J / ψ Results from Mark III †

Ronen Mir
University of Washington, Seattle, WA, 98195
Representing the Mark III Collaboration ${ }^{\ddagger}$ at the Stanford Linear Accelerator Center Stanford University, Stanford, CA, 94309

Abstract

Measurements of the two-body decays of the J / ψ into vector and pseudoscalar meson pairs are presented. Using the measured branching ratios, a phenomenological model of J / ψ decays indicates that the η and η^{\prime} are composed only of light and strange quarks, without a gluonium contribution in the η^{\prime} wavefunction. A measurement of $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ is presented. The $f_{1}(1285)$ is observed and its spin and parity are investigated. The η_{c} is observed to decay to $\rho^{0} \rho^{0}$, and first indications of η_{c} decays to $\int_{2} f_{2}$ are presented. The spin and parity of the η_{c} are investigated.

Presented at the VIIIth International Workshop on Photon Photon Collisions, Jerusalem, Israel, April 24-28, 1988
\dagger Work supported by the Department of Energy contract DE-AC03-76SF00515 and by the National Science Foundation.
\ddagger Caltech: D. Coffman, G.P. Dubois, G. Eigen, J. Hauser, D.G. Hitlin, C.G. Matthews, A. Mincer, J.D. Richman, W.J. Wisniewski, Y. Zhu; Santa Cruz: M. Burchell, D.E. Dorfan, J. Drinkard, C. Gatto, R.P. Hamilton, C.A. Heusch, L. Köpke, W.S. Lockman, R. Partridge, H.F.W. Sadrozinski, M. Scarlatella, T.L. Schalk, A. Seiden, A.J. Weinstein, S. Weseler, R. Xu; Illinois: J.J. Becker, G.T. Blaylock, B.I. Eisenstein, T. Freese, G. Gladding, J. M. Izen, S.A. Plaetzer, C. Simopoulos, A.L. Spadafora, I.E. Stockdale, B. Tripsas; Iowa: U. Mallik; SLAC: J. Adler, T. Bolton, J. C. Brient, K.O. Bunnell, R.E. Cassell, D.H. Coward, K.F. Einsweiler, C. Grab, U. Mallik, R.F. Mozley, A. Odian, D. Pitman, R.H. Schindler, W. Stockhausen, W. Toki, F. Villa, S. Wasserbaech, N. Wermes, D. Wisinski; Washington: J.S. Brown, T.H. Burnett, V. Cook, A.L. Duncan, A. Li, R. Mir, P.M. Mockett, B. Nemati, L. Parrish, H.J. Willutzki.

J / ψ Decays to Vector Pseudoscalar Meson Pairs. ${ }^{[1]}$

The $J / \psi(3097)$ is the lowest lying $c \bar{c}$ vector meson. The narrow width (63 keV) of the J / ψ is a consequence of disconnected quark lines in its decay (OZI rule). A full set of measurements of $J / \psi \rightarrow V P$ decays enables us to study the contributions of the different processes to the decay rates, the mixing angle in the pseudoscalar meson nonet, and the quark content of the η and η^{\prime} mesons.

Our data, taken with the Mark III detector at the SLAC $e^{+} e^{-}$storage ring SPEAR, consist of 5.8×10^{6} produced J / ψ 's. All $J / \psi \rightarrow V P$ decays are analyzed. Most processes are observed in more than one decay mode of the pseudoscalar, thus enabling us to cross-check our measurements. Our results are summarized in Table I, where the first error is statistical and the second systematic.

Table I. $J / \psi \rightarrow V P$ branching ratios.

$J / \psi \rightarrow$	Branching ratio $\left(10^{-3}\right)$	$J / \psi \rightarrow$	Branching ratio $\left(10^{-3}\right)$
$K^{*+} K^{-}+$c.c.	$5.26 \pm 0.13 \pm 0.53$	$\omega \pi^{0}$	$0.482 \pm 0.019 \pm 0.064$
$K^{* 0} \bar{K}^{0}+$ c.c.	$4.33 \pm 0.12 \pm 0.45$	$\omega \eta$	$1.71 \pm 0.08 \pm 0.20$
$\rho \pi$	$14.2 \pm 0.1 \pm 1.9$	$\omega \eta^{\prime}$	$0.166 \pm 0.017 \pm 0.019$
$\rho \eta$	$0.193 \pm 0.013 \pm 0.029$	$\phi \pi^{0}$	$<0.0068(90 \% \mathrm{CL})$
$\rho \eta^{\prime}$	$0.114 \pm 0.014 \pm 0.016$	$\phi \eta$	$0.661 \pm 0.045 \pm 0.078$
		$\phi \eta^{\prime}$	$0.308 \pm 0.034 \pm 0.036$

The widths of J / ψ into the $V P$ meson pairs are equal to $\left|A_{i}\right|^{2} \times p_{V_{i}}^{3}$, where $p_{V_{i}}$ is the momentum of the vector meson in the rest frame of the J / ψ. In a recent phenomenological model ${ }^{[2]}$ the amplitudes A_{i} are composed of strong, $\mathrm{SU}(3)$ violating and electromagnetic processes as well as processes with more than one disconnected quark line (DOZI processes). The η and η^{\prime} mesons can be parametrized by: $|\eta\rangle=X_{\eta} \frac{1}{\sqrt{2}}|u \bar{u}+d \bar{d}\rangle+Y_{\eta}|s \bar{s}\rangle,\left|\eta^{\prime}\right\rangle=X_{\eta^{\prime}} \frac{1}{\sqrt{2}}|u \bar{u}+d \bar{d}\rangle+Y_{\eta^{\prime}}|s \bar{s}\rangle$. We fit the phenomenological model to the ten reduced branching ratios with the constraints $X_{i}^{2}+Y_{i}^{2}=1$ and $X_{\eta^{\prime}}=-Y_{\eta}$. The fit yields $Y_{\eta}=-0.581$ from which we calculate the mixing angle in the pseudoscalar nonet to be: $\theta_{p}=$ $(-19.2 \pm 1.4)^{\circ}$. The result for θ_{p} is in good agreement with recent two-photon results. ${ }^{[3]}$ A fit to the data, without the above constraints on X_{i} and Y_{i} yields $X_{\eta}^{2}+Y_{\eta}^{2}=1.00 \pm 0.16$ and $X_{\eta^{\prime}}^{2}+Y_{\eta^{\prime}}^{2}=1.44 \pm 0.26$. The results of the unconstrained fit indicate that the model where the η and η^{\prime} consist of only u, d and s quarks, with no contribution from gluonium, is consistent with the data.

$$
J / \psi \text { Decays to } \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}
$$

The radiative decay $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$has been studied previously by Mark III, with a smaller data sample. ${ }^{[4]}$ The present analysis is still in progress, and is therefore preliminary. Our data, taken with the Mark III detector at the

SLAC $e^{+} e^{-}$storage ring SPEAR, consist of 5.8×10^{6} produced J / ψ 's. Events are selected with four charged tracks and one or more photon candidates. The events are kinematically fitted to the $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$hypothesis, looping over all photon candidates (up to five, ordered in decreasing energy). The fit with the highest probability is kept. Selection criteria on kinematic quantities are imposed. The invariant mass distribution of the $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$system is shown in Figure 1a. A peak at $1.285 \mathrm{GeV} / c^{2}$ is seen, consistent with the $f_{1}(1285)$ mass and width. A prominent resonance at $2.98 \mathrm{GeV} / c^{2}$, consistent with the $\eta_{c}(2980)$ mass and width is also seen. To study the first enhancement we look at the angular distributions for masses between 1.25 and $1.30 \mathrm{GeV} / c^{2}$. Figure 3a shows the distribution of χ, the angle between the decay planes of the $\pi^{+} \pi^{-}$systems in the $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$rest frame. This distribution is expected to be zero at 0°, rising to its maximum above 45° for a particle with $J^{P}=0^{-}$. In contrast, for $J^{P}=1^{+}$, this distribution is expected to be flat. In Figure 3b the distribution of $\cos \theta_{\pi^{+}}$is shown, where $\theta_{\pi^{+}}$is the polar angle of the π^{+}in the $\pi^{+} \pi^{-}$rest frame. A $\sin ^{2} \theta_{\pi^{+}}$ distribution is expected for a particle with $J^{P}=0^{-}$, while a flat distribution is expected for $J^{P}=1^{+}$. Our data rules out the pseudoscalar assignment, and is consistent with the $f_{1}(1285)$ being an axial vector. The branching ratio is given in Table II.

To study the η_{c} region we constrain the invariant mass of the $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$ system from 2.95 to $3.00 \mathrm{GeV} / c^{2}$, and plot one $\pi^{+} \pi^{-}$invariant mass versus the other in Figure 2 (there are two entries for each event). An enhancement is seen in the $\rho^{0} \rho^{0}$ and $f_{2}(1270) f_{2}(1270)$ regions. Such enhancements are not seen in nearby control regions of $M_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}$. Motivated by this, we define: $\delta_{\rho^{0}}^{2}=\left(M_{\left(\pi^{+} \pi^{-}\right)_{1}}-\right.$ $0.77)^{2}+\left(M_{\left(\pi^{+} \pi^{-}\right)_{2}}-0.77\right)^{2}$ and $\delta_{f_{2}}^{2}=\left(M_{\left(\pi^{+} \pi^{-}\right)_{1}}-1.27\right)^{2}+\left(M_{\left(\pi^{+} \pi^{-}\right)_{2}}-1.27\right)^{2}$. We restrict $\delta_{\rho^{0}}<0.15$ and $\delta_{\delta_{2}}>0.30 \mathrm{GeV} / c^{2}$ and plot $M_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}$in Figure 1b. A clear η_{c} signal is seen, and the angular distributions in the η_{c} region (Figures 3c and 3d) identify it as a $J^{P}=0^{-}$state, in agreement with the DM2 measurement. ${ }^{[5]}$ We restrict $\delta_{f_{2}}<0.175$ and $\delta_{\rho^{0}}>0.26 \mathrm{GeV} / c^{2}$ and plot $M_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}$in Figure 1c. A clear η_{c} signal is seen providing the first evidence of a tensor-tensor decay of the η_{c}. The angular distributions in the η_{c} region are shown in Figures 3 e and $3 f$, providing further evidence for the pseodoscalar assignment of the η_{c}. The branching ratios are given in Table II, where the first error is statistical and the second systematic.

Table II. $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$Preliminary Branching Ratios.

Process	Product branching ratio $\left(10^{-4}\right)$
$\left(J / \psi \rightarrow \gamma f_{1}\right)\left(f_{1} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$	$0.55 \pm 0.11 \pm 0.10$
$\left(J / \psi \rightarrow \gamma \eta_{c}\right)\left(\eta_{c} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$	$1.50 \pm 0.13 \pm 0.30$
$\left(J / \psi \rightarrow \gamma \eta_{c}\right)\left(\eta_{c} \rightarrow \rho^{0} \rho^{0}\right)$	$0.96 \pm 0.15 \pm 0.22$
$\left(J / \psi \rightarrow \gamma \eta_{c}\right)\left(\eta_{c} \rightarrow f_{2} f_{2}\right)$	$1.2 \pm 0.3 \pm 0.4$

Conclusions

New measurements for J / ψ decays to vector pseudoscalar meson pairs are presented. Using the model of Ref. 2 the η and η^{\prime} are found to be composed of light and strange quarks only, without a gluonium contribution in the η^{\prime} wavefunction. Using the results of the model the pseudoscalar mixing angle is found to be $\theta_{p}=(-19.2 \pm 1.4)^{\circ}$ in agreement with $\gamma \gamma$ results. A measurement of $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$is presented. The $f_{1}(1285)$ is observed and its spin and parity are found to be consistent with an axial vector. The η_{c} is observed to decay to $\rho^{0} \rho^{0}$. First indications of η_{c} decays to $f_{2} f_{2}$ are presented. Angular distributions show that the η_{c} is a pseudoscalar.

REFERENCES

1. For a detailed description see SLAC-PUB 4424; submitted to Phys. Rev. D.
2. A. Seiden, H. Sadrozinski and H. Haber, UCSC 86/73; to appear in Phys. Rev. D.
3. J. Olsson, proc. of the 1987 Int. Symposium on Lepton and Photon Interactions at High Energies, Hamburg 1987. F.J. Gilman and R. Kauffman, Phys. Rev. D 36, 2761 (1987).
4. R.M. Baltrusaitis et al., Phys. Rev. D 33, 1222 (1986).
5. D. Bisello et al., Phys. Lett. 200B, 215 (1988).

FIGURE CAPTIONS

1. The $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$invariant mass distribution for events of the type: (a) $J / \psi \rightarrow$ $\gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$; (b) $J / \psi \rightarrow \gamma \rho^{0} \rho^{0}, \quad \rho^{0} \rightarrow \pi^{+} \pi^{-}$; (c) $J / \psi \rightarrow \gamma f_{2} f_{2}, \quad f_{2} \rightarrow$ $\pi^{+} \pi^{-}$.
2. Scatter plot of $M_{\pi^{+} \pi^{-}}$vs. $M_{\pi^{+} \pi^{-}}$for events of the type $J / \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$ where $2.95<M_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}<3.00 \mathrm{GeV} / c^{2}$ (η_{c} region).
3. The χ and $\cos \theta_{\pi^{+}}$angular distributions for events of the type: (a)(b) $J / \psi \rightarrow$ $\gamma f_{1} ; \quad f_{1} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} ;(\mathrm{c})(\mathrm{d}) J / \psi \rightarrow \gamma \eta_{c} ; \quad \eta_{c} \rightarrow \rho^{0} \rho^{0}$; the curves are the Monte Carlo simulation for a pseodoscalar η_{c}; (e)(f) $J / \psi \rightarrow \gamma \eta_{c} ; \eta_{c} \rightarrow f_{2} f_{2}$.

Fig. 1

Fig. 2

Fig. 3

