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ABSTRACT 

In this letter we show how Witten’s topological Yang-Mills and gravitational 

quantum field theories may be obtained by a straightforward BRST gauge fixing 

procedure. We investigate some aspects of the renormalization of the topological 

Yang-Mills theory. It is found that the beta function for the Yang-Mills coupling 

constant is not zero. 
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1. INTRODUCTION 

Recently, there has been an effort to study the topology of four dimensional 

manifolds using the methods of quantum field theory!‘-‘] This was motivated by 

Donaldson’s use of self-dual Yang-Mills equations to investigate the topology of 

low dimensional manifolds!” The work of Floer on three manifolds, as interpreted 

by Atiyah!“can be understood as a modified non-relativistic field theory. Atiyah 

then conjectured that a relativistic quantum field theory could be used to study 

Donaldson’s invariants on four manifolds. This led Witten to work out a series 

of preprints in which just such topological quantum field theories (TQFT) were 

described.14-61 In the first paper a TQFT was proposed whose correlation func- 

tions were purely topological and reproduced Donaldson’s invariants!Q’ A later 

paper extended these ideas to a more complicated Lagrangian which could be 

used to study similar invariants in topological gravity!51These TQFT’s all pos- 

sess a fermionic symmetry analogous to a BRST symmetry. 

In this letter we will show how both of these theories may be obtained through 

a very simple gauge fixing procedure. A prescription for how quantum field theory 

calculations may be done for the TQFT will be presented. These calculations 

will allow us to study the perturbative renormalizability of the theory. It will 

be shown that the beta function for the coupling constant is not zero. This 

suggests that there is a quantum contribution to the stress-energy tensor which 

may indicate a metric dependence of the partition function. 

Throughout this work we will use the notations of refs. [4] and [5]. However, 

in our discussion of the Yang-Mills TQFT, actions will be defined in terms of 

Lagrangians via I = s d4x ,/$3-C, where g is the determinant of the metric. 



2. WITTEN’S TOPOLOGICAL YANG-MILLS THEORY 

We begin by deriving Witten’s Lagrangian for the non-abelian Yang-Mills 

(YM) theory’*‘by gauge fixing the local transformation 

&A,” = 8,” . (2.1) 

Here, Aaa is a gauge field in the adjoint representation (index a). The gauge 

fixing will be done using the following principles as guidelines: First, the BRST 

gauge fixing procedure will be employed in order that we manifestly maintain 

the fermionic symmetries of ref. [4]. S econd, because of their importance in the 

latter work, we will seek to preserve the scaling and U symmetries. Finally, we 

would like a YM invariant action at the end of the process. *Explicit coupling 

constant (ee) dependence will be given in our expressions. For this we define the 

YM covariant derivative as D, G d, + eo[Aa, 1. 

We have found that the gauge fixing ansatz which leads to Witten’s theory 

is Fap + tap E 0, where k,p = &QI+F~~ is the dual of the YM field strength, 

F Q. To see this, let us assume that there is some Lagrangian, &, which is both 

YM and 61 invariant. Two examples are fZo = 0 and fZo oc [F,pbfl]. Both 

of these are topological with the Euclidean integral of the second yielding the 

Pontryagin index (winding number). The former is trivially invariant while the 

latter is invariant under ;I transformations if: (i) the Bianchi Identity for the 

YM field-strength, D,i@ = 0, is used, and (ii) the parameter 8, asymptotically 

drops off as one power faster than the gauge field. This is the requirement that 

8, does not change the Pontryagin number. Given, lo, we BRST gauge fix by 

writing down the gauge fixing and Faddeev-Popov Lagrangians: 

where we have introduced the BRST operator, iI, through the definition 61 z 

3 



i&l, for some constant anti-commuting parameter, E. Traces in the adjoint rep- 

resentation are implied in all of our Lagrangians. This particular Lagrangian 

maintains the BRST symmetry: 
A 

61&z" =hxa , 

&baa = 0 , 

iIx -B‘-@“, aPa = 

&B al3a - -0 . 

(2.3) 

The anti-ghost field, x”p, and the BRST auxiliary field, Bap are anti-symmetric 

and self-dual. The field, $a, is the ghost conjugate to x@. 

A few remarks about eqns. (2.2) and (2.3) are in order. To obtain Witten’s 

theory, we must pick the gauge oe = 0 for the gauge parameter. The operator 

81 yields the usual off-shell, nilpotent, BRST algebra. The equation of motion of 

this auxiliary field yields the transformation law for x, as given in ref. [4]. After 

integrating out B, eqn. (2.3) is only an on-shell symmetry, as to be expected. The 

equation of motion which must be used to maintain this symmetry is obtained 

from the anti-ghost variation: Dra$~l + ~,p,sD7+~ = 0. Now, without this 

restriction on $, there are four gauge parameters. However, x only contains 

three “degrees of freedom”. This suggests that there is further gauge fixing to 

be done which will reduce the freedom of the ghost field. There must be an 

additional symmetry in the theory. As we will soon see, this symmetry forces 

the introduction of two additional commuting fields, 4 and X, and another anti- 

commuting field, r]. As a result, we will have the full multiplet of fields as given 

in ref. [4]. We now turn our attention to finding this symmetry while keeping 

our off-shell BRST invariance. 

We do not have to look far, as the ghost Lagrangian above has a ghostly 

symmetry. It is invariant under the following transformations: 

&aa = i(Da4)a , 

&B - apa - - ie0[4, xap]” , 
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where 4” is a secondary ghost (or G-ghost) field and 8~ is the BRST operator of 

the ghost symmetry. To gauge fix this G-symmetry, we begin by writing 

G?+FP = &~[ico~(Da$~ + sb) + clxaPBaB] , P-5) 

where & E 81 + &, the c; are arbitrary real constants, X is the G-anti-ghost, 

s is the G-gauge parameter and b is the G-auxiliary field. However, there are 

two more symmetries we must worry about. They are the scaling and U symme- 

tries ‘*I. The global scaling and U symmetry weights of the fields (A, 4, X, ~,LJ, x) 

are (l,O, 2,1,2) and (0,2, -2,l, -l), respectively. In order to maintain these two 

invariances (in particular, the latter one), we must take b E eo[qS,q], for some 

anti-commuting field, 7, which is the transform of X; i.e., &X E 2~. This latter 

field has scaling and U weights 2 and -1, respectively. Observe that &r] # 0, 

contrary to what one would expect from traditional BRST gauge fixing. Short 

of introducing new fields, we find that the ansatz used above is unique. As the 

algebra of the symmetry, given in eqn. (2.4), 1 c oses only up to an ordinary YM 

gauge transformation [*I, we have 8~7 = -eo$[4, X]. The natural choices for the 

constants ci are co = -i and cl = 5. This is the case since on manifolds of the 

form M = Y3 x R1, these choices maintain the time-reversal symmetry of the 

Lagrangian. Putting all of the above together, we find 

L: - LO = (f?) + dG))G$‘+Fj= 

= -ix”‘Da$~p - iqDa$a 

+ iADa-Da4 - i$oX[lliarOa] - ieo4[xaP, xap] 

+ =0(+[rl, rll + $0[A Xl”) 

+ iB”8sap + ~B*‘(Fa~ + Pap) 

= f(F + k)” - ix”‘Dapclp - iqDatia 

(2.6) 

+ iXD”Dad - iecJ[tia,$,] - $xd[xaP,xap] 

+ se0W[w] + $0[4, Xl") , 
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where the second equation follows from the first after use of the auxiliary field’s 

equation of motion. The Lagrangian (2.6) can be brought to the form C - LO = 

--$l’, where fZ’ is independent of the coupling constant, by a resealing of the 

fields. It should be observed that for reasons of renormalizability we cannot 

choose s = 0. Once again naturalness arguments favor the choice s = -$, 

which maintains the time-reversal symmetry of the Lagrangian. We have thus 

obtained Witten’s full YM Lagrangian (see eqns. (2.13) and (2.41) in ref. [4]) by 

straightforward gauge fixing. 

3. RENORMALIZATION IN WITTEN’S YM TQFT* 

Practical quantum field theory computations using the Lagrangian given in 

eqn. (2.6) become manageable if we make use of the following identification which 

is suggested by the time-reversal symmetry of the Lagrangian: 

1 
(3.1) 

Under time-reversal we have : 

4 + A, 
x -+ 4, (34 $” -+ xa, 

xa + -fj”. 

This symmetry suggests a “particle-antiparticle” relationship between 4 and A, 

and $J” and xa, respectively. This becomes even more suggestive when we rewrite 

the Lagrangian using the above identification: 

,f - lo =i(F + k)2 - ix.J?)F$ + iXD”D& 

- 
P-3) 

* In this section, we will only consider a flat Euclidean background. 
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where @F = I’PD,, with 

rO = uO ~ uO, rl = o3 @ ia2, r2 = iU2 @CT', IIT3 = O1 @ ia ' 
(3.4 

Here the @  are the standard Pauli matrices. We then have that the I’ll matrices 

obey the following algebra: 

{ri,rj} = - 2@, 
[ri,rj] = +krk, 
[r”,ri] = 0. 

P-5) 

Hence, the I’p satisfy a U(2) algebra. It should also be noted that it is not 

possible to factor out a matrix (e.g. 7’) from the above in such a way that the 

?j‘ = r”I’p obey the Clifford algebra. Instead, we have I’pfv + ]TprV = 2gpY, 

where l? = (I’O, -Pi). 

Some simple calculations show that this theory is so constructed that it is 

renormalizable with only one coupling constant. Indeed, it is manifest from the 

derivation of the previous section that the time-reversal and BRST symmetries 

enforce the single coupling constant renormalization. It was suggested in ref [4] 

that the Lagrangian of eqn. (3.2) h as an unconventional N = 2 supersymmetry. 

The latter theory also has a single coupling constant. We see that the [4,X12 

term is required as mentioned earlier, since counter-terms of such a form will 

be necessary to renormalize the box diagrams arising from the 4x2 and X+2 

couplings. 

We will now compute the coupling constant renormalization of this theory. 

Before proceeding we will need to gauge fix the Yang-Mills symmetry. In the 

absence of the 61 symmetry, this would be done in the standard way by introduc- 

ing the anti-commuting ghosts c and E. However, we must be careful. For our 

calculations we will choose the covariant gauge, d,Ap = 0, and the Feynman-‘t 

Hooft gauge for the gauge boson propagator. Now, because of the gauge field’s 
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transformation law, given in eqn. (2.3), we will generate an additional ghost term 

of the form: ~a,$~. Notice that this is purely kinetic, so it will not contribute 

to our p-function. The Feynman rules for this theory are then given in Table 

1. Through straightforward calculations we can now verify that the coupling 

constant is renormalized as follows: 

PC’) = - (41r)2 
2e3C2(G) + qe5). 

where C2 (G) is the second Casimir in the adjoint representation of the group G. 

For any computation of /3( e we will need to know the field strength renor- ) 

malization. The only new diagrams arising in this computation are given in 

Table 2. One immediately observes that the + - x contribute like fermions in 

the adjoint representation of the gauge group; while the 4 - X give the standard 

scalar contribution. Adding the pure Yang-Mills diagrams we get that there is 

no field strength renormalization in the Feynman-‘t Hooft gauge. Now to fin- 

ish this calculation we just borrow the standard results from, for example, the 

boson-ghost-ghost vertex. It should be noted that the value for p(e) given above 

agrees with those in N = 2 super-Yang-Mills theory!‘] 

The nonvanishing of p(e) may have some implications. The most significant 

will be that the energy-momentum tensor may not be a BRST commutator. 

Thus, we would expect that the theory may possess a dependence on the local 

properties of the background metric after all. In this case, the trace of the 

energy-momentum tensor will be proportional to the p-function. We did not 

find a way to generate a Ff counter-term in perturbation theory. Should it not 

be possible to generate such a counter-term, we must begin with Lo having a 

separate coupling constant for Fk, ie. 

Lo = eFf . P-7) 



4. WITTEN’S TOPOLOGICAL GRAVITY 

We proceed now to derive Witten’s topological gravity action [S] following 

the same YM fixing procedure as we used above for the topological gauge field 

theory. Here the fundamental transformation law on the tetrad is 

bIea 
AA = eBl!3e 

a AB,/i& - (4-l) 

We introduce the BRST gauge fixing Lagrangian and its associated action. 

L(I) = L$i+FG = ijI[xABCDwABCD], I(‘) = 
/ 

d4x det e - l(I), (4.2) 

where det e is the determinant of the tetrad. WABCD is the self-dual part of 

the Weyl tensor and transforms as spin (0,2) of Sum x SU,(2). XABCD is an 

anti-ghost with the same spin. The transformations of xABCD and WABCD are 

given by 

&ABCD =BABCD 

~IWABCD =:[($J,&~‘&DA~ - eEA$,gDaDp@ABi’) 

+ (5 permutations of A, B, C, D)] , 

(4.3) 

where BABCD is an auxiliary commuting ghost field and the variation of WABCD, 

which is given in ref. [S], follows from the variation: 81etA = eezB+AB,Ag. As 

in the topological gauge theory, the ghost Lagrangian 

L(I) = iB ABCDW~~~~ - iXABCDiIWABCD , (4.4 

is invariant under the following local symmetry: 

~G@AB,A~ = - i(ezAD,CBg i- eEADaCAg •k e:gD,C,A -k eEgD,CAA) , 

iG~ABCD =A 
4% 

EBCD[(egkDaCAk + eaAkD,CEk + (cyclic perm.)] 

i 

2% 
ABCD -- a D cXk + iDa(ea . cXiXABCD)] . 

exk a xx 

P-5) 

These transformation laws are covariant with respect to SU,c(2) x SUEZ(~) trans- 
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formations, global U symmetry and scale invariance. Whereas &$,~,~fi has the 

same stucture as 8&a (in the topological YM theory with CQ = e&Cx’ being 

the analog of +), 6 B A~ ABCD is proportional to the covariant derivative of Cxl;-, 

unlike iGBap. The source of this difference is that gGFPv has only one covariant 

derivative of $J whereas eqn. (4.3) includes D,D& terms. In any event the proof 

that L(I) is invariant under (4.5) proceeds as follows. First we write 

iGLc(I) = iiGBABCDwABCD - ixABCDiGi~wABcD , (4.6) 

since &xABCD = &WABCD = 0. Hence 

&(‘) = iWABcD [ aXEBCD [ (f&DacAA + eaARDaCE,) + (Cyclic perm.)] 

+ ;x ABCDea 
xkDaC xk + (DaWABCD)(e~~CXkXABCD)] 

-ix ABCD8~i~W~~~~. 
(4.7) 

Now by substituting 

&~~WABCD =~[(~G$JAB~‘R~~A~ - e~~ef,gDaDp&+ABiir) 
+ (5 permutations of A, B, C, D)] 
i 

= + qwE,,D [(e&D,CAk + eaAkDaC,k) + (cyclic perm.)] 

a w~BcDd&DacXk - iCaD,wABcD , -- 
2 

(4.8) 

which was given in ref. [S], it is clear that &t(I) = 0. Continuing to follow 

the procedure of section 2 we now add to L(I) a BRST gauge fixing term of the 

following form: 

L(G) = LL?,,, = &[@eaAA(DaBBB)$AB ~g + $ABCDBA~CD] (4-g) 
, 

The Q field has spin (0,O) and conformal weight 2. It is introduced here following 

the same reasoning as in ref. [S], namely so that B,A has conformal weight 1. 
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This allows the first term in eqn. (4.9) to transform with a definite weight under 

local conformal transformations. Note that this term, which in our procedure 

follows naturally from the fixing of the ghost symmetry, is exactly the term that 

allowed Witten to introduce kinetic terms (denoted as Z in ref. [S]) for C and 

some of the components of $J. Now using the equation of motion for BABCD we 

finally get 

L = ;WABcDWABCD - iXABCD($‘ABjBRcD~,j - e~Ae~,DaDpbABi’) 

+ ~XABCDX 
EBCD 

ceEk 
a D,cA~ + eaA'DaCEk) 

ABCD ff @XT? CxiD,x~~c~) 

+L3 , 
(4.10) 

where Ls (eqn(28) in [S]) is given by 

L3 = @[A BBeaAADav,hAB ~g 

-- fp PAADpBBB)(eziD,CBg + eiAD,CAg 

+ e:,jDaCBA + eg@aCAA) 

- iBBB,a . $AC~Ad-Da$AB 
cc 2 

Ag + iBCde‘&+AB~ArjDa$AB 
, 
~g 

+ ~DaBB~(eaB~~AcA~~Ac~~ + eaELi?,bABAkq!)A/') +. . .] . 

(4.11) 

where ‘. . .’ denotes other @  dependent terms. In analogy with the term cos&.v[Xb] 

in eqn. (2.5) we can add to eqn. (4.9) a term of the form &[@caDaBAAXAA] 

which will generate the analog of the last line in eqn. (2.6). 
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5. c ONCLUSIONS 

We have shown how to derive Witten’s topological YM and gravitational 

theories by standard gauge fixing. This was done in a two-step process. First, 

the YM field-strength is gauge fixed to be anti-self-dual (an anti-instanton, for 

example). The resulting Lagrangian was then found to be invariant under a 

symmetry on the BRST ghost and auxiliary fields. Choosing a gauge slice for 

this last symmetry while maintaining the global scaling and ghost number (U) 

symmetries, led us to the full YM-TQFT. Following this procedure, we were also 

able to derive the gravitational TQFT. 

One-loop calculations in the YM theory indicate that the coupling constant 

p-function does not vanish. Indeed, we find that it is the same as that of the N 
= 2 pure super-YM theory. This non-zero result means that the bare coupling 

constant in front of the F2 term in the Lagrangian, is divergent. As Fj also 

appears with the same coupling constant, we must find a counter-term to remove 

this infinity. However, although a counter-term of the form F2 is generated at 

the one-loop level, we were unable to find a Fi term. In this case we would 

have to start off with fZe = OF@ in order to maintain the renormalizability of 

the theory. Considering these results, it would be interesting to investigate the 

metric dependence of the theory. 

Acknowledgements: It is our pleasure to thank M. Peskin for numerous useful 

discussions and for reading the manuscript. 

Note added: Upon completion of this work we received two preprints related to 

Witten’s TQFT. Is1 
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TABLE 1: Feynman Rules 

x$ Propagator: 

r$X Propagator: 

Ax+ Vertex: 

A& Vertex: -iefabc(r + g)p 

b 

&+!qb Vertex: 

r-Traces: 



TABLE 2: One-loop contributions to p(e) 

&I Loop: 
.* . ..-•.. -. . . 

*. *....* : 

i%$?$?l kP’k” 5( - kggw’) 
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