinal and transverse polariza- 

tion asymmetries are shown as a function of x = K’/Kk,, for the scattering 

of a 2.23 eV photon by a 46 GeV electron (y = 0.389). 

15) A schematic diagram of a generic Compton polarimeter. 

- 

16) A layout of the SLAC Linear Collider. The orientation of an electron spin 

vector is shown as the electron is transported from the electron gun to the 

interaction point. 

_--.- . - 
17) The electron-positron coordinate system. The electron beam is moving in 

-__ 

the +z direction. The x-axis points in the horizontal direction and the 

y-axis in the vertical direction. The electron and positron longitudinal po- 

larizations are described in terms of a helicity basis. Right-handed particles 

- (and antiparticles) h ave P, = +l and left-handed particles have P, = -1. 

18) The leptonic forward-backward asymmetry and the left-right asymmetry 

are shown as functions of sin’0, and Mz. 

19) The expected uncertainty of a measurement of the left-right asymmetry 

ALR as a function of the number of events used. The beam polariza- 
.-. 

- ._ w tion is taken, to be 45%. The 2” mass is assumed to be 92.5 GeV. The 

corresponding uncertainty on sin28, and on the mass of the 2” is also - IP 
shown. The expected and achieved precision of several other measurements 

- 
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is also shown. The expected precision on sin28, from a measurement of 

- the leptonic forward-backward asymmetry with zero polarization is shown . . -. 
. for comparison. 

20) The energy dependence of the forward-backward asymmetry ALB (polar- 

ized and otherwise), the improved forward-backward asymmetry Ai,, and 

the left-right asymmetry ALR for several final state fermions. Note that 

the unimproved forward-backward asymmetries are much more sensitive to 

the center-of-mass energy than are the improved ones and the left-right 

asymmetries. 

-__ 

21) Several calculations 1321 of the left-right asymmetry are shown as functions 

of &. The tree-level expressions for Mz = 98 GeV, 94 GeV, 90 GeV 

are shown as dashed curves. The application of of the photon vacuum 

polarization correction is shown for each value of Mz by the dotted curve. 

The fully corrected asymmetry is shown as a solid line for each mass value. 

The top quark mass is assumed to be 30 GeV and the Higgs mass is taken 

to be 100 GeV. 

22) The shift in the left-right asymmetry caused by the addition of quark dou- 

blets of various mass splittings!““’ The effect increases with the size of the 

mass splitting but does not vanish for unsplit doublets. 

23) The shift in the left-right asymmetry caused by the addition of lepton 

- doublets of various mass splittings!3a’ The effect is largest for largely split 

doublets but does not vanish for unsplit doublets. 

24) The shift in the left-right asymmetry caused by the addition of scalar quark 

doublets of various mass splittings.[s2’ 

25) The shift in the left-right asymmetry caused by the addition of scalar lepton 4 
_r. doublets of various mass splittings!“’ 

- ._ - L.. 
26) The effect of an extra 2” boson on the left-right asymmetry as a function - IC 

of its mass (from Reference 33). The extra 2” is due to an additional U(1) 
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hypercharge-like group. The different curves correspond to different choices 

i - of parameters. . . -. 
. 27) The effect of an extra 2” boson on the left-right asymmetry as a function 

of its- mass (from Reference 33). The extra 2” is due to the breaking of 

a right-left symmetric model. The different curves correspond to different 

choices of parameters. 

- 

- 
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