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ABSTRACT 

We investigate the interactions of superheavy monopoles with stars of mass 

0.6 - 25 Ma. Over the main sequence lifetime, stars accumulate significant 

numbers of monopoles less massive than 11 5 x 1017 GeV; e.g., for mmon = 1016 

GeV, the number captured is of order 1041F’(M/Ma)-0.4, where FM is the 

monopole flux in cm-2sec-1sr -I. Captured monopoles cluster near the stellar 

center; there they generate heat by annihilating and, possibly, by catalyzing the 

decay of baryons. Their contribution to the total stellar luminosity, and their 

effects on the structure of stars, are likely to be unobservable as long as the flux 

is substantially below the Parker bound, FM < lo-l6 cm-2sec-1sr-1. Although 

a monopole flux as low as F’ - 1O-24 cm-2sec-1sr-1 could give rise to a high 

energy neutrino flux (from catalysis) above atmospheric background, due to M&f 

annihilation this does not translate into a reliable flux bound stronger than the 

Parker limit. We also argue that all but the strongly magnetic stars will retain 

a substantial fraction of the monopoles they capture. As a result, including 

monopoles captured on the main sequence strengthens the upper bound on the 

flux due to monopole-catalyzed nucleon decay in neutron stars by seven orders of 

magnitude, F”0-2s 2 10m2* cm-2sec-1sr-1 (where the catalysis cross-section 

i8 o,(v/c) = c-2810-28 cm2). 

Subject headings: 

elementary particles - nuclear reactions - stars: interiors 

2 



I 

1. Introduction 

Since magnetic monopoles were discovered to be a generic feature of grand 

unified gauge theories (GUTS) (‘t Hooft 1974, Polyakov 1974), tbere has been con- 

siderable interest in their astrophysical and cosmological implications. GUTS 

predict tbat the very early universe underwent a symmetry-breaking phase tran- 

sition at a temperature T, - h& - 10” GeV, where Mx is the mass of an asso- 

ciated gauge boson. When the symmetry is broken, monopoles of mass mM - 

Mxb - lOI GeV form as top 01 og’ lcally stable defects (where a is the gauge cou- 

pling constant). Tbeir magnetic charge g satisfies Dirac’s (1931) quantization con- 

dition g = ngD (for n integer), wbere gD = h c/2e 21 69e = 3.3X lo-’ esu, and 

their mass rnM - lo-* gm is almost macroscopic. In addition, GUT monopoles 

are distinguished by the remarkable ability to catalyze baryon number violating 

reactions at a rate characteristic of the strong interactions, Q, (v/c) - lo-** cm2 

(Rubakov 1981,1982, Callan 1982a,b; see also \ , Callan and Witten 

1984, Bennett 1985, Sen 1985). These features suggest that monopoles may have 

unusual astrophysical signatures if they are abundant today. 

The theoretical predictions for the monopole abundance are problematic: in 

the standard cosmology, far too many monopoles survive annihilation for the 

universe to have reached its present state (Zel’dovich and Khlopov 1979; Preskill 

1979,1883; Weinberg 1983; Lee and Weinberg 1884), while inflationary models 

(Gutb 1981; Linde 1982; Albrecht and Steinhardt 1982), which were designed in 

part to alleviate this overabundance, generally leave no trace of monopoles at all 

(but see Turner 1982; Lazarides and Shafi 1983; Collins and Turner 1984; Lind- 

blom and Steinhardt 1984). Although neither of these extremes is astropbysically 

promising, we can alternatively consider the cosmological monopole density as a 

free parameter and ask what observational consequences follow. That is the 

approach of this paper. So far, this line of reasoning has led to several theoretical 

arguments placing upper limits on the monopole ffux. These generally fall into 

two categories (for reviews, see, e.g., Turner 1983aJ984). In the first, the survival 
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of magnetic fields (either primordial or dynamo-generated) over long periods lim- 

its the rate at which they can be destroyed by monopoles; for example, the galac- 

tic field yields the Parker bound FM s lo-l6 cmm2 see-l sr-’ (Parker 1970,1971; 

Turner,Parker, and Bogdan 1982). In the second category, the requirement that 

the luminosity produced by monopole-catalyzed nucleon decay in, e.g., neutron 

stars be unobservable gives a limit on the product of the flux and the catalysis 

cross-section FMcrezs 5 lo- 2’ cmm2 set-l sr-l (where 6, (v/c) = 6-28 lo-% cm2; 

Kolb, Colgate, and Harvey 1982; Dimopoulos, Preskill, and Wilczek 1982; Freese, 

Turner, and Schramm 1983; for a recent review, see Kolb and Turner 1984). Both 

of these limits are subject to controversy involving such issues as Landau damp- 

ing of plasma oscillations (Arons and Blandford 1983; Salpeter, Shapiro and 

Wasserman 1982; Turner, Parker, and Bogdan 1982; Parker 1984) and the struc- 

ture of neutron star interiors (Harvey 1984a,b; Harvey, Ruderman, and Shaham 

1986.). ( In the second category, a slightly weaker but better understood limit 

comes from catalysis in white dwarfs, FM 6-28 s lo-l8 cmm2 see-’ si’ (Freese 

1984).] In the next few years, monopole detectors should be able to probe a flux 

just below the Parker limit (see Stone 1984); on the other hand, if the catalysis 

limits are valid, and if 6-28 - 1, the prospects for direct detection of monopoles 

are nonexistent. 

Wherefore, then, monopoles and main sequence stars ? This paper serves two 

purposes. First, since stars on the main sequence (MS) have much larger surface 

areas, one might expect they capture many more monopoles during this period 

than they do as neutron stars. Assuming these monopoles survive in the star 

throughout the MS phase, the flux limits due to neutron star catalysis can be 

strengthened by up to seven orders of magnitude (Freese, Turner, Schramm 

1983). Thus our first goal is to examine the conditions under which monopoles 

captured on the MS in fact survive. This includes consideration of such processes 
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as m annihilation and ejection by stellar magnetic fields. Second, given that 

monopoles may survive in reasonable numbers in a stellar core, we investigate 

their effects on the structure of the star. 

The paper is organized as follows. In 5 II, we discuss the capture of mono 

poles by main sequence stars. A qualitative estimate of the number of monopoles 

captured is confirmed by numerical integration of the equations of motion. The 

numerical results are summarized in Figs.2 and 3 and Tables II and III. In 5 III, 

we describe the monopole distribution in stars for different support mechanisms. 

In Sec.N we discuss the interactions of monopoles in stars, particularly the gen- 

eration of energy by hm annihilation and monopole-catalyzed nucleon decay. In 

Sec.V we give a perturbative treatment of the effects of monopoles on stellar 

structure, with particular attention to changes in central temperature, luminos- 

ity, radiative stability, and neutrino emission. In 5 VI we derive a criterion on the 

magnetic field strength and geometry needed to eject monopoles from stars and 

discuss the result in the context of the theory and observations of stellar fields. A 

summary and our conclusions follow in 3 MI. 

We establish our notat,ion here for reference. We use cgs units throughout,, 

with the exception tha.t we quot.e the monopole mass in GeV/c2. Most quantities 

will be expressed in terms of their fiducial values: the monopole mass m = 

ml6 10’” GeV/c2 = ml6 1.77X lo-* gm, its charge g = 69e(g/gn) in units of the 

Dirac charge gD; its flux in units of the Parker flux 

FM = F-,, lo-l6 cmm2 set-’ sr-l 9 and its velocity & = v~/c = /3-310e3 in units 

of the galactic virial velocity. NM denotes the total number of monopoles in the 

star, nM the monopole number density, and rm the radius of the monopole core. 

The subscript n (e.g. P,.,, v, ) refers to nucleons. The star’s central density and 

temperature are pe = 100 ploogm cme3 and T, = 107T, K. 
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II. Capture on the Main Sequence 

During the main sequence (MS) phase of stellar evolution, stars derive their 

energy from thermonuclear burning of hydrogen to helium. Stars on the main 

sequence range in mass from about 0.08 Q to 100 MO, and are divided into two 

categories: upper (M 2 1.2 &) and lower (M s 1.2 MO) main sequence. Because 

of the higher central temperatures in upper MS stars, the carbon-nitrogen-oxygen 

(CNO) cycle provides a substantial fraction of the nuclear energy release. This 

energ source is extremely centrally concentrated and gives rise in upper MS stars 

to a convective core surrounded by a radiative envelope. The temperatures in 

lower MS stars are lower, and the proton-proton (p-p) cycle serves as the primary 

enerET source. These stars have radiative cores with convective envelopes. 

The approxima.te scaling of various stellar parameters with increasing mass 

M of the star can be expressed fairly simply: luminosity is given by L/b = 

W/% InI where n varies (3 < n < 5) somewhat across the MS, the stellar radius 

RI% 21 (M/b )‘.‘j, central temperature T, - M113, escape velocity from the 

star v,,, = (2GM/R)‘i2 - M’j5, and lifetime on the main sequence 7~s 2i 

13 x lo9 (M/e )I-” yr. M ore precise values of these quantities calculated from 

detailed stellar models are given in Table I. (For further discussion of the MS 

stage of stellar evolution, see, e.g., Chandrasekhar 1939; Clayton 1968; 

Schwarzschild 1957.) 

Magnetic monopoles typically move through the galaxy with the virial velo- 

city (vM a 10w3c), or slightly faster if they have been accelerated by the galactic 

magnetic field (Turner, Parker, and Bogdan 1982), vM % 3X 10b3c m16-“2 (for 

field strength X 3X lo-’ Gauss and coherence length z 300~~). As a monopole 

passes through a MS star it loses energy. If it loses all its initial kinetic energy 

(i.e., its energy infinitely far from the star), it is captured by the star. Since the 



energy loss increases with decreasing impact parameter, the number of monopoles 

captured by a MS star exposed to a monopole flux F for a time 7 = 7Ms is just 

the number incident upon the star with surface impact parameter less than some 

critical value, b,,it: 

NM = (4nb~it)(n sr) [ [$j2]~7ME l+ (2.1) 

where v, is the monopole velocity far from the star. The factor 

1 + (v,,,/v,)~ = 1 + 2GM/Rv: is just the ratio of the gravitational capture 

area to the geometric cross section of the star. [All quoted impact paramet,ers 

refer to va,lues at the surface, not at infinity; the critical impact para.meter at 

infinity is b,zt = [l + (v~~~/v,)~] ‘I2 b,,it.] 

Monopoles moving through matter lose energy via several mechanisms: (i) 

electronic interactions; (ii) hadronic interactions; (iii) atomic transitions they 

induce between Zeeman-split levels (Drell, etal. 1983); (iv) direct ionization. Ahlen 

and Tarle ‘(1983) ( see also Martem’yanov and Khakimov 1972; Hamilton and 

Sarazin 1983, and Meyer-Bernet 1985) have calculated the energy loss rate for a 

monopole passing through a non-degenerate electron gas and find it to be 

dE= I I 
2 t1 + x,) 

ds 
4.66 -!k 

gD 
T7 

$ 

F(@min) c 

I I 
z&q ppz 

T7 
‘z 

(2.2) 

where @min a 3.35 degrees is the minimum scattering angle (Cf. 

Clayton 5 2.3,3.4), XH is the hydrogen mass fraction, T7 is the temperature in 

units of 107K, p is the density in gm cm -3, z is the number average atomic 
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charge, /3 = v&j/c is the instantaneous monopole velocity, and in our range of 

interest F = C = 1. Nuclear stopping power contributes at about the 5% level 

and has been included below. 

The energy loss in Eqn.(2.2) is due to close elastic encounters and was cut off 

at a distance from the monopole comparable to the Debye length AD; since elec- 

tric charge screening has no magnetic analogue, one might expect collective 

plasma excitations to enhance the energy loss considerably (Hamilton and Sarazin 

1984). However, Meyer-Bernet (1985) and Tarle (1985) have argued convincingly 

that such coherent effects are destroyed by thermal scattering of the electrons. 

An electron plasma is characterized by the dimensionless plasma parameter 

- = l/n,XJ, where n, is the electron density (i.e., l/E is the number of elect,rons g 

in a sphere with the Debye radius). The ratio of the electron Coulomb scattering 

frequency to the plasma frequency wc/wP - g. In many plasmas, g << 1 and 

one can treat collision effects by a perturbative expansion in g. In a stellar inte- 

rior, however, it is easy to show that g - 1, and the collisionless approximation 

fails. 

If the monopole is electrically charged (a dyon) or has previously picked up a 

nucleon (Bracci and Fiorentini 1984), the energy loss will be enhanced; in the rest 

of‘ this paper, we shall focus on monopoles which are non-dyonic and which 

catalyze nucleon decay, so, modulo the subdominant mechanisms (ii),(iii), and 

(iy), Eqn.GW P re resents a reliable estimate of the energy loss rate. At the very 

least, it represents a lower bound to the energy loss rate. 

a) Approximate Analysis 

With a simple approximation to Eqn.2.2, we can obtain an order of magni- 

tude estimate for the number NM of monopoles captured by main sequence stars 
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a.nd understand its dependence on stellar mass. We focus on the range 2% 
< M < 10% over which the scaling of stellar parameters (noted above) is reli- 

able. In this interval, Table I shows that 7~s - Me2, and for monopole velocity 

v, s v,,, ( - 10m3c) Eqn.2.1 gives 

We now show that the ratio (b,ri,/R)2, the fraction of incident monopoles 

capt,ured, has no monotonic dependence on stellar mass. A rough approximation 

to Eqn.(2.2) gives dE/dx = IOp@(g/gr>)2 GeV/cm. For a monopole that is margi- 

nally captured, v,,, = (2GM/R)‘j2 is a t.ypical speed on its trajectory inside the 

star. Neglecting the curvature of the interior trajectory, a monopole incident at 

surface impact parameter b,yit loses a total energy 

AE X 20p,I~1”21~]2ar(r,R) [I - [F]2]-1’2dr GeV 

where the stellar density profile is p(r) = p,f(r/R), pC is the central density in 

gm-cm-‘, and the integral is in cm. Since density profiles of zeroage main 

sequence (ZAMS) stars of different masses appear rather similar to each other 

(e.g., Schwarzschild 1958, p-251), to our order of approximation we assume the 

profile function f(r/R) is a universal function, independent of M. Then the 

integral in (2.4) . is of the form Rh(b,,i,/R). The condition for capture, 

AE 2 mvz/2 = 5 X 10gm,6p-$ GeV, gives an implicit expression for b,lit/R, 

b . I I 
-2 

“T x 2.5 X 108m,,~~cp;‘(2GMR)-1/2 2 I I (2.5) 

Since p - M/R3 and R - M0.6, the right hand side of Eqn.2.5 is independent of 



M, i.e., b,g;,/R is a function only of m, @,, and g/gn. Inspection of Table II 

shows that this scaling result is borne out by our numerical analysis. 

From Eqns.2.3 and 2.5, the expected number of monopoles captured NM - 

M”.‘. In the mass rang e 2.8-10 e, a fit to the numerical results shown in Figs. 

2 and 3 indeed indicates an approximate power law with exponent N -0.4 . The 

qualitatively different behavior of NM for M 5 2% and M 2 lOh;Io reflects 

changes in the scaling behavior of 7~s with M -and changes in density profile in 

these regions. 

The fastest monopole that a star can capture obviously passes through the 

st,ellar center (b=O) on a straight trajectory. Fitting the density profile with 

f(y) = e -*e* (see Appendix III), Eqn.2.4 and the capture condition give the vele 

city of the fastest monopole stopped 

W 3X 10s3 1 lTl,-,‘12 I I gD 
P-6) 

again independent of M. This approximation is in good agreement with the result 

shown in Table Ill (especially the independence of M). Thus a significant fraction 

of monopoles with the galactic virial velocity (/3, - 10m3 ) will be captured if m 

5 1017(g/gD) GeV. Eqn.2.6 can be expressed more transparently as a condition 

on the kinetic energy 

I I 
2 

~,m”~5xIOr~ -& GeV. (2.7) 
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b) Numerical Results 

In order to follow the trajectory of the monopole through the star, we 

numerically integrated the following equations of motion: 

(2.8a) 

. . y=- (2.8b) 

where x and y are Cartesian coordinates centered on the star, dE/ds is given by 

Eqn.(2.2) with the nuclear corrections included, the instantaneous velocity of the 

monopole v = (X2 + y2)‘12, and M(r) represents the stellar mass inside a radius r. 

The initial conditions at the stellar surface were chosen to be: y(0) = b, = sur- 

face impact parameter, x(0) = R(l - (b,/R)2)“2, x(0) = -v, = impact velocity, 

i(O) = 0, v, = [ vz + (2GM/R) ]‘12, and, as noted earlier, b, = (v,/v,)b,, 

where v, and b, are the monopole velocit,y and impact parameter at infinity 

(see Fig.1). The values of M(r), p(r), T(r), and X,(r) (where r2 = x2 + y2) are 

int.erpolated from the ZAMS stellar structure models of Stromgren (1965) 

(reprinted in Clayton (1968)), Iben,Jr. (1965,1966) (reprinted in Novotny (1973)), 

and Woosley (1983) (See Table I). Those monopoles that lose all their initial 

kinetic energy enroute through the star are captured. In Table II we list the 

maximum surface impact parameter bcrit at which monopoles are stopped for 

various stellar masses (0.6 - 30 Q ), monopole masses (10” - lOI GeV), and 

monopole velocities far from the star (lo-’ - 10-l c). We also include results for 

monopoles of 2 units of Dirac charge, g = 2gD. Two models with different com- 

positions (xH = 0.6,0.7) were used in the 7& case; Table 11 shows the insensi- 

tivity of the capture results to this variation. In Figures 2 and 3 we have plotted 

the number of monopoles captured over the MS lifetime as a function of stellar 
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mass, for monopole masses (lOI - lo'*) GeV, monopole charge g = (1 , 2)gD, and 

Voo = 103c. The error bars in Figure 2 indicate the spread in the number cap- 

tured between partially evolved and ZAMS models; again, the differences are 

small. In Table III, we list the velocities of the fastest monopoles stopped for 

different monopole masses and charges. 

III. The Monopole Distribution in Stars 

To determine the fate of monopoles captured in stars and to examine their 

effects on stellar structure, we need to estimate where they congregate in stars. 

As we will see in this section, monopoles are concentrated deep in the stellar core, 

generally between lo2 to 10' cm of the center. 

Once stopped within a star, monopoles fall to the center, t.heir motion at the 

same time being damped by the electron drag force F, = dE/dx 2: 

lOp,L3 GeV/cm (approximat,ing Eqn.(2.2)) on a timescale t, = 2mMvM/Fd N 

7 x lo2 ploo-’ ml6 sec. Since the capture and damping times are much shorter 

than other stellar timescales of interest, we can treat the monopole configuration 

inside the star as approximately static. 

We assume throughout that monopoles never dominate the central mass 

density of the star, i.e., their number density nM is less than the critical value 

n wit PC 

m 
c-c 

mM 
5.6X 10gploo m16-' crnm3 = 4.8X 10' m;B’ (M/hb)-O.* cmW3 

(3.1) 

In the next section, we will argue for the plausibility of this condition, which 

justifies the perturbative approach to the effect of monopoles on stellar structure 

to be used throughout. (See Fry and Fuller 1984 for a discussion of monopole 



stars.) Here we use this criterion to determine the monopole distribution to good 

approximation without considering the higher order effect of the small monopole 

contamination on the star itself. 

The monopole distribution will be supported against gravity by pressure gra- 

dients and, in some cases, by magnetic fields. We discuss these support mech- 

anisms in turn. In Appendix II, we show that large-scale convective motion is 

very probably irrelevant to the monopole distribution. 

a) Pressure Support 

In the absence of convection and magnetic fields, monopoles reach kinetic 

equilibrium with the stellar plasma at low thermal speeds, vth z (3kT,/mM)‘/’ 2: 

0.3(T7/m16)r/2cm see-r, so the pressure of a heavy monopole gas is weak. To 

satisfy the condition of hydrostatic equilibrium, a self-supported monopole distri- 

bution must be confined to a region where its thermal energy can balance its 

gravit,ational potential energy, i.e., within a characterist.ic ‘thermal’ radius 

‘th - I 2~~~~p,)~~;r(m$,oo)~~m=i00(M/~)o~am~~~2~m 

(3.2) 

from the center of the star (Harvey 1984). Although monopoles interact with the 

gas and radiation in the star (the exchange of energy in this process allows the 

monopoles to be captured), they rapidly diffuse to the stellar cent.er: no couplings 

or constraints, such as electric charge neutrality, can buoy them up. Monopoles 

supported by thermal pressure alone will cluster at the center of stars. 

b) Local Magnetic Fields 
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Although their magnitude and geometry are largely unknown, the interior 

magnetic fields of stars are certain to affect the monopole distribution, for it is 

unlikely that the stellar core is completely field-free. Magnetic fields will act to 

disperse the monopole population, to push it out of thermal equilibrium with the 

atar, and to separate the monopole and antimonopole populations, at least 

locally. One might conjecture that hidden stellar fields may be strong enough to 

eject monopoles from stars compIeteIy, rendering bootless the rest of our study. 

Here, we estimate the fieId strengths required for local Mn separation. In §\‘I, 

we investigate large-scale fieIds and argue that complete ejection is unlikely in 

the majority of stars. 

To study small-scale effects, we consider the simple case of a uniform axial 

field B or flux tube passing through the stellar center. (This idealized geometry 

should give a reasonable annroximaf.ion river small enoutzh distances, even for 
we give a detailed analysis in Appendix I, which we now s+nmarize. 

tangled fields.)l\MonopoIes and antimonopoles are pushed toward opposite poles 

of the tube against the forces of gravity and Coulomb attraction. Assuming a 

fiat densit.y profile (p(r) E p,) at small radii and an equal number N of monopoles 

and antimonopoles, the M and m distributions will be separated by an average 

distance !2r, given by 

F(r) = gB - %Gp,m,r, - EL0 
4rz 

where we have ignored the small pressure force ((a) above). Eqn.3.3 is the force 

at the center of each of the M and m distributions, assuming these do not over- 

lap (see below). This cubic equation will in genera1 have two solutions for positive 

rm, the smalIer one (r-) where the B field roughly balances the Coulomb attrac- 

tion, the larger one (r+) where gB approximately balances gravity. The stable 

solution is 

(3.4a) 
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where B = 100B,o, Gauss, and we have ignored the Coulomb term. This solu- 

tion becomes unstable when the two positive roots r* become degenerate, which 

occurs at a minimum critical field strength 

Bcrit=380Gauss[ [s] ‘ty:f]‘, where the factor in brackets is of order 

one for a Parker flux of superheavy monopoles (recall Fig.2, which shows 

N-10Z4 F-is). An internal field of several hundred gauss can separate the M and 

n distributions to distances of order 10’ cm and, as we shall see, prevent m 

annihilation for F-r, s 1. For a small flux F 2 1O-23 cme2 sr-l s-l “v lo-rF_,a, a 

field of only - 1 Gauss can stabilize the M’s and a’s at rz - lo4 cm, sufficient 

to freeze out M% annihilation. Note that we have ignored the finite radius d, of 

the separated M and n distributions due to Coulomb repulsion within each dis- 

tribution; in the limit d, << r:, we find 

l/3 N l/3 213 
% 1O’cm - 

I I 1oZ4 
(3.4b) 

and one can show that d, << rz for B >> Bcrit . (The effect on d, due to 

non-zero monopole pressure is subdominant, since rth << d,.) Thus, for 

B >> Bc,itc the separated populations will not overlap, and our use of (3.3) a.bove 

is self-consistent. It is also easy to check that the magnetic field due to the hm 

dipole moment is negligible at the stellar surface. 

In the above analysis, we have considered only static solutions; we have not 

searched for time-dependent solutions where coherent monopole motions may be 

important. However, under the assumption B >> Bc,it, and thus rm+ >> d,, one 

can show that the separated, non-overlapping, static M and a distributions are 

perturbatively stabIe. Therefore, more complex, time-dependent behavior (e.g., 

magnetic plasma oscillations, see Arons and Blandford 1983; Farouki, Shapiro, 



and Wasserman 1984; Turner, Parker, and Bogdan 1983) will only arise for B s 

B crit; although this regime may be interesting, we do not address it here. (See Appendix I.) 

For these estimat,es to be consistent, we should check that the coherence 

length of the field in the stellar interior is at least as large as rz. The decay time 

for a field of characteristic length 1 is r,j = 47x71*/c*, where the plasma conduc- 

tivity cr N 2 X 107T3/? set-*. (In this subsection, we are assuming that the core is 

radiatively stable, so we only consider primordial magnetic fields, which have 

these long timescales.) For internal temperature T, - IO’ K, rd is longer than a 

typical lower MS stellar lifetime - 10" years only for fields wit.h coherence 

Iengt,h 1 2 5~ log cm. Thus, Eqn.(3.4) will be a reliable estimate as long as rz s 

5~10~ cm, i.e., for field strengths B 5 50 kG . In this discussion, we have 

neglected the instability of the field configuration to buoyancy and diffusion; it is 

conceivable that these effects could leave the central region relatively field-free for 

at least some time periods. 



IV. Interactions of Monopoles in Stars 

Given the monopole distribution as a function of support mechanism out- 

lined above, we can ask how this population evolves over the life of the star. In 

this section, we consider him annihilation and the generation of energy by vari- 

ous processes involving monopoles (catalysis of nucleon decay and annihilation). 

M’e will also find the conditions necessary for the validity of the perturbative cri- 

terion nM < nzit of Eqn.3.1 . 

a) Annihilation 

The rates for monopole-antimonopole annihilation have been given by Dicus, 

Page and Teplitz (1982); since the thermal monopole velocity &, << ck5i4 (where 

0 = l/137), t,he relevant 2- and 3body quantum recombination cross-sections 

are 

(42 = 253-3/2n mG2gSvfi1 (h c)-k2 In [g4i2(li c)‘/‘/(v~/c)] 

= 12X10”’ m . -3/2 T?1/2 (g/g# cm3 see-’ 16 (4.1) 
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(43 = % wkl -V2 (t5 (kT)-g/2 (h c)’ 

= 8.6 x 10-2giiM m;8/2 Tfg12 cm3 see-’ 

(44 

where we have used v, = vu, 2i (3kT/mM) lj2, the logarithm in Eqn.4.1 was 

evaluated at T, = ml6 = g/gD = 1, and the monopole number density 

nM = ?iM cms3. From Eqns.4.1 and 4.2, . the Bbody rate dominates for 

EMmisT<’ > 1.4X 10s3; since, in practice, annihilation is relevant only if 

iiM >> 1 (see below), one can show that &body recombination is the most 

important annihilation mechanism for mM 2 10" GeV/c2 (using T, < log K for 

all stars on the main sequence). That is, when annihilation is important, the 3- 

body rate dominates.(This is not true in the very advanced stages of stellar evo- 

lution or in neutron stars.) 

l.Main Sequence 

If annihilation occurs, the monopole population in the star reaches a plateau 

at a value Nhq, where the annihilation and accretion rates balance, 

dNM N$J’ -=-- 
dt rMS 

Nh? n$ (a~)~ = 0 . (4.3) 

Here , N$P is the total number of monopoles captured over the main sequence 

lifetime rMs (see Figs2 and 3). Using the approximate expression (2.3) for N$+‘, 

assuming for simplicity that the monopoles are uniformly distributed inside a 

radius r, = im cm, and substituting Eqn.4.2 into Eqn.4.3 gives the equilibrium 

number density of monopoles 

rig= . 1 2 X lOI crnm3 Y-‘FJ/l m rd2 W/&J (4.4a.j 

c 

I 
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and a total number 

(4.4b) 

where we have defined the effective flux parameter F-,, z Fm16 @2 (b&R)“. In 

QIII, we estimated the radius rm of the monopole core for different support 

mechanisms; using Eqns.3.2 in Eqn.4.4b gives 

N&q % 5 x 1O1s (M/hb)2.2 rnfi*j2 F_‘(,3 (thermal) (4.5a) 

w Ngp, B > Bcrit (magnetic) (4.5b) 

These results are summarized in Figure 4. 

Note that, through the use of (2.3), we have assumed the scalings appropri- 

ate for the mass range 2hb s hl s lOl\l, and that v, s v,,,. Eqn.4.2 gives the 

Sbody recombination rate into a h,fl bound state; in applying it to Eqns.4.3 and 

4.4, we have implicitly assumed that the timescale for annihilation of a bound 

Mm pair is less than or of order the recombination timescale. This is readily 

verified: the capture timescale r3 - (nr;lguv3)-’ - 3~ 10’ Fz FIfd3 set while the 

annihilation timescale is roughly the plasma damping time for bound m orbital 

motion (see 5 III), td - 7 X lo2 sec. 

Annihilations are unimportant if N# >> N$P. For a thermally supported 

monopole distribution, comparison of Eqns.2.3 and 4.5s shows that annihilations 

significantly reduce the number of monopoles in the star unless FM s 

10ea cm’* se8 sr-*. Since N# is quadratic in rm, however, any mechanism for 

dispersing monopoles strongly reduces the annihilation rate. For example, for 



, . - a central magnetic field 

B > Bcrit (th e region of validity of our previous analysis, typically of order 

several hundred Gauss, see $ IILb), 

annihilations are rendered impotent. 
\ 

1 
l Since annihilations are irrelevant for 

B > %itl we can use Eqn.2.3 to reexpress the critical field as 

B,hi, m 1.1 X 103F-*[~(h4/&)-2/3 (g/gD)-‘j3 rnfd3 Gauss. 

For future reference, it is convenient to express the above relation N# >> NZP 

as a condition on the monopole radius r, ; from Eqns. 2.3 and 4.4b this is 

r, >> rpn f 2 X 10’ cm F-r/l rniii2 (hl/hb)“’ . 

2Advanced Stellar Evolution 

In the advanced stages of stellar evolution, the core undergoes a series of 

contractions, heating up to ignite the nuclear burning of heavier elements. First 

consider the case of thermal support. As the density and temperature increase, 

rkh and thus Nhq are reduced from their main sequence values. Although a 

smaller number of monopoles survives, typically the number is reduced by no 

more than two orders of magnitude. From Eqn.(3.2), r, - (T/p)‘/* and from 

Eqn.(4.2), N$J - rzT312 - @/2/p. Assuming the core contracts approximately 

uniformly and adiabatically and using an ideal gas equation of state, p - R3, T 

- R-‘, so N&q - T’12, The central temperature in these stages of stellar evolu- 

tion is generally less than - 1000 times the average main sequence central tem- 

perature, ao N# is reduced by less than a factor of - 30. Eventually, the simple 
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scaling approximation above breaks down; the post-Helium-burning evolution of 

massive stars consists of a complex series of convective, radiative, and degenerate 

burning phases. Consider the case of an 8 - 10 A& star (Nomoto 1984). During 

Carbon and Oxygen burning, Nz is reduced by a factor 51 50 from its main- 

sequence value, and by -N 275 when the core is 0 + Ne + Mg. During subsequent 

phases, Nz may be reduced by up to another order of magnitude; for example, 

during Si burning in a 
25hb star (Weaver, Zimmermann, and Woosley 1978), Tsi ,N lo2 TMs while psi 

z looms , so Ng is reduced by - 10’ from its main sequence value. These very 

advanced phases are so rapid, however, that the number of monopoles NM does 

not have time to relax to the suddenly smaller values of N$q; the actual drop in 

NM through the precollapse phase is always less than a factor of 1000. 

Since the behavior of central magnetic fields during advanced evolution is 

not well understood, it is not obvious what will happen to magnetic field support 

during core contraction. In the absence of complicating factors (see below), the 

high stellar conductivity will freeze the field into the fluid, and magnetic flux 

should be conserved; then in an adiabatic contraction B - Re2, p - Rw3, so B - 

p2/“; since B crit - p213 as well (see 3 III), the magnetic force remains sufficient to 

overcome gravit,y and the Coulomb attraction if it was initially. Also, from 

Eqns.3.4, rz - B/p and d, - pv1f3, so d,/rG - E1p213 - const. Thus, if 

d, < r: initially, it remains so, and annihilations will still be prevented by the 

magnetic field. In the collapse to an object of neutron star dimensions (R - 10” 

cm), the initial separating field of several hundred gauss ( 5 III) is amplified to - 

1012G, a typical value for observed pulsar fields. The actual evolution of the field 

is likely to be much more complicated than this (Ruderman and Sutherland 1973, 

Levy and Rose 1974a,b); in particular, more or less independently of the initial 

main sequence field, the convective motions set up in the advanced core may gen- 

erate a strong central magnetic field B - lo* - 109G (which subsequently col- 

lapses to - 1012G) by dynamo action. 

Now consider the fate of captured monopoles upon collapse of the core to a 

neutron star. (The case of white dwarfs is discussed by Freese 1984.) In the 
. 
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absence of a central magnetic field BC 2 lO*G, annihila- 

tion will catastrophically reduce the surviving population (Harvey 1984). On the 

other hand, if a large central field has been built up by a late-stage dynamo or by 

collapse amplification of an initial seed field, annihilations will be prevented in 

the usual way. This simple picture is complicated by the uncertainties regarding 

the interior structure of neutron stars. For example, in most models, the degen- 

erate protons in the core pair to form a Type II superconductor; magnetic fields 

must thread the superconductor in thin vortex tubes. If a large field is present in 

the core before it goes superconducting, monopoles can disperse into the tubes; 

M’s and a’s will occasionally annihilate if they find themselves in the same tube, 

but a large fraction will survive. Their subsequent e&ion is discussed by Har- 

vey (1084). If the .core is superconducting but without a large field, there are 

three possibilities: i) superconductivity (SC) occurs well after the collapse, 

in which case annihilation destroys the population in the meantime; ii) SC 

occurs quickly and nucleates from the center outward, expelling monopoles from 

the core or surrounding them with flux tubes; iii) SC occurs quickly, nucleating 

inward. In the last case, since the majority of monopoles have field lines which 

penetrate the surface of the star and since flux lines cannot be broken, monopoles 

will also presumably form into their own flux tubes, thereby escaping annihila- 

tion. In both cases (ii) and (iii), the majority of monopoles survive. 
. 

(For further discussion of monopoles in neutron stars, see Harvey, Ruderman, 

and Shaham 1986.) 

b) Self-Consistency of the Perturbative Treatment 

We can now verify the claim of 5 XXI that the condition pmon < pnuc is very 

likely to hold; this requires min[n~*P,n#] < n@ = 5.6~ 10’ m$ ploo crna. 

From Eqn.4.6, lor rm > r,Ul” we have I@’ < n#; in this case, 

p#P k: N;iiP/ rt < N#‘/(rmm)’ w 10’ cm4 (independent of FM, where we have 

taken N#P z l@ FSto ), which is less than nEit as long as mlb/ploo s 5.6X 10’. 
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Thus, Eqn.3.1 could only be violated for rm < r$‘” ,i.e., annihilations always set 

in before monopoles reach the critical density n$“. To satisfy (3.1), we need only 

impose nhq < ni”, which becomes, from (4.4a), 

rm > rm crit % 2 x lo* cm F-‘/t rn:gs (M/Q)‘.* w 

For Fe,, s 1, Eqns.3.4 show that this condition is easily satisfied if 

magnetic fields are present. For a thermal monopole distribution, 

Eqns.3.2 and 4.6 imply that the ratio 

th 
rm - a 0.4 F-i!6” 
hEit 

missi (M&j-‘/* (4.8) 

is typically larger than unity for FM s 10-l’ cm-* set-’ sr- I. Thus rather large 

monopole fluxes, which appear to be ruled out on both theoretical and experimen- 

tal grounds (see 5 I and references therein), would be needed for a critical mono- 

pole density. 

In the unlikely case that nM > ngit, straightforward arguments (Seckel 

1982) indicate that an approximately isothermal monopole-dominated core is 

unstable to gravitational collapse. (The virial equation for the monopolenucleon 

gravitational system is a cubic, so it displays the ‘cusp’ catastrophe.) As a stellar 

core approaches monopole domination, however, it will relax to a stable nucleon- 

dominated configuration. Assuming a thermally supported nucleon-dominat,ed 

system, Eqns.3.1,3.2, and 4.4a indicate that the ratio P E n&~th)/n$’ - 

T:‘21r;hPn”c - ~,lP*ue ’ I/* Under a uniform contraction of the ‘core’ radius from Ri 

to Rf, T - R-l, p - RBS, and this ratio decreases by 

Pi/Pi = (TIPi) (pA,/p,‘,,)“* = (Rl/Ri)‘/2, where we have assumed the nucleon5 

form an ideal non-degenerate gas. As nM approaches nESjit, gravitational contrac- 
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tion of the monopolenucleon core reduces the monopole density relative to the 

critical density, rendering the system marginally stable against further collapse; 

for nM near nzit, we expect the star to relax by slow secular mini-core contrac- 

tion instead of runaway collapse. There is no difficulty with competing timescales 

here: for nM - n@, annihilations keep nM from growing very fast, so a slow con- 

tra.ction can indeed keep nM below I@“. . 

c) Energy Generation 

Monopoles at the centers of stars will act as a source of energy through their 

annihilations and, possibly, through their catalysis of nucleon decay. [ We neglect 

here the possibility of M catalysis of fusion (Bracci and Fiorentini 1984) and 

other effects connected with the binding of monopoles to nuclei (Lipkin 1983) 

because we assume monopoles catalyze baryon decay with a strong interaction 

cross section.) When monopoles and antimonopoles annihilate, at the rate 

dnM/dt = -n&(crv)3, their rest energy is thermalized, heating the core at a rate 

c - -(d~mlWlh = arm - mMc*n&bv)a /p, per gram of stellar material. [ c is the 

energy released per unit mass per second.] It is clear that cmn will only be appre- 

ciable in the regime where annihilations are important, that is, for r, < rzn and 

nM = r@. In this case, Eqns.4.2 and 4.4a give 

c mn ” = 3x 102’ g;a,c Ti3 ml6 Fe,, (M/h%)*.’ (4.9) 

Since it depends strongly on Frn, the annihilation heat has a wide range: c,, - 0 

for rm 2 rFn , 

-G e, and for thermally supported 

monopoles c$., N 3.8X 10” m/“2 F-r6 (M&)‘~r” erg/gm-set from Eqn.3.2 . By 

comparison, typical core nuclear energy generation rates are cpp N 10piooT74 
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erg/gm-set (for 1.1 5 Tr s 1.7 ) and cCNo N 8plooT:’ erg/gm-set (for 2.1 < T, 

< 3.1) for the proton-proton and CNO cycles (e.g., Schwarzschild 1957). (The 

effects on the star of the extra monopole heat sources will be discussed in the 

next section.) 

As discussed in the Introduction, it is thought that grand unified monopoles 

catalyze the decay of nucleons with a cross-section Z - 10e2* cm* characteristic 

of the strong interactions. Since the energy liberated per decay is roughly the 

nucleon rest energy m,c*, and the central mass density pc 2~ pn z mnnn (where 

n, is the nucleon number density), the power per unit mass produced by 

catalyzed decay is c,,~ llz nMbcvc2, where v 21 v, is a typical monopole-nucleon 

rela.tive velocity. At the stellar center, the average nucleon velocity v, 2: 

(3kT,/m,)‘/* E li)-3T71/2c. Arafune and Fukugita (1983) have shown that, for a 

relative velocity p - 10m3 in Hydrogen, the catalysis cross-section is enhanced by 

a factor F(p) z 1.7~ 10?(p/10-3)-’ due to the angular momentum carried in the 

electromagnetic field of the monopole-nucleus system. (Note that it is possible 

that for v ,N 10e3c there are strong interaction barriers which might depress the 

rate.) Since it is usually assumed that the cross-section otherwise scales with velo- 

city as 60 = w, where 5 = op281o-28 cm*, we have 

a,@ = C F(p) = 1.7 x 10-260-28Tf1’2 cm*. 

We evaluate ccst in the two cases of (I) weak (nM < niq , rm > rcn) and 

(II) strong annihilations (nM = nfiq). In the first case, using nM ,N 3NE;IBP/47rrz 

with NgP given by (2.3) 

In the strong annihilation regime, Eqn.4.4a gives 

(4.10a) 
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4? w 7.4~ 10” Giec F&’ u-B F_‘[: rnl’d6 (M/M&‘aQ (4.lOb) 

and we note that, in general, zest @ l > cJ:l. As before, we can give the catalysis 

heat tor different monopole radii rm. * from Eqn.klOa, catalysis is negligible (ccat 

- 0 ) for rm - > 2 x lo*’ c&f Fe’& (M/&)-2/10 cm ; from Eqns.3.2 and J.lOb, for 

thermal support et’. z 6 x 10” rnfd3 F_‘(S3 (M/% )‘/l” 9% erg/gm-set ; 

:’ r for the case of magnetic field sup- 

port, Eqns. 3.4b and 4.1oa give c,Ftg z 7X 10” ml6 (g/gD)-* u-z8 (hl/% )-1.4 

erg/gm-sec. 

The preceding analysis shows that, under general conditions, the local energy 

generation due to annihilation and catalysis can overwhelm the ordinary nuclear 

rates. In the neighborhood of the small region occupied by monopoles, this will 

certainly affect the structure of the star (see 8 V). As far as external observers are 

concerned, however, the contribution of these processes to the total luminosity of 

the star is generally negligible because monopoles are confined to such a small 

region ( on a stellar scale, they essentially form a point source). To put an upper 

limit on the luminosity contributed by monopoles, we assume the structure of the 

star does not locally adjust to reduce the large monopole heating gradient (e.g., 

by convection). If the energy generated is efficiently thermalized, then the annihi- 

lation luminosity is, using Eqn.4.9, 

L 4 23 
arm 

w- “mJpcc~n = 10 
3 

erg ~w16m16 (M/M&*j5 
set 

(4.11) 

independent of rm (and thus of support mechanism). This is negligible compared 

to the luminosity of even the faintest stars ( e.g., L z 5~ 103’ erg se8 for M = 

0.1% , Allen 1973, p. 209 ). From Eqns.4.10, Li!l 2 LJ,n,’ (even though 
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&) 2 c&, so the maximum power output due to monopole catalysis of nucleon 

decay is 

L g-26 t”/%)-‘.’ (4.12) 

Since stars with mass M  s 0.08hb are thought to be too cool for nuclear reac- 

tions to occur, Eqn.4.12 shows that catalysis also makes no observable contribu- 

tion to the luminosity of stars which shine if FM  s lo-*’ cm-* set-’ sr-*. The 

effects of monopole luminosity in degenerate black dwarfs, e.g., Jupiter, deserve 

further study (Turner 1983b); since their structure is rather different from ma in 

sequence stars, however, we do not consider them in this paper. 

V. Effects of Monopoles on Stellar Structure 

In the previous sections, we treated the behavior of monopoles in a fixed 

background star. Here, we consider the perturbative effects of monopoles on the 

star itself, and conclude that the star’s structure is, on the whole, negligibly 

changed. 

a) Upper Ma in Sequence 

As we show in Appendix II, the convection occurring in the core of a massive 

star (A4 Z  1.2 A4 0 ) only drags the monopoles around as a unit, without affecting 

the monopole distribution itself. Thus, in the following, we will assume that the 

monopoles act as a heat source in an otherwise convect ing star. In Sec. IV, we 

showed that the local energy generated by thermal monopoles could be large, but 

that the total monopole luminosity is a negligible fraction of the stellar luminosity 

(for sufficiently small monopole flux). In addition, 



despite the fact that emon >> cnuc, we now show that even the local effects on 

the struct,ure of the star are negligible. 

We consider the stellar model discussed by Chandrasekhar (1939,ch.9,§ 4), in 

which the energy generation is completely confined to a convective core occupy- 

ing a fraction 0.17 of the stellar radius. From the condition of hydrostatic equili- 

brium, Chandrasekhar shows that the total luminosity L - TJ.‘/p: (see his 

Eqn.200 ). Since radiation pressure is ignored in this model, the polytropic and 

ideal gas equations of state are pc - p,7 - pcTc, so that pc - T,‘/(‘-‘1 h, TP/“, 

where we have used y = S/3 for adiabatic convection. Using this above gives L 

- T 4*5. Now consider the energy generation itself: from,e.g., Schwarzschild c 

(1957) Eqn.lO.15, the CNO rate can be written c~,, N pT“ with typically v - 

16; assuming a temperature profile T(r) = T, f(r/R) gives 

O.lfR 
L = I 47rr2pcdr = g(R) T,Y+3 

0 (5-l) 

where all the radial dependence has been absorbed into g. Equating the two 

expressions for the luminosit,y, we have gT,“+3 = dT,“.’ E L, (where d is an 

irrelevant proportionality constant). In the presence of the monopole source 

L . mon = QL, ( 0 << l), the luminosity of the star is modified to 

gT,Y+’ + oL, = dT:‘.’ = L’, so the temperature and luminosity perturbations 

bT,= T, - T, , 6L = c - L, are, to first order, 

4 -0 -= 
Tc Y - 1.5 

(5.2) 

t5L c 
- = 4.5 T L C 
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The surprising feature is that, since equilibrium demands that the total luminos- 

ity rise as only a small power of T,, the star adjusts so that the temperature and 

luminosity decrease in the presence of the monopole heat source. From Eqn.4.11, 

since L, 2 10”’ erg se8 for all stars, Q,, f L,,/L, 5 lo-’ F-,s ml6 , so annihi- 

lations have no effect at all. For catalysis, 

from 8 IIIa and IVc we have L,:l 21 2X 10” erg sec’l F-‘/83 6-2a ml$6, th * so Qcat lfi 

negligible; the change in central temperature 

will be insignificant. We conclude that monopoles nave essentially 

no effect on an upper MS star, either globally or locally, for a flux below the 

Parker bound. 

b) Lower hlain Sequence 

For stars with radiatively stable cores, the picture is potentially more 

interesting, but as we shall see, the effects remain small. Since monopoles gen- 

erate heat at a strong, highly localized rate, one might expect them to form a 

small convective core. 

However, if t, (or, in the case of magnetic support, d,,.,) is less than N lo6 cm, 

the analysis of Appendix II shows that dissipative effects are likely to suppress 

convection. This condition on rrn (d,) always holds for thermal support and, 

from (3.4b), it also obtains for magnetic support if the flux is below the Parker 

bound. (Even if the monopole core did convect, the results of Sec. Va could 

be applied to show that the effects of monopoles are small, because the Chan- 

drasekhar model also describes the case of a point energy source at the center of 

a convective core.) 
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monopole 
If tbey,core is radiative (either due to dissipative effects or because lrnon is 

below the Iimit(A.II.9) we can carry out a perturbative analysis similar to that of 

5 Va. We consider Eddington’s standard model, an n=3 (7 = 4/3) polytrope in 

which the quantities @ = pgU/p~o~ and up (where K is the opacity and q E 

(uww))/(w) 1 are constant. For any star in radiative equilibrium, we have 

the luminosity formula (Chandrasekhar 1939) 

L= 
&rcGM(l - /VJ 

KII 

where Ej is the pressure average of ~9 over the star. Using the Kramers opacity 

K=KJlT-- s.5, for the standard model we have Ej = ~,q, = K,,~~T~~.‘. In this 

model, p - p, so that h’r) - T’/* and Eqn.5.3, gives L = bT’/* (b is an arbi- 

trary constant). From here on, the argument is almost identical to 5 Va (see 

Eqns5.1,5.2), and we only need replace the L exponent there,l.S, with 0.5, and 

use the fact that here pc - T: ; the analogue of Eqn.5.2 in this case is 

flc -0 -= 
Tc u + 5.5 (5.4 

where, as before, Q = L,,,/L,. Again, wit.h th e inclusion of monopoles, the cen- 

tral temperature (and temperature gradient) drops very slightly. In this case, Q 

can be somewhat larger than in the convective case, but the effect is still unob- 

servable. From Eqn.4.12, for a 0.1% star, we have (L,,~ = 4~ lo? e,s a-,,, and 

for the pp cycle u N 4, so that 6lr,/T, 21 -40 F-,, o-28, which is still negligible as 
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long as FM 5 lo-‘* cm-* set-’ sr -I. Thus, whether they convect or not, lower hlS 

stars are not affected by monopoles. [This result further reinforces the monopole 

flux limits based upon monopole-catalyzed nucleon decay, which we discussed in $ 

I-1 

In SecJV, we saw that, for a Parker flux, a thermal monopole distribution 

can generate energy c$~ - 10” erg gm-’ see-’ while even a magnetically 

supported distribution releases catalysis heat at a rate cLFt, - lO*O 9% (again 

for FW1s - 1 and B - 100 G ). These values are ao large that one might consider 

the possibility of mini-explosion of the monopole core. 

In fact, one can show that the expected motions are always subsonic. As a result, 

the monopole core will perhaps be surrounded by a heated ‘deflagration’ region, 

and it is very unlikely that a propagating shock wave develops. 

c) Solar Neutrinos 

The presence of monopoles will also alter the emission of neutrinos by stars, 
and annihilation 

botb directly, through catalysisdneutnno proaucllon, and indirectly through the 

change in nuclear neut,rino luminosity due to the perturbation in central tempera- 

ture. As in the previous sections, the latter effect is easily seen to be unimportant: 

assuming the neutrino luminosity L, - T:, the perturbation due to monopole 

heating is 

4 me -no 
-=T= L u+c 

(5.5) 

where C = -1.5 (46.5) in the convective (radiative) case (Eqns.5.2,5.4 ), n - 13, 

and we saw before that ck << 1. 



Now consider the direct high-energy neutrino flux due to catalysis in the sun. 

Given a solar nucleon density n,, the catalysis rate per monopole is just n, (a,~). 

Since the typical energy released in a catalysis reaction is of order the nucleon 

rest mass, the resulting neutrino flux at the earth is approximately 

(5.6) 

where jC - 1 is the average number of neutrinos produced per nucleon decay, 

(E,) - 200 MeV is the average neutrino energy, and R,, = 1.5 x 1013 cm is the 

mean earth-sun distance. Using the catalysis cross-section discussed previously, 

we find an expected neutrino flux at the earth FEat N (N$~2s/lO’~) cmv2 set-‘. 

From proton decay experiments, the flux of high energy neutrinos is known to 

have an approximate upper bound (comparable to the expected atmospheric 

neutrino flux), F,(E, 2 200 MeV) rS 1 cmS2 set-l. We can thus obtain an 

upper limit on the number of monopoles in the sun, 

17 N3z8 15 10 . (5.7) 

If monopoles and antimonopoles are magnetically separated, the number of 

monopoles in the sun is just the number captured, NE = Ngp = 10*lF~; in 

this case, from (5.7), one would find an observable neutrino signal for a flux 

as low as F~u2t3 5 10e2* cmm2 set-’ sr -’ (Arafune and Fukugita 1983, Dar 

and Rosen 1984). However, this does not translate into a comparable monopole 

flux bound, because the monopoles may only be thermally supported. In that 

case, MA? annihilation reduces the solar monopole number to NE = Nz 21 

1022m -1’2Fh’3 16 << Nc%p (Eqn.4.5a). Combining this with the limit of Eqn. (5.7) 

yields a much weaker but more reliable solar catalysis bound on the monopole 

flux, F~c72g 5 10Wf5 cmw2 set-’ sr-’ . 

If Ma annihilation is so prolific in the sun, we may wonder whether anni- 

hilation rather than catalysis could generate an observable solar neutrino signal. 



The neutrino flux from monopole annihilation is obtained from Eqn. (5.6), with 

the replacements n, + nM, m, + mM, uc + Mann, fc + fan,, and Using N’ - M- 

Nz. Assuming jann - 1, we find a neutrino flux Fznn = mTi2(FM/10-16)2/3. 
Again applying the detector limit on high energy neutrinos, one obtains a ‘solar 

annihilation bound’ comparable to the Parker limit. 

VI. Ejection by Magnetic Fields 

In this section, we offer some estimates of the magnetic field strength and 

configuration needed to eject monopoles from stars; given the complexity and 

uncertainty of the-theory of stellar magnetic fields, these numbers are necessarily 

approximate. (Since the order of magnitude estimates we make will turn out to 

be near interesting thresholds, a more accurate picture would require detailed 

numerical models of interior stellar fields, models about which there is at present 

no consensus.) 

First, consider the case in which the dominant component of the field B 
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(averaged over some coherence length) is radially outward, with magnitude 

independent of radius. (Although this field is neither divergenceless nor every- 

where continuous, it still serves as a simple model.) Monopoles accelerated from 

rest near the center of the star acquire kinetic energy at the surface 

E, = R (gB + <F,>R ) - ;(dE,dx) dx , where the gravitational force averaged 
0 

R 
over the star <F,>R = -(l/R) J(GM(r) m/g) dr N -4GMmjR’ , and (dE/dx) 

0 
, 

is the drag force given by Eqn.2.2. Approximating the drag integral term by 

Eqn.2.7, AE 2: Eg”/2 2: 2.5X 10” (g/gD)2 GeV, monopoles are ejected with 

escape velocity if E, > GMm/R , that is, for magnetic fields greater than 

BTd x 7.5 x 10’ G [cl-’ bl6 + ;1jg2] (6.1) 

(We have suppressed a weak dependence on stellar mass M.) 

In this calculation, we have idealized capture and expulsion as a two-stage 

process: initially, with B=O, gravity and drag bring monopoles to rest at the stel- 

lar -center; subsequently, the magnetic field is switched on, raising the total 

potential energy at the center to U(0) > 0, and monopoles roll (with drag) along 

the combined magnetic and gravitational potential to infinity (where, by 

definition, U( 00) E 0). Physically, for a homogeneous field, the total monopole 

energy does not increase with time, so ejected monopoles are never captured in 

the first place: they simply bounce off the repulsive magnetic potential at the 

core. Taking this subtlety into account does not substantially alter the result 

(6.1), but leads us to reinterpret it as saying that fields B - Be, reduce the max- 

imum energy EEU of captured monopoles from m 5X 10” GeV (see Eqn.2.7) to 

:z lOlo GeV (for g = go). For example, from Eqn.2.6, for ml6 = 1, this reduces 
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the maximum capture velocity from m 3X 10m3 c to s lo-%, the galactic virial 

velocity. The actual fraction of monopoles affected by the magnetic field clearly 

depends on the monopole velocity distribution at infinity. 

Although more realistic field configurations undoubtedly give different values 

for B,jl most of the added complications (e.g., finite coherence length of the field, 

incomplete flux coverage of the star, back reaction of accelerated monopoles on 

the field) lead to larger estimates for Be.; in these cases,Eqn.6.1 represents a lower 

limit. The majority of stars do not appear to have such strong global magnetic 

fields at their surfaces: generally <B(R)> s 100 Gauss. (They may, however, 

like the sun, have strong fields confined to a small fraction of the surface area. 

These are toroidal fields, though, and will be discussed separately below.) A small 

class of stars, particularly the peculiar A stars, have strong observed fields rang- 

ing up to the tens of kiloGauss. These would be the only candidates likely to 

eject superheavy monopoles by the process described above. 

A simple attempt to avoid this conclusion is to invoke a very st.rong field 

which ext.ends over a large part of the star’s core, dropping near the surface to 

much lower values. Indeed, it has been argued (e.g., Mestel and Moss 1977) that 

upper MS stars may generally contain large magnetic fields concentrated deep in 

their interiors (with surface field ant,icorrelated with angular velocity). In analyz- 

ing the diffusion of dynamogenerated fields to the surface of stars, Schiissler and 

Pahler (1978) found that the field outside the core falls off exponentially, so it is 

reasonable to consider a field of the form B(r) = B,e-*(‘p). (Note that a dipole 

field, which falls off only as a power of r, will give essentially the same result as 

the uniform field case considered above.) If we require that monopoles with 

energy E, < 10” GeV (corresponding to ,8, 5 1.4X 10m3 mb) be expelled by 

the repulsive magnetic core and impose the condition that the surface field B(R) 

= B,e-* be small (5 100 Gauss), then the approximate analysis of Appendix III 
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gives A = 14.3 and a central field B, = 1.6X10* Gauss. Although below the 

virial limit for stellar stability (Chandrasekhar and Fermi 1953), this field 

configuration could most likely not be maintained in main sequence stars: the 

steep gradient would be unstable, and the field would diffuse to the surface in a 

time t << fMS. (Schiissler and Pahler find typical values for A of - 6.) Accord- 

ing to Parker (1979), fields stronger than - 10’ Gauss in the solar core would be 

buoyant and would rapidly escape. More massive stars, with convective cores, 

would be even less likely to have such strong central fields: fields much greater 

than the equipartition value B,, N 10’ Gauss (where B,?,/87r = pv&.,/2 and we 

have used p = 100 gm cmm3 and the convective velocity v,,~ = 3X lo3 cm see-l) 

would have to be.primordial (rather than dynam+generated), and would have 

had time to be destroyed or to escape. For example, turbulent convection can 

twist the field lines, reducing the coherence length of the field and causing it to 

decay (recall zd - L2); alternatively, convection might expel the field into the 

radiative envelope, from which it would diffuse to the surface. (For discussions of 

these effects, see Parker (1979) and Stothers (1979,1980).) We conclude that ejec- 

tion by radial fields is unlikely unless the surface field is comparable to B,j - 10’ 

G, which is observationally ruled out in the vast majority of stars. 

_ To model the action of toroidal field components, we consider the effect of a 

uniform azimuthal field on monopoles confined to the equatorial plane. We treat 

the magnetic and drag forces as perturbations on circular gravitational orbits. By 

the virial theorem, monopoles orbiting near the stellar surface at radius r 2 R 

have kinetic energy 2: GMm/Br. (Here and below we use the fact the M(r) 2: M 

is generally a very good approximation at radii r 2 R/2 .) The change in kinetic 

energy per orbit is just the total work done, or 

GMm Ar 
2r2 

= 2nrgB - J b?.Fd (6.2) 
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where Ar is the radial increment per orbit, F, is the drag force, the integral is 

over an (almost) closed orbit, and the change in gravitational potential energy 

has been included. In the perturbative regime, where AE/E , Ar/r << 1, the 

drag term is dominated by the azimuthal component. Thus we use (from 5 II) Fd 

N lop fld GeV/cm, where the azimuthal orbital speed is /3d N (l/c)- E 

B,,,/fi. Using the unperturbed orbital period I N 2n(r3/GM)*12, Eqn.6.2 gives 

the radial drift velocity 

Vr (6-3) 

We are interested in finding a condition on B such that v, 2 v,,,. However, at 

such a high radial speed, we have v, - vti so that Ar/r - AE/E - 1, and the 

perturbative expression (6.3) is no longer reliable; escaping monopoles do not 

spiral adiabatically outward but instead move on a slightly curved, nearly radial 

path out of the star. We thus expect the ejection condition on an azimuthal field 

to be comparable to Eqn.6.1 for a radial field. Ignoring for the moment that 

Eqn.6.3 breaks down for escaping monopoles, if we set, v, = v,,, in Eqn.6.3, we 

find 

which is almost identical to Eqn.6.1 . Thus, although Eqn.6.4 formally breaks 

down in the limit of interest, it goes over smoothly to the expression (6.1), which 

gives the value of B,j in both cases. 

As mentioned above, the strong localized fields observed in sunspots and 

bipolar regions are taken as the signs of a mean dynamo-generated field of lo3 to 

lo4 Gauss in the lower part of the solar convection zone (Parker 1979). These 
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values are close to B,j and indicate that lower main sequence stars (those with 

dynamos possibly operating in their outer regions) could conceivably eject a 

significant fraction of incident monopoles. Mitigating this are the facts that the 

observed solar field is very inhomogeneous, AB/B - 1, the drag term becomes 

more important & r --) 0, and field coverage of the convective zone is not com- 

plete (although the fields do migrate and reverse on a timescale of 10-11 years). 

Also, the radiative solar core may be relatively field-free; if so, since this is where 

the majority of monopoles are slowed down, most of them would not be expelled. 

These uncertainties, coupled to the fact that the inferred solar field values are 

close to the ejection threshold, make it difficuIt to give a reliable estimate of the 

fract.ion of monopoIes ejected. Unless the ejection is so efficient as to make this 

fraction unity to very high precision ( several decimal places), which seems very 

unlikely, the numbers used elsewhere in this paper will remain accurate to within 

an order of magnitude. 

VII. Conclusions 

We have traced the history of monopoles in stars from capture to the end of 

the main sequence. Numerical results confirm the analytic estimate that, for 

GUT-scale monopoles with mass m s 10” (g/gD) GeV/c2 traveling with of order 

the galactic virial velocity - 10m3c, the number captured over the MS lifetime is 

N, z lo25 F-16 (M/hb)“.4 (see Figs.2 and 3). This is significantly more mono- 

poles than a typical neutron star captures during its lifetime as a pulsar 

(few x 10’ yrs) or even in the age of the galaxy; for example, pulsars capture Np”$ 

= lo’* F-16 monopoles (see Fig.4 ; Freese, Turner, and Schramm 1983). Because 

of their large mass, captured monopoles gravitationally diffuse to the center of 

stars, forming a core of radius lo2 - lo7 cm, depending on support mechanism. 



Although this range of five orders of magnitude is ‘microscopic’ compared to stel- 

lar distance scales,. it covers a broad range of possibilities for the evolution of the 

monopole distribution. At one end, for monopoles supported by their own ther- 

mal pressure, rth z lo2 cm; unless the flux is very low, Mn annihilation drasti- 

cally reduces the number of monopoles, to N# ,N 10” FB1# m;-,‘12. The prolific 

annihilations generate heat at a catastrophic rate, c th bnn - 

8x IO” F -l6 erg gm-’ set -I, but do not appear -to qualitatively affect the luminos- 

ity or structure of the star, 

At. the other end, a central field of several hundred Gauss can support monopoles 

in a distended configuration with rmaCl - 10’ cm. In this case, annihilations are 

unimportant, and essentially all the captured monopoles survive. There may still 

be significant energy generation due to catalysis, cmag rv cat 

log ml6 9% erg gm-* set- ‘, but again the star itself is unaffected. The uncertain- 

ties surrounding stellar magnetic fields hinder a detailed analysis of monopole 

ejection. It appears unlikely, however, that non-magnetic stars have strong hid- 

den fields with such complete coverage that they eject all but a minute percen- 

tage of monopoles. 

We also emphasize that underground observations of the high energy neutrino 

flux place bounds on the solar monopole abundance which are only competitive 

with the Parker limit. Due to Mu annihilation, these solar bounds cannot 

reliably be made more restrictive. On the other hand, if magnetic fields separate 

monopoles from antimonopoles in the solar core, a monopole flux as low as FM N 

1O-24 cme2 set-’ sr-l would generate a high energy neutrino flux from catalysis 

which should be separable from atmospheric background. Such a detection could 

shed light on conditions deep in the solar interior. 



Finally, we summarize the relation of this work to the neutron star catalysis 

limits mentioned in the Introduction. We may interpret the upper bound on the 

catalysis luminosity of nearby old pulsars as a limit on the number of monopoles 

present N,,, 5 10” o-28. -r Given the expression above for NpC& this gives the 

usually quoted bound FH-~ s 10 -2* Inclusion of MS capture strengthens this . 

bound by a factor - lo6 - lo7 (the ratio of N#J’ to N+ij$ even for thermally 

supported monopoles (Cf. Figure 4). 

This enhancement of the neutron star limit follows even though the monopole 

population may be depleted during the advanced stages of stellar evolution. Con- 

sider an 8 A40 neutron star progenitor. The discussion of Sec. 4.1 shows that 

NMS eq 
H 5x10'8 F'&y-1/2 

-16 16 and, from Sec. 4.2, a lower bound on the number sur- 

viving pre-collapse evolution is Nfqdu 2 2 x 1016 F~!~n~r,'/~. For N,,, < 1012, 

Fig. 4 shows that Nt/” > NC;“, i.e., annihilations do not affect the limit. We 

also note that, in arriving at the factor lo7 improvement in the NS catalysis 

bound from MS capture, we are assuming that monopoles which survive the MS 

and post-MS phases also survive the collapse to the neutron star itself. The 

conditions under which this assumption should hold are discussed in Sec. lVa.2; 

they appear sufficiently general for one to have confidence in the improved limits. 
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Appendix I: Monopole Support by Magnetic Fields 

To study the behavior of monopoles supported by magnetic fields at the 

center of stars, we adopt a two-fluid model of monopoles and antimonopoles. 

The equations of motion are 

P*C m 
(A.I.1) 

and the continuity equations 

at + d - (n*C*) = 0 . 

Here, +(-) f re ers to M’s(dl’s), the monopole mass density is p* = n&m, and 

pressure ph = n*kT* (we will assume Z’+ = !I’- = T from now on). The 

magnetic field is 2 = & + &, where & is an ‘external’ field (due to or- 

dinary electric currents) and gm is the field due to the monopoles, and the 

magnetic current is & = fgn*&. The viscous drag force, from Sec. II, is 

@$ = -lop,& (g/go)2 GeV cm-l 3 -Kr&, and the gravitational field is 

s’- -(47r/3)Gp& = -K&. 

The electromagnetic fields are governed by the Maxwell equations (assuming 

vanishing electric charge density), 

$.&o ; v - rs, = 47rg(n+ - n-) 

1 a& 4r9 -f x $- y-g-- = y(n+iT+ - 72-L) . 

(A.I.3) 

(A.I.4) 

(A.I.5) 

Now consider the form of the external field & expected near the center of 



stars. In this discussion, we focus on lower main sequence stars, with cores which 

are stable against convection. In this case, no turbulent dynamo operates, and 

any field present must be primordial. In Sec. III.b, we show that such a field 

must have a coherence length I X 5 x log cm, in order to be stable against 

decay over the MS lifetime. A continuous field distribution can be viewed as 

a system of axial flux tubes, which each exert a pressure B2/8n and tension 

B2/47r (Parker 1979). If the tube radius R S 1, the field strength Bo can be 

approximated as uniform over the tube cross-section. We are interested in the 

dynamics of monopoles over length scales rm ;S lo7 cm, much smaller than the 

minimum coherence length above and also much less than the pressure scale 

height in the stellar interior. The monopole-antimonopole population thus lives 

deep inside a flux tube, rm < (R, Z), so the field strength is constant to excellent 

approximation over the scale rm. We shall therefore assume a static axial field 

& = Bo,?, with Bo a constant over the scales of interest. We note that such 

a field configuration is not absolutely stable: in addition to resistive decay, the 

flux tube will eventually float away from the core due to magnetic buoyancy. 

-However, for a stable radiative interior and a field of order a few hundred Gauss, 

the characteristic rise velocity is tiny, and the tube is essentially anchored over 

the MS lifetime (Parker 1979). 

We now look for solutions to Eqns. A.I.l-5 which are static, u* = 0, with 

monopoles and antimonopoles separated (non-overlapping). From Eqn.(3.2) the 

thermal kinetic energy of a monopole is negligible compared to its gravitational 

potential energy at radii r >> rth - 100 cm. Since the radii and separation of 

the M and i@ distributions will turn out to be much larger than rth, we can self- 



consistently neglect the pressure gradient term in (A.I.l) in determining them. 

The static equations of motion are then 

c+ = j&(&(‘;) + &JF+)) ; r’_ = jp)(T-) + Sm(L)) (~-1.6) 

If=0 ; axB;,=o ; d - ii, = 47Tg(n+ - n-) . (A.I.7) 

These equations possess solutions which are axisymmetric; each distribution 

is approximately an ellipsoid of revolution about the 2 axis. The mean separation 

22, of the M and a distributions is determined by the balance between gravity 

and the external magnetic field. For well-separated distributions, the size d, 

of each distribution is determined primarily by the balance between magnetic 

Coulomb repulsion and gravity, while the Coulomb attraction between the two 

distributions tidally distends them along the 2 axis. For large separation, d, < 

t,, the tidal distortion is small, and we can treat each distribution as spherically 

symmetric to first approximation. Using the coordinates of Fig. 5, for monopoles 

Eqns.(A.I.G-7) become 

Fz = -K2z + g2y3- lb - [(2 
m rm 

,g;;“+ 2213,2 = 0 

FE = -K2(z + rm) + g2(N - 112 _ g2N(2rm + 2) 
d3 [(2rm + 2)2 + Z2]3/2 

+ gBo = 0 , (A.I.9) 
m 

with similar expressions for anti-monopoles. 

If the distributions are assumed, in addition, to have uniform density, then 

Eqns.(A.I.8-9) hold at arbitrary points (2,~) inside each distribution [Fig. 51; 



with the weaker assumption of spherical symmetry only, Eqns.(A.I.&O) hold 

at points on the surface of each distribution. Assuming well-separated (non- 

overlapping) distributions, d, << rm, the condition for equilibrium in the x 

direction becomes K2 N g2(N - 1)/d;, which sets the size d, of each distribu- 

tion; this is the origin of Eqn.3.4b. Substituting this into (A.I.9) and again using 

the fact that (x,2) 5 dm < tm, we obtain 

g2N F + K2rrn - gB0 = 0 3 
m 

(A.I.lO) 

which is equivalent to Eqn. 3.3. (We note that relations A.I.8,10 hold ap- 

proximately independently of x and z, so that such extended solutions exist.) 

Eqn.(A.I.lO) may be written as dU/dr, = 0, where the effective potential 

U(rm) = K2rk/2 - g2N/4rm - gBorm. AS rm + 0, the potential is unbounded 

from below, and it has in general two extrema for positive radii, r$. An in- 

spection of U(rm) shows that the stable extremum (local minimum) corresponds 

to r& N gBo/K2. A sufficient condition for this minimum to exist is that the 

external field Bo >> Bcrit (see Sec.111). Note that the only other condition on & 

. is that it vary over a scale much larger than rm. (As we argued above, this must 

hold for primordial fields anchored in stellar interiors.) Thus we have demon- 

strated that the separated solution is stable against ‘radial’ perturbations of the 

center-of-mass position of each distribution. A similar analysis shows stability 

against ‘transverse’ (i.e., x direction) perturbations. Clearly stability holds only 

if the amplitude of the radial perturbation is less than r$, - r;, where r; is the 

local maximum of U. 

To show that the solution above represents a true equilibrium point, we now 



consider more general perturbations about the separated solution. For small 

amplitudes, the perturbative solutions are oscillations which are damped by the 

viscous drag force. Since we find no growing modes, the asymptotic solution 

at times t > Tdamp should be just the static equilibrium found above. Our 

intuitive picture is that monopoles thermally fluctuate in the effective potential 

U(rm); these thermal motions have only small amplitude [Eqn. 3.21, insufficient 

to surmount the barrier at r;. 

Consider the equations of motion (A.I.l-5), 1 inearized about the static solu- 

tion (A.I&7). W e neglect perturbations in temperature and, since we assume 

the mass density of monopoles is everywhere less than that of the star (Eqn. 

3.1), we also ignore changes in the gravitational field. The resulting first order 

equations are 

any ~+n!O)h7+=0 

c%‘+ kT f.n(l) g&l) 
at + 

KS’+ -- 
rnny) + 

-- -= 
m”+ 

0 
m 

(A.I.ll) 

(A.I.12) 

where superscripts (0) and (1) indicate unperturbed and first order perturba- 

tive quantities; similar equations apply for antimonopoles. The perturbed field 

equations are 

f.&o ; a. 22) = 4rg(nY) - n(l)) - 

ldiig) 
-tXILat 

4rrg (0) -8 = - 
c ( 

n+ u+ - n(O);-) . 

(A.I.13) 

(A.I.14) 

(A.I.15) 

Since (A.I.12) d oes not contain the electric field, we look for solutions which 



describe longitudinal magnetostatic oscillations, i.e., we set E’ = 0. Combining 

Eqns.(A.I.ll-15) yields a second order equation for the density fluctuation 

a2n!‘) - !!Tpn!‘) + 
2 (0) (1) 4n9 n+ n+ K1 dn!‘) _ o -- 

t3t2 m +m at , m 
(A.I.16) 

with a similar equation for g:). (Since we are considering only small amplitude 

(linear) perturbations, we continue to treat the A4 and M distributions as non- 

overlapping.) The solutions to (A.I.16) are damped waves with dispersion relation 

4kTk2 + 16rg2ny) K,2 1’2 
-- 

m m m2 ) 1 (A.I.17) 

For m 2 1014 GeV, the square root is real, so that Im w(k) = K1/2m; this 

corresponds to a damping time r&mp 11 7OOp;bbm~~ set (see Sec. III) due to 

viscous drag. Note that, unlike the case of Landau damping (which will also 

be present here), Im w(k) is independent of wavenumber, so that all modes are 

damped at the same rate. This conclusion can be extended to transverse waves 

(I? # 0) as well. 



Appendix II: Monopoles and Convection 

In this Appendix, we discuss the role of convection in determining the stellar 

distribution of monopoles and conclude that the effects are negligible. Recall 

that upper main sequence stars (M ;5 1.2Ma) are generally believed to have 

convective cores. In this case, monopoles could potentially be ‘mixed’ over a 

volume of radius rcon >> rth due to the drag force exerted by rising bulk fluid 

elements. Following Schwarzschild (1957)) a small superadiabatic temperature 

gradient leads to an average convective velocity gcon N 3 x lo3 (M/Ma)5/6 

cm/set. The drag force of a rising fluid with this velocity on a stationary 

monopole, dE/dx = 10/3,,,p(g/go)2 GeV/ cm, overpowers the gravitational force 

Fg N -(47r/3)G pmMr out to a radius 

r con N 3.2 x lo5 ($-)5’6m~~ (k)’ cm. (A.II.l) 

However, we cannot conclude from this that monopoles are in fact mixed out 

Jo rcon. The relevant quantity for mixing is the velocity gradient. Above, vcon 

is the mean velocity gradient on the mixing length scale, 1 - Ra, but it is well 

known that the gradient decreases for smaller eddy sizes, eventually dropping 

to zero at the minimum eddy size rcrit due to dissipation. We now show that, 

in general, rcrit > r,,,, i.e., there is no power in the convection on scales small 

enough to mix the monopoles. 

The usual estimate of the minimumeddy scale proceeds from the Kolmogorov- 

Obukhov law; in that analysis, r ,-rit is determined by the viscosity Y. For con- 



vection to occur, however, the superadiabatic gradient 

(A.II.2) 

must be large enough to overcome the effects of both viscosity and thermal 

conduction. (Here, 7 is the usual ratio of specific heats.) That is, the usual 

Schwarzschildcriterion for convective instability, D > 0, is not suficient for con- 

vection to actually take place. Instead, if we define the Rayleigh number for a 

fluid layer of thickness r, 

R - lWr4 
xv ’ 

(A.II.3) 

then convection generally sets in for R 2 0 (103) z Rctit (Chandrasekhar 1961). 

Consider a 5Ma star (see Table 1): near the center, the gravitational acceleration 

191 = (4~/3)Gp cr, and the central density pc N 21 gm cme3; the thermometric 

conductivity x = K/PC, = (4ucT~/3~p~cP) e 4 x lo7 cm2 see-l, where K is the 

coefficient of heat conduction, n is the radiative opacity, cp is the specific heat at 

constant pressure, and a is the Stefan-Boltzmann constant; the superadiabatic 

‘gradient is typically D 11 lo-l6 cm- 1 ; the radiative viscosity ur N (aT,4/4cnpz) N 

85 cm2 see-‘; and the electron viscosity ue N n,kT,T c 3.2 cm2 see-‘, where r 

is the mean free time (relaxation time) for electron-ion collisions in a screened 

plasma. Putting this all into Eqn. A.II.3 gives a condition on the radius, 

(A.II.4) 

which we take as a rough estimate of the minimum eddy scale. Comparison with 

(A.II.l) shows that this scale is too large to affect the monopoles. The effect of 



large scale convection will be to move the monopole core as a whole, without 

disrupting it. 

The discussion above applies to the case of monopoles in a star with large- 

scale convective motions already present. For stars with radiatively stable cores, 

there is another potential effect to consider. Since monopoles generate heat by 

annihilation or catalysis at a strong, highly localized rate, one might expect the 

resulting steep temperature gradient to be convectively unstable. As a conse- 

quence, the monopoles would surround themselves with a small convective core. 

To consider this, we first recall that the equations of stellar 

structure (assuming radiative stability) can be expanded near tbe center ( r - 0, 

P--” P,) as 

(A.II.5) 

(A.II.G) 

(A.II.7) 

(A.II.~) 



As r - 0, both dT/dr and dp/dr - r go to zero; at finite r, dT/dr ,N (T-T,)/r , 

dp/dr z (P-PM, and using (A.II.6) and (A.II.8), we can 

relormulate Scbwarzscbild’s criterion, D > 0, as 

(A.II.9) 

where the central opacity (c, = )tl cm* /gm, and the central pressure 

PC = p,rlO*’ dyne cm -*. From 5 IV, the expressions lor c&, and t$ show that 

for a flux FM 2 10vsc cm’* set” sr’r (annihilation) or FM 2 
lo-59 o -s -a cm-* se8 61-l (catalysis), a thermal monopole distribution will violate 

(A.LI.9) due to annihilations or catalysis, and the system is convectivelg unstable. 

However, this argument neglects the effects of dissipation. The size of the 

monopole core is set by rth (thermal support) or d, (magnetic support), and 

this radius is also expected to set the scale over which the temperature gra- 

dient is large. However, from (3.2) and (3.4b), this scale is always smaller 

than the minimum eddy size rcr;t estimated above (assuming a flux FM < 

lo-l6 cmS2 set-’ sr-l ). Thus, we expect dissipation to suppress monopole- 

induced convection. 

Appendix III: Radial Magnetic Field 

In this Appendix, we calculate the parameters of an exponentially decreasing 

radial magnetic field B(r) = B,, e&p) i which would eject a significant fraction 

of monopoles from the sun. We assume monopole mass m = 1016 GeV/c2 and 

charge g = gD. The repulsive magnetic potential ejects monopoles by keeping 

them out of the stellar core, where they would otherwise efficiently lose energy to 
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electrons. Recall that a monopole is not captured if its total energy loss through 

the star is less than its initial kinetic energy, AE s E,. Assuming the monopole 

velocity distribution is peaked near the galactic virial velocity v, FUN 10v3 c, 

which corresponds to E, W 10” GeV for ml6 = g/gD = 1, a significant number 

will be expelled if AE 5 10” GeV. This will give a condition on the radius rb 01 

the core from which monopoles must be excluded for expulsion. From 5 Ila, the 

approximate energy loss is dE/dx z lop @ GeV/cm (to within an order of magni- 

tude). For monopoles with the virial velocity, the speed inside the star is always 

close to peSc ; we approximate the density profile by p(r) = pC e-‘2(rp)2 (typically 

accurate to SO%, although some upper MS models have broader dist.ributions). 

The approximate energy lost by a monopole which bounces of? the magnetic core 

at r = rb is then (in GeV) 

AE = 20p,~ese~e“2(r~)2 dr = ~W,,,P, 
R d-7 

f 1 - erl(S&b/R)] 

(where R is in cm, p in gm/cm3 , and err(x) is the error function). Using typical 

stellar values R z 7X lo*‘, peJc N 2 X 10W3, p e N 100, and the previous condition 

AE < 10” GeV, Eqn.A.1 gives rb/R z 0.4 . To be expelled, monopoles must 

bounce off the potential u(r) at rb , so we require 

u(rb) 2 Emon = E, - AE/2 = 5 X log GeV. The total magnetic and gravita- 

tional potential is U(r) N (gB, R/A) (e-Nrp) - eWA ) - GMm/r (where the 

approximation to the gravitational term is accurate to - 10% down to r - rb). 

Using the bounce condition on U(rb) , solar values for M and R, and imposing the 

condition that the surface field be small, B(R) = B, e-’ 5 100 G, gives (100 

Gauss/A)gR (e”sA - 1 ) 2 5.5~ lo*‘, which has the solution A = 14.3, 

B, = lOOe* = 1.6~10’ Gauss. This estimate is subject to considerable uncer- 

tainty, since B, is exponentially dependent on A and p(r) is also fitted with an 
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exponential. We believe, however, that the value for rb, and thus for A and B,, 

are lower limits. 

i 
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I 
Figure Captions 

[l] Monopole trajectory through the star and coordinate system described in 5 

II. Here v, and b, (vI and b, ) are the velocity and impact parameter of the 

monopoIe at infinity (surface). Note that the coordinate system is oriented so 

that ;ib = -v,$,. 

[2] The number of monopoles captured, in units of the Parker flux, as a func- 

tion of stellar and monopole mass, for monopoles with Dirac charge and 

velocity far from the star /3, = 10m3. The error bars for the 5hb and 15hb 

data indicate the spread in the number captured between evolved and ZAhlS 

models (all other models are ZAMS). In the 25% results, error bars show 

the spread between the Woosley (1983) model and a polytrope with index 

n= 3. 

[3] Same as figure 2, for monopoles with twice the Dirac charge. 

[4] The number of monopoles surviving in a 8& star as a function of the 

monopole flux, in units of the Parker flux. For this plot we have taken 

. g= gD 9 m16 = 1 , and B, = 10-j. NTH is the equili- 

brium monopole abundance in the case that monopoles are supported 

against* gravity by thermal pressure, see 5 

III. N$$ is the number of 

monopoles captured by the star during its MS lifetime (as in Fig.2). For 

reference, the number of monopoles captured by a fewx 10’ yr old pulsar is 

shown as the broken line labeled N# . Einstein observations of several old, 

nearby radio pulsars restrict the number of monopoles in these objects to be 

s lo’* cr->\ (Freese, Turner, and Schramm 1983), resulting in a monopole 



flux limit FM uVB 5 -21 10 cm-2 Sr-l se@ (shown by the dotted lines). Taking 

into account the monopoles captured by the MS progenitors of these pulsars 

improves this limit by a factor of O(10') (shown by the dotted line). The 

approximate scalings of N,, and N&?$ with stellar mass and 

monopole properties are given in Eqns.l.Sa and 2.3. 

[5] Cross-section of coordinate system for monopole-antimonopole separation 

by an external magnetic field gO. The average Ml@ separation is rm; d, 

is the radius of each distribution. The (2,~) coordinates of an arbitrary 

point P are measured from the center C of the distribution. 
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Table 1 - Zero-age Properties of the MS Models Useda 

M/M@ R/R@ B esc 

0.6b 
ld 
lC 

2.82h 
5e 

7.0 j 
9 B 

158 
25k 

Tc/ lo7K P,(gcm -31 L/L; 

0.64 2.0x10-3 
2.2x10-3 

0.81 
0.87 
0.95 2.1 x10-3 

1.4 

2.0 2.4~10'~ 
1.4 

2.4 3.0x10-3 
2.2 
2.7 

3.3 3.0x10-3 2.8 
3.4 3.3x10-3 

3.7x10-3 
3.1 

4.6 
4.2~10-~ 

3.4 
6.0 3.6 

65 
85 
90 
38 
21 
12 

61: 
3.9 

0.56 2.6~10'~ 
0.73 l.oxlo1o 
0.71 l.oxlo1o 

63 2.2x108 
630 

2x103 
6.4~10~ 

4.5x103 
3.3x107 

2.1x104 
2.1x107 

1.0x105 
1.0x107 
5.6~10~ 

I 
%h ere M 8 = 1.99 x 1033gm, RQ = 6.96 x lO!'cm, and Le 

1033erg see'1. 

bSchwarzschild (1957), Table 28.4. 

'Clayton (1968), Table 6-5 (from Stromgren 1965). 

dNovotny (19731, Table 7-14 (from Iben 1965). 

eJ40votny (1973 1, Table 7-25 (from Iben 1966). 

fNovotny (1973), Table 7-32 (from Iben unpublished). 

gNovotny (1973), Table 7-35 (from Iben 1965). 

hClayton (1968), Table 6-2 (from Stromgren 1965). 

'Clayton (1968), Table 6-3 (from Stromgren 1965). 

kWoosley (1983). 

TMs(yrs) 

= 3.90 x 
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Table 2 - Critical impact parameter for monopole capturea 

Stellar Mass (in M 

1 3 5 7b 7 9 15 25 

10’5 

1o16 

10'7 

10'8 

10'9 

10'5 

10'6 

10’7 

1d8 

10’9 

- 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

B = 1o-4 

0.98 
0.98 

0.98 
0.98 

0.96 
0.98 

0.98 0.96 0.98 
0.98 0.98 0.98 

0.98 0.98 0.98 
0.98 0.98 

0.98 
0.98 

0.96 
0.96 

0.88 
0.94 

0.98 0.96 0.98 
0.98 0.94 0.98 

0.96 0.98 
0.98 

0.90 0.92 
0.96 0.94 

0.78 0.76 
0.88 0.86 

0.84 0.94 
0.88 0.98 

0.98 
0.98 

0.96 
0.96 

0.86 
0.90 

0.70 0.74 0.72 
0.78 0.84 0.82 

0.98 
0.98 

0.98 
0.98 

0.86 
0.90 

0.76 
0.84 

0.90 
0.94 

0.80 
0.88 

0.54 0.56 0.54 0.52 0.54 0.52 0.54 
0.78 0.72 0.68 0.64 0.68 0.66 0.70 

0.98 
0.98 

0.98 
0.98 

0.60 
0.94 

0.38 
0.48 

0.58 
0.74 

B - 3 x 1o-4 

0.98 0.96 0.98 0.94 0.98 
0.98 0.98 0.98 0.94 0.98 

0.96 0.92 0.92 0.86 0.98 
0.96 0.96 0.96 0.90 0.98 

0.94 

0.88 

0.94 0.94 0.98 0.96 
0.96 0.98 0.98 0.98 

0.88 0.88 0.98 0.92 
0.90 0.92 0.98 0.94 

0.88 0.80 0.78 0.70 0.76 0.74 0.76 0.62 0.82 
0.94 0.88 0.86 0.80 0.84 0.82 0.84 0.96 0.88 

0.56 0.58 0.54 0.52 0.56 0.52 0.56 
0.78 0.72 0.70 0.64 0.68 0.68 0.70 

--- w-m -em m-w 

0.14 0.38 0.36 0.36 
mm- e-m I-d 
0.36 0.26 0.32 

0.40 
0.50 

h-d 
--- 

0.60 
0.74 

M-b 
0.28 



10’5 

10’6 

10’7 

1018 

10’5 

10’6 

10’7 

10'5 

1016 

10’5 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

I 
2 

1 
2 

1 
2 

1 
2 

1 
2 

0.96 
0.96 

0.86 
0.94 

0.50 
0.74 

-mm 
--- 

0.82 
0.92 

0.46 
0.72 

0.22 

0.50 
0.76 

0.32 

w-w 

0.3c 

0.90 
0.94 

0.76 
0.86 

0.54 
0.68 

--I 
0.34 

0.90 
0.94 

0.74 
0.84 

0.50 
0.66 

u-u I-- w-s 
0.32 0.32 0.32 

0.72 
0.8; 

0.4E 
0.6; 

I-- 
0.3; 

0.68 
0.82 

0.42 
0.58 

0.28 

0.41 0.4c 
0.6( 0.56 

me- LI 
0.3: 0.2e 

--I 

0.2t 

0-da 

0.2E 

8 = 10-j 

0.82 0.94 
0.88 0.98 

0.68 0.74 
0.76 0.82 

0.48 0.52 
0.62 0.66 

f? -3x10 -3 

0.60 0.68 
0.70 0.78 

0.42 0.46 
0.54 0.60 

-- U..BL 
0.28 0.32 

B = 10'2 

0.34 0.40 
0.48 0.54 

W-M e-u 
0.24 0.28 

6 I 10-l 

---  -mm 

0.20 0.20 

0.84 

0.70 

D.64 

0.42 

0.34 

-- 

LIti 

0.84 
0.90 

0.72 
0.80 

0.50 
0.64 

--- 
0.18 

0.66 
0.76 

0.42 
0.58 

--- 
0.24 

0.36 
0.52 

--I 
0.24 

a-- 

0.14 

0.86 0.98 
0.90 0.98 

0.76 0.60 
0.82 0.94 

0.54 0.38 
0.68 0.48 

W-N v-m 
0.24 w-w 

0.70 
0.78 

0.48 
0.62 

0.62 
0.96 

0.38 
0.50 

--I 
M-M 0.28 

0.40 
0.56 

w-u 
0.26 

0.14 

0.36 
0.54 

a-- 
0.20 

0.90 
0.94 

0.82 
0.86 

0.56 
0.74 

-we 
0.16 

0.76 
0.84 

0.54 
0.76 

s-m 
0.26 

0.44 
0.62 

--I 
0.26 

aThe critical impact parameter (i.e., monopoles with b>bcrit are not 

captured) is given in units of the capture radius (= R(1+BEsc,~2)“2). 

Dashed line entry means that even a monopole with zero impact parameter 

will not be stopped. 



b This 7Mg model (also from Clayton (19681, Table 6-3) differs from the 

other 7MQ model only in composition, and was used to explore the 

sensitivity of our results to the stellar model used. Because of the 

close agreement between the two models, we only ran a few values of mM 

and B. 



Table 3 - Fastest Monopole that can be stoppeda 

Stellar Mass (in Me, 

(GeV) & - % 0.6 

10'5 

10'6 

1017 

10'8 

1019 

-A 
1 
2 

1 
2 

1 
2 

1 
2 

1 
2 ( 

lO-2 
10-l 

3x10-3 
10-2 

-3 
31r;o-3 

3x1 o-4 
3x10-4 

-4 
3170-4 

1 

1on2 
10-l 

3x10-3 
lo-2 

-3 
31:0-3 

3x10-4 
10-j 

lO-4 
3x10-4 

1 

lo-2 
10" 

3x10-3 
lo-2 

-3 
32:0-3 

3x10-4 
10-3 

1O-4 
3x10-4 

3 

10-2 
10" 

3x10-3 
1 o-2 

-3 
31,:0-3 

3x10-4 
10'3 

-4 
3170-4 

5 

lo-2 
10-l 

3x10-3 
10-2 

-3 
31:0-3 

3x10-4 
10'3 

-4 
3170-4 

7b 

1o-2 

3x10-3 

10'3 

7 9 15 25 

1O-2 
10-l 

3x10-3 
lo-2 

-3 
31:0-3 

3x1 o-4 
10-3 

lo-4 
3x10-4 

10-2 lo-2 
10-l 10-l 

3x10-3 3x10-3 
1o-2 lo-2 

3;yo-3 -3 ;g 

3x10-4 3x10-4 
10-3 3x10-4 

lo-4 1o-4 
3x10-4 lo-4 

-2 
3:;0+ 

3x10-3 
lo-2 

-3 
31:0-3 

_3x10-4 
10-3 

-4 
3Yo-4 

aVelocities are given in units of c and to the nearest l/2-order-of-magnitude, i.e., 

3x1 O-3 means that the fastest monopole that can be stopped has velocity vmax: 3x1O-3c $ 

V max g lo-2c* 

b This 7M@ model (also from Clayton (19681, Table 6&3) differs from the other 7Mg model 

only in composition, and was used to explore the sensitivity of our results to the stellar 

model used. Because of the close agreement between the two models, we only ran a few 

values of m,,, and B. 


