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ABSTRACT 

In a linear collider where multiple bunches are accelerated in every RF pulse, the 
close encounters between the outgoing bunches and the incoming bunches near the 
central collision point would cause a growth of any initial offset of the beams. In 
this paper we analyze such an instability both theoretically and through computer 
simulations. A condition for negligible growth of the instability is derived, and possible 
cures are discussed. 

*Work supported by the Department of Energy, contract DEL-AC03-76SF00515. 
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I. INTRODUCTION 

Design studies of the next generation of electron-positron linear colliders in the 
range of 1 TeV center-of-mass energy have been intensive during recent years.l It has 
been generally recognized that it would be difficult to achieve a luminosity beyond 
1 x 1033cm2/sec if the acceleration of a single bunch per RF pulse is assumed. However, 
recent studies2 show great promise to accelerate multiple (m) bunches within each RF 
pulse, in this case a luminosity of the order of 1034cm2/sec is conceivable. While it is 
difficult to improve the luminosity by a factor m2 from the maximal possible number 
of collisions between the two bunch trains, one may hope to increase it by at least a 
factor m. 

One of the major problems of such a multibunch operation is the interactions 
between bunches before and after their collisions at the central collision point. The 
ith bunch in the electron bunch train will collide not only with the jth bunch in the 
positron train, but also with the j(< i)th positron bunch before its coming to the 
central collision point. These undesirable collisions will degrade the beam, and will 
result in a reduction of luminosity. The idea proposed by Palmer3 to collide two flat 
beams at a relatively large crossing angle, can help to avoid unwanted direct encoun- 
ters between the outgoing bunch debris and the incoming fresh bunches. However, 
due to the long-range nature of the Coulomb interaction, there still exists undesirable 
interference between two separated bunches at a distance. Since the crossing angle 
cannot be made arbitrarily large due to the luminosity consideration, this long range 
interaction cannot be entirely suppressed. In fact, it imposes a severe restriction on 
the stability of the beams. 

In this paper we estimate the effects of such an instability. The beams are assumed 
to be so flat that the perturbation on the horizontal motion is negligible, only vertical 
deflections are considered. 

II. GROWTH OF BEAM OFFSET 

Let us denote the vertical displacement of the nth electron (positron) bunch at the 
collision point by Y, (y,). The kicking angle of the positron bunch can be written as 

YL = - f 2 (yn - Yn) ) z 

where D, is the vertical disruption parameter defined by 

D, = 
2Nr,a, 2Nr,a, 
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and o=, oy , B, the horizontal, vertical and longitudinal r.m.s. beam sizes at the collision 
point, respectively. The above equation is true only when both D, and I(yn - Y,)l/cry 
are small. The actual angle of the deflection for finite D, and I(yn - Y,)I/aV can 
only be obtained from computer simulations, which will be discussed in the following 
section. The extra factor l/2 comes from the fact that we are considering not the 
deflection of a single particle but that of the center-of-mass of the entire bunch. It is 
the same factor found for the coherent beam-beam tune shift in storage rings.’ 

Next we consider the encounter between the nth positron bunch after collision and 
the mth (m > n) electron bunch before collision at a distance L from the collision 
point. A schematic diagram of the system is shown in Fig. 1. We assume that all the 
bunch encounters occur within the drift space around the central collision point. The 
vertical position of the positron bunch at L is thus y,+ = Ly;. If the crossing angle is 
8,, then the distance between the positron bunch and the electron bunch is d = LO,. 
We assume d is much larger than the beam size so that the Coulomb force between 
point charges can be applied. Then the m ” electron bunch will be kicked vertically 
by the nth positron bunch by an angle 

2Nre Yn,L --. 
rd d (3) 

By multiplying the drift length L to this expression and by using Eq. (l), we find the 
contribution of the nth positron bunch to the displacement of mth electron bunch at 
the central collision point to be 

with 

AYm = - ; c(~, - y,) , (4 

An important fact is that the distance L does not appear in this expression, i.e., 
distant encounters are as important as those near the collision point. 

The cumulative displacement of the m th electron bunch at the central collision 
point arises from the encounters with all the positron bunches, which gives 

Y, = - ; c c (yn - Yn) + 6Y, . (6) 
n<m 

Here we have introduced a source term, SY,, for the mth electron bunch to represent 
any initial alignment error induced by elements upstream along the linear collider. 
A similar equation holds for the effect of electron bunches onto positron bunches. 
Summation of the two equations shows that the center-of-mass of the system is not 
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affected by the encounters. On the other hand, by subtraction we find the equation 
for the relative motion between the mth electron and positron bunches: 

A,=C~An+6,, (7) 
n<m 

where A, = (Y, - ~,)/a, is the distance between the mth electron and positron 
bunches in units of vertical beam size, and 6, = (SY, - 6ym)/a, is the distance in 
the absence of the interaction. This leads to a difference equation 

A m+l = (1 + C) Am + (bn+1- &z) , (8) 

which has the eigenvalue (1 + C). Since C is positive definite, the system is unstable. 
Note that the collision of bunches of like charges is also unstable because the signs of 
both Eqs. (1) and (3) are changed. The solution to Eq. (7) for given 6’s is 

m-2 
A, = S,n + C c (I + c)" &-l-n . (9) 

n=O 

In the special case where all the 6’s are equal, we have 

Am = (1 + C)m-16 . (10) 

Therefore, the constant component of the initial offset 6 will be enhanced by a factor 

(1 + C) N~-l, NB being the number of bunches. Although C is usually not a big 
quantity, the cumulative displacement can become large when there involves a large 
number of bunches. 

. 

On the other hand, if 6’s are random with standard deviation S,,,, then the r.m.s. 
of A’s are given by 

A ?n,nn8 = 
\i 

lf ;(l+ C)2”-2 &n, , for C<l. (11) 

which is suppressed by a factor dC/2 f rom the case for constant initial offsets. Thus 
the oscillating component of 6’s, such as the effect from multibunch instability in the 
linac, will not have an important role in the issue. Only the constant component, 
e.g., due to field errors in the final focusing system, the ground motion, etc., will be 
of concern. 

In order that the growth of the offset is negligible, the condition (NB - l)C 2 1 
must be satisfied. By using the horizontal disruption parameter 

D, = 
2Nr,a, 2Nr,a, 

Y%(% + 0,) - ya; ’ 
(12) 
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we can simplify the expression for C, i.e., 

(13) 

where 6d = oz/crz is the diagonal angle of the beam. Since the factor in the paren- 
thesis must be larger than unity in order that the crossing angle does not reduce 
the luminosity significantly, the condition for the negligible growth of the instability 
becomes 

(ND - 1) D,D, 5 1 , (14 

which imposes a severe limitation in the design of multibunch linear colliders. 

III. THE EFFECTIVE DEFLECTION 

As mentioned in the previous section, the actual deflecting angle deviates from 
the simple expression that we gave in Eq. (1). Actually, Eq. (1) is an overestimation 
of the kicking effect at the collision point. The effective deflection can be written as 

. 
Y:, = - Yj aE ’ - H,(D,,A,) , (15) 

where the function H,(D,, A,) approaches A, in the limit of small D, and A,. An 
analytic form of H, in the limit of small D, but for arbitrary A can be derived for 
Gaussian bunches as 

H,(O, A) = 1” e-z1/4 dx . 
0 

(16) 

For finite D,, computer simulation is needed. 
Figure 2 shows the function H,(D,, A) computed by the beam-beam interaction 

code ABEL.’ In this case A z a,/&, = 0.8 is used, where p,, is the Twiss parameter 
at the central collision point. It can be shown, however, that the result is not very 
sensitive to the values of A. Notice that the coefficient which appears in the analytic 
formula in Eq. (1) corresponds to the tangent slope of the D, = 0 curve near the 
origin in Fig. 2 (the dashed line). For finite D,, the deflecting angle can be seen to 
be suppressed, especially in the large D, limit. Furthermore, Fig. 2 also clearly shows 
that when the offset gets large, the deflecting angle tends to gradually saturate. 

Using Eq. (15), one can repeat the previous exercise to obtain an equation for the 
cumulative offset for the mth bunch, 

Am = C C Hc(D,,An) + brn - (17) 
n<m 
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Based on the numerical values obtained in Fig. 2, the cumulative offset A, (in units 
of the theoretical offset, 6( l+ C)m-l) is plotted as a function of the number of bunches 
in Fig. 3. We see that the offset for D, = 0 is reasonably close to what is predicted 
theoretically, especially for smaller number of bunches. Actually, even for bunch 
number as large as 20, the cumulative offset is still about a factor 0.8 of the theoretical 
value. The reduction is clearly seen, however, when D, is finite. This is true especially 
when D, is much larger than unity. This means that the condition for negligible 
growth of the offset given in Eq. 14 is somewhat too pessimistic. Although the correct 
constraint depends on the specific parameters of the problem, it seems, according to 
Fig. 3, that one may be safe to relax the constraint to 

(NB - 1) D,D, 5 2, (18) 

as a rule of thumb. 

IV. DISCUSSION j 

One possible cure to the multiple bunch crossing instability is to collide bunches 
with alternating charges in both bunch trains. 6 The eigenvalue in this case turns out 
to be -(l + C). Th is means that although the constant component of the offset 
may be suppressed, the oscillating component will still grow. It also appears that 
technically it is rather difficult to implement such a scheme. Another possibility is to 
partition the outgoing bunch train from the incoming bunch train by a septum.’ If 
the bunch spacing is too small, it may be difficult to shield away all the encounters. 
However, it is clear that even a partial shielding would be beneficial. Consider, for 
example, that one is able to shield away all the long-range interactions except one, 
then Eq. (7) becomes 

Am = Cam-1 + Sm 3 (19) 

which does not induce any enhancement. In general, if one allows for N encounters 
under a partial shielding, and if C < l/N, then there is a finite limit for the constant 
component A, of the mth bunch, no matter how large m is: 

lim A, = 
6 

m-co l-CN’ (20) 

Therefore, if C is much less than unity, this method can be very effective. 
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FIGURE CAPTIONS 

Fig. 1. Schematic diagram of the system around the Central Collision Point (CCP). 
Both electron and positron bunch trains travel on the x-z plane, with a crossing 
angle ec. The closest encounter between the mth electron bunch and the nth 
positron bunch occurs at a distance z = L from CCP with a separation distance 
d. The vertical displacement at CCP of the positron and the electron bunches 
are Li-2 and ym-2 (n + 2 = m - 2 in this case), respectively. 

Fig. 2 The parameter H,(D,, A) for the effective deflection as a function of offset A 
for different values of D,. The curve for D, = 0 is from the theoretical expression 
of Eq. (16), while the tangent slope (= 1) of this curve near the origin (the 
dashed line) corresponds to the coefficient that appears in the analytic formula, 
Eq. (1). 

Fig. 3. The cumulative offset A, in units of the theoretical offset, 6(1+ C)m-l, as a 
function of the number of bunches. 
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