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ABSTRACT 

We describe a method for numerical construction of a symplectic map for 
particle propagation in a general accelerator lattice. The generating function of 
the map is obtained by integrating the Hamilton-Jacobi equation as an initial- 
value problem on a finite time interval. Given the generating function, the map 
is put in explicit form by means of a Fourier inversion technique. We give an 
example which suggests that the method has promise. 
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1. INTRODUCTION 

There exist useful numerical methods for construction of symplectic maps to 

describe propagation in nonlinear accelerator lattices and similar systems. Such 

methods are usually based on a truncated Taylor expansion of the map about 

a reference trajectory. Because of the truncation, some auxiliary algorithm is 

needed to make the map symplectic. The evaluation of coefficients in the power 

series may be accomplished by repeated calculation of Poisson brackets,1’2’3 by 

a technique based on “differential algebra,” 4 or by elementary means at low 

orders. 5 To enforce the symplectic condition, one creates a generating function 

for a canonical transformation, represented as a polynomial in coordinates and 

momenta. It generates a symplectic map which agrees to a certain order in Taylor 

expansion with the nonsymplectic map constructed initially. 

We consider an alternative method in which construction of the generator is 

a primary rather than secondary concern. The symplectic condition is built in 

from the start. Rather than using power series, we represent the angle dependence 

of the map by a Fourier series and the action dependence in terms of a spline 

basis. This can be equivalent to a Taylor expansion of very high order, and is 

accomplished with simple computer programming. The method follows a very 

direct route from the basic idea of Hamilton-Jacobi theory to practical results. 

To emphasize generality of the approach, we avoid special accelerator ter- 

minology until we discuss an example. We write the Hamiltonian in terms of 

action-angle variables (I, 4) as follows: 

HP, 43) = w * I+ f(W(I, 4) m (14 

Here t is the time (equivalently, the longitudinal position of the particle along a 

reference orbit). Bold-faced letters denote two-component vectors. With appro- 

priate normalization, the transverse momenta pi and coordinates xi are related 

to the action-angle variables by 



. 

pi = -fisin& , xi = fi cos cpi (14 

where I = (Ir,12), C$ = (+I,&). The Hamiltonian Eq. (1.1) corresponds to two 

harmonic oscillators with time-dependent perturbation which, in general, couples 

the oscillators. The unperturbed frequencies are w = (WI, wz). The functions f 

and V can be quite general. Typically f(t) is a unit step function that turns on 

and off as the particle passes nonlinear magnets of the lattice. The function V is 

usually a polynomial in the xi. 

We seek a canonical transformation (I, 4) + (J, $), such that the Hamilto- 

nian in the new variables is zero (equivalently, any constant) .’ Then by Hamilton’s 

equations, J = 0, 4 = 0. One can identify (J, +) = constant with an initial point 

in phase space that evolves to (I, 4) in some interval of time At. We wish to find 

an explicit representation of the time evolution map (J, +) -+ (I, 4), preferably 

valid for large At. 

2. SOLUTION OF THE HAMILTON-JACOBI 
EQUATION AS AN INITIAL-VALUE PROBLEM 

The required canonical transformation can be obtained from a generating 

function 

S(J,4) = J++G(J,At) . (2.1) 

The old and new variables are related by the equations 

I= J+$(J,At) , 

+=$+GJ(J,~,~) , 

(2.2) 

P-3) 

where subscripts denote partial differentiation. 

3 



The Hamilton-Jacobi equation is the requirement that the new Hamiltonian 

indeed be zero: 

H(J + Gg(Jd,t)d,t) + G(J,At) = 0 . (2.4) 

We solve the nonlinear partial differential Eq. (2.4) subject to the initial condition 

G(J,qb,O) = 0 . P-5) 

The solution determines the time evolution map through Eqs. (2.2) and (2.3), 

and (I, 4) = (J,$) at t = 0. 

In view of Eqs. (2.2) and (2.3) and the physical meaning of the angle variables, 

. G(J,r$,t) should b e a periodic function of 4 with period 27r. Consequently, 

Fourier analysis in 4 is a natural step: 

G(J, 4, t) = c eim4gm(J,t) - (2.6) 
m 

Now substitute Eq. (2.6) in Eq. (2.4), and take the inverse Fourier transform of 

the resulting equation. In view of Eq. (1.1) we obtain [writing gm(t) for gm(J, t)] 

(~+im-w)gm(t)+u-J-4na=---f(t).~jd~e-un’9V(J+G~(~,t), q%) . 
0 

(2-V 
With Eqs. (2.6) and (2.7) together, we have a system of ordinary differential equa- 

tions for the infinite set of Fourier amplitudes {gm(t)I rni = 0, fl, . . . ; i = 1,2}. 

The initial action J appears as a fixed parameter in Eq. (2.7), and thereby in- 

duces the J dependence of the solution. Actually, the Eq. (2.7) for m # 0 form 

a closed system by themselves, since G4 has no m = 0 component. Given 

a solution of that reduced system, we can solve (2.7) for m = 0 to obtain 
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go(J,t) = --o . Jt - 
/ 

W(r)& jr& V(J + G&C), 4) . P-8) 
0 0 

Note also that the set of unknowns is reduced by virtue of the property 

Sm = SZm - 

3. NUMERICAL CONSTRUCTION OF THE GENERATOR 

To solve Eq. (2.7) ‘t 1 is convenient to make a change of dependent variable, 

gm + hm, where 

,; . hm(t) = eim*Wtgm(t) . (3.1) 

The function hm has the advantage of being constant in t wherever f(t) = 0, 

which is almost everywhere in the lattice. It satisfies the differential equations 

2r 
ah,(t) 

,imGt 

’ 
at 

= -f(t) t21rj2 / d4eecm 4 V(J + G&W, 4) , m # 0 , (3.2) 
0 

where 

G4(q5, t) = c eim’(+-Wt)imhm(t) , 
m 

(3-3) 

and 

hm(O) =O . (3.4 

We need integrate Eq. (3.2) only on the support of f(t). 

For a numerical solution, we merely truncate the series in Eq. (3.3), and solve 

the resultant finite system by some standard algorithm. To date we have used 

the fourth-order Runge-Kutta algorithm. To evaluate the right-hand side, we use 
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the fast Fourier transform (FFT) with radix 2 to compute the sum in Eq. (3.3) 

and the integral over 4 in Eq. (3.2). The integral is discretized6 with a number 

of mesh points for 4 at least equal to 2 max (m) (Nyquist criterion). We usually 

take 2 max (m) for a first exploration and then 4 max (m) for refinement, finding 

no appreciable change on even greater refinement. 

With a given bounded Fourier mode set B = {m] ]mi] 5 Mi, i = 1,2}, we 

check accuracy of the integral of Eq. (2.9) on an interval [0, T] by “backtracking.” 

That is, we integrate from 0 to T, and then backwards from T to 0, and see 

whether we end at the zero initial value in Eq. (3.4) to sufficient accuracy. 

. 

We find empirically that gm(t) h as rather simple behavior over the extent 

of one magnet. Typically it is well approximated by a quadratic over such an 

interval. Hence we can get by with very few Runge-Kutta steps per magnet. 

One step (four evaluations of the right-hand side of the differential equation) is 

often sufficient. 

Of course, we also check accuracy of the modeling by a finite-dimensional 

system by expanding the mode set B until there is no significant change in 

results. 

We wish to know the generating function G(J, &T) for all J in the region of 

phase space considered, in order to define the map over that region. The region 

might be defined by the physical aperture of the accelerator. To represent the J 

dependence, we carry out the integration described above on some finite set of 

J values, {Jj,j = 1,2,...}, d is ri u e t b t d over the phase space region of interest. 

We then use spline functions to interpolate in J between the resulting values of 

gm(Ji, 2’). The result is an explicit representation of the J and 4 dependence of 

the generator: 

G(J, 4, T) = C f: eim’4Pj(J)gm(Jj, T) . (3.5) 
meB j=l 

Here @ i(J) is the jth cardinal spline function. (In practice, one does not use car- 
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dinal splines directly, but they provide a convenient way to write the equations.) 7 

The gm(J, 2’) are typically slowly varying functions of J with a quasi-polynomial 

behavior. Consequently, the number of spline knots Ji need not be very large. 

4. NUMERICAL ITERATION OF THE MAP 

The principal step in construction of the map is to compute and store the 

coefficients gm (Ji, T) , once for all. This is accomplished by the means described 

above, with rather simple computer programming. Given the coefficients, the 

computations required to evaluate the map can be performed quickly, since they 

depend primarily on evaluating a moderate number of polynomials. 

The pi(J) are polynomials piecewise, with continuous derivatives (two con- 
. 

tinuous derivatives for cubic splines). Since we know their derivatives in analytic 

form, we can compute the J derivative of G analytically from Eq. (3.5): 

GJ(J, AT) = C c eim’4V/?j(J) - gm(Ji,T) . (4.1) 
In i 

Similarly, we can differentiate analytically with respect to 4: 

G4(J, 4, T) = c c imeim.4&(J)gm(Jj, T) . (4.2) 
m i 

Since Eqs. (4.1) and (4.2) are exact derivatives of Eq. (3.5), whatever error there 

might be in Eq. (3.5) itself, we are in a good position to make our map sym- 

plectic to high accuracy. We have only to ensure that evaluations of the sums 

in Eqs. (4.1) and (4.2), and subsequent computations to solve Eqs. (2.2) and 

(2.3) for the map, are done with negligible rounding error. That is, from here 

on interpolatory processes such as numerical integration or differentiation are 

not required; we have definite formulas, that can be evaluated to the working 

precision of the computer. 
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To find the map (J, $) + (I, 4) for propagation over a time interval [O,T] 

we put t = T in Eqs. (2.2) and (2.3), and solve Eq. (2.3) for 4 = ~$(J,tl,). 

Substituting the solution in Eq. (2.2), we obtain also I = I(J, $), and evaluation 

of the map is complete. Solution of Eq. (2.3) can usually be accomplished by 

Newton’s iteration, or even by simple iteration, with tie = $ - ago/aJ as the 

zeroth iterate. Indeed, Newton iteration is used for the analogous calculation in 

the code MARYLIE, apparently with adequate speed. We believe, however, that 

iterative solution of Eq. (2.3) may be unnecessarily slow. In the next section, we 

describe a way to represent the solution of Eq. (2.3) explicitly, thereby stating 

the map in explicit form. In practice, the explicit solution may not be quite as 

accurate as the iterative solution, but it is very close, and in any case could be 

used to start an iteration which would converge in very few steps to a solution 

of Eq. (2.3) with machine precision. 

5. THE MAP IN EXPLICIT FORM 

To solve Eq. (2.3) for 4 in t erms of $, we apply a Fourier inversion technique. 

We expand GJ in a Fourier series in $, rather than 4: 

GJ(J, 4,T) = - C om(J)eim*$ . (5-l) 
m 

Then the solution of (2.3) is given in terms of a Fourier sum: 

4 = $ + C om(J)eim’@ . (5.2) 
m 

The point of this step is that the coefficients @m may be evaluated without 

knowing GJ as a function of $. It is enough to know GJ as a function of 4, since 

we can evaluate the integral defining the 9, by a change of variable, 1/, --+ 4. We 

have 



2* 

a -- m = c2k)a 
J 

d+e-‘m ’ +GJ(J,~,T) 

0 

2r+4, 

= (2& 
-- 1 &$l$l e-im’(@+GJ)GJ . 

By Eq. (2.3) the determinant of the Jacobian matrix is 

(5.3) 

. 
Thus, the integrand in Bq. (5.3) is a known function of 4, periodic with period 

27r. We do not know +o, the value of $ at + = 0, but since the integrand is 

periodic, the integral over [4,, tie + 27r] is the same as the integral over [0,27r]. 

Thus, 

I + GJd(J,qb,T)] e-im’(4+GJ(Jp4pT)) - GJ(J,~,T) . 

(5.5) 
In this derivation, we have assumed that the Jacobian d$/d+ is nonsingular. If 

it were singular, our whole approach would break down, since we could no longer 

invoke the implicit function theorem to guarantee that the Eqs. (2.2) and (2.3) 

define a canonical transformation. 

Evaluating am(J) at our original spline knots Jj, we get the coefficients at 

all J as 

@m(J) = f: Pj(J)@m(Jj) - (5.6) 
j=i 



Carrying this point of view to its logical conclusion, we may also expand Gb 

as a Fourier series in $, so as to represent Eq. (2.2) in the form 

I = J + CIm(J)eim’$ , 
m 

F-7) 

1 + G,4(J, 4, T)] e-im’(4+GJ(JS4PT)) * G4(J, 4, T) - 

(5.8) 
Thus, the map in fully explicit form is 

. 

Numerical evaluation of the sums in Eq. (5.9), could be a very quick process 

compared to symplectic tracking of a single particle over the time interval [0, T] 

if T is large. The number of terms required in the sum is not necessarily greater 

for large T than for small 2’. For large T, more computation is required to 

construct the map, but not to evaluate it. 

The cost of computing the integrals in Eqs. (5.5) and (5.8) is negligible com- 

pared to the cost of computing G itself. Thus, the decision as to whether one 

should use the explicit map in Eq. (5.9) or the implicitly-defined map of the pre- 

vious section should depend on which is faster for one map evaluation of a given 

accuracy. 

As mentioned in the previous section, one could use Eq. (5.5) only to find 

a first (very close) guess for an iterative solution of Eq. (2.3). This might be 

best in cases where one would like to guarantee the symplectic condition to high 

accuracy over many iterations of the map, as when judging beam stability in a 

circular accelerator. 
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6. SPECIFIC EQUATIONS FOR ACCELERATOR LATTICES 

The linear part of transverse motion in an accelerator is governed by Hill’s 

equation rather than the harmonic oscillator equation. Nevertheless, one can 

use Floquet theory and canonical transformations to put the problem in a form 

essentially the same as that considered above.8 As independent variable, we 

choose s rather than t, where s is arc length along a reference trajectory. The 

Hamiltonian has the form 

WI, 4,s) = P-l(s) - I+ f(s)V (I, 4) , (64 

where 

p-l(s) = lbm 

( ) 1//32(s) - 
(64 

The given functions pi(s) are determined by the linear magnetic elements of the 

lattice. The transverse momenta and coordinates are given by 

pi = -(21i/pi(S))“2 [sin $i - y COS 4i] , (6-3) 

Xi = (21ipi(S))li2 COS +i s (6.4 

Nonlinear multipolar magnets (sextupoles, octupoles, etc.) correspond to 

terms in V which are polynomials in x1 and x2. For instance, a normal sextupole 

gives a term 
S 
6 (x: - 34) , (6.5) 

where x1(x2) is horizontal (vertical) displacement from the reference orbit, and 

the constant S expresses the strength of the magnet. The function f(s) is taken 

to be unity over the extent of a magnet, and zero between magnets. More general 

models of V and f are easily accommodated, for example, to account for three- 

dimensional fringe fields at the ends of magnets. 

11 



To apply the Hamilton-Jacobi method to the Hamiltonian Eq. (6.1), we re- 

place t by s and w by p-l in Eq. (2.7). In place of Eq. (3.1) we define 

where 

i=1,2 . 
0 

(6.7) 

The equations to determine the hm are the same as Eqs. (3.2)-(3.4) and Eq. (2.8), 

but with s replacing t -as independent variable, and $(s) replacing wt. Since 
. one knows explicit formulas for the variation of $J(s) and p(s) over nonlinear 

magnets, the integration of the modified differential equation is essentially the 

same problem as integration of Eq. (3.2). 

7. AN EXAMPLE IN ONE DEGREE OF FREEDOM 

As an example we treat a lattice consisting of one-twelfth of the basic lattice 

for the Berkeley Advanced Light Source. This is a good test case, because it 

has rather strong nonlinearities and a rich mode spectrum at large values of the 

action. In this section, we discuss only motion in the horizontal plane. 

The nonlinear elements are two focusing and two defocusing sextupoles, each 

of length 20 cm. We account for the non-zero length of the sextupoles, taking four 

or eight Runge-Kutta steps per magnet when integrating the Hamilton-Jacobi 

equation to construct the map. We neglect variations of p and $ over a single 

sextupole, since they are unimportant in the present case; our code allows p and 

II, to vary, however. In Table 1, we give the relevant lattice parameters. 

12 



Table 1. Superperiod of ALS Lattice. 

s P(s) 3w S(s) 

5.875 1.8565 2.5404 -88.09 

6.975 3.5447 2.8457 115.61 

9.425 3.5447 4.6296 115.61 

10.525 1.85652 4.9349 -88.09 

Circumference = C = 16.4, Tune = $(C)/27r = 1.18973 

s,p(s), C in meters, S in (meters) -3 

From previous studies of tracking and invariant surfaces, we know that this 

lattice has invariant curves with invariant action 

27r 

K= 
J 

Idrj 2 2.2 . 10m5 meters . (74 
0 

Here we refer to curves in a surface of section corresponding to a fixed location in 

the lattice. Such an invariant curve, for K = 10m6 m, is shown in Fig. 1. It was 

computed by finding a solution of the Hamilton-Jacobi equation that is periodic 

in s (as well as in 4); this was accomplished by a shooting method.g In Fig. 

2, we show the result of iterating a full-turn map constructed by the method of 

the present paper. The iteration was started at a point on the invariant curve 

of Fig. 1. We plot the first 500 iterates, corresponding to 500 passages of the 

particle through the lattice. In Fig. 3, we plot the first 10,000 iterates. 

The plots of Figs. 2 and 3 were both obtained from the map in the explicit 

form Eq. (5.9). W e used 16 Fourier modes, both in the original generator in 

Eq. (3.5), and in the explicit map in Eq. (5.9). For the J dependence of the map, 

we used cubic splines with 6 knots at J = 7. 10m7, 9. lo-‘. . . ,1.2. 10e6 m. Thus, 

two cubits covered the range of J encountered in Figs. 2 and 3. 
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It is gratifying that the explicit map in Eq. (5.9) succeeded in putting points 

on a rather well-defined curve for 10,000 iterations. Thus far it appears to be un- 

necessary to enforce the symplectic condition more precisely by solving Eq. (2.3) 

iteratively. 

For K around the upper limit of Eq. (7.1), we reach the dynamic aperture 

of the lattice. Particle motion becomes unstable, at least for practical purposes, 

since orbits go outside the physical aperture of the storage ring. To handle this 

region, we must include more Fourier modes in the map, and more spline knots; 

we took 32 modes, and splines such that 7 to 9 separate cubits covered the region 

of the plots. The explicit form of the map was satisfactory for many runs, but we 

found one case, close to the separatrix of an island chain, in ivhich the symplectic 

condition had to be enforced more accurately by iterative solution of Eq. (2.3). 

In Figs. 4-6, we show mapping results for a series of cases of increasing ampli- 

tude. In each case, iterates of the explicit map will stay on well-defined curves for 

several thousand iterations. Finally, in Fig. 7, we encounter a seventeenth-order 

island chain, and the points are close to the separatrix. Here the explicit map 

gave a different result, shown in Fig. 8. It seemed to follow an invariant curve 

at first, and then jumped to a different invariant curve. The two curves look like 

inner and outer separatrices of the seventeenth-order island chain. In Fig. 9, we 

show typical behavior well inside the island chain. Here the explicit and implicit 

versions of the map again agree. 

For numerical evaluation of the map, we have used an IMSL library routine 

to evaluate spline coefficients, which are stored as part of the data that define the 

map. To find the Fourier coefficients Im( J), (Pm(J) in Eq. (5.9) another IMSL 

routine is used to evaluate the spline function; given J it finds the right spline 

interval Jj < J < Jj+l and evaluates a cubic polynomial in J. The sum on m is 

then done by treating it as a polynomial in z = e i$. The polynomial is evaluated 

by iteration, to minimize multiplications, e.g., 
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Since the coefficients obey Im = IZm, we need consider only non-negative m: 

M 

c 
eim@Im = tZim’Im . V-3) 

m=-M m=l 

One evaluation of Eq. (5.9) with 16 modes required about 50 ms CPU time 

on a MicroVAX in double precision; with 32 modes, 270 ms were required. The 

VAX 8650 did evaluations with 32 modes in 40 ms. The time increases only 

slowly as the number of spline knots is increased, since the time to find the right 

spline interval is small compared to the time for evaluating a cubic. Presumably 

the evaluation of Eq. (5.9) could be highly optimized for parallel processing, since 

it is a very simple problem of calculating polynomials. 

In the runs with “Newton refinement” we used Eq. (5.2) to find a first guess 

for a Newton solution of Eq. (2.3), and then solved Eq. (2.3) to double precision; 

usually two or three Newton iterations were sufficient. The solution for 4 was 

substituted in Eq. (2.2) t o complete evaluation of the map. This procedure 

typically required about 60% more computing time than evaluation of Eq. (5.9). 

Thus the extra cost of meeting the symplectic condition to machine precision does 

not seem excessive. One can use the Newton refinement occasionally to validate 

computations, while relying mainly on the explicit map. Without Eq. (5.2) as a 

first guess, the Newton solution of Eq. (2.3) would be relatively slow, and might 

even fail in some cases. 
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8. TWO DEGREES OF FREEDOM 

The generalization of the code to two degrees of freedom is straightforward, 

and will be available soon. The code for two degrees of freedom is only about 50% 

longer than that for one. The latter consisted of 250 lines for map construction 

and 160 lines for map evaluation, not counting library routines for FFT’s and 

splines. 

9. OUTLOOK 

At present we have no clear idea of how the method compares in computing 

expense to other methods. Careful tests of timing and accuracy need to be done. 

It should be possible to construct accurate maps for a large section of a non-trivial 

lattice, perhaps for one or more full turns, but it is possible that the expense of 

producing the maps would outweigh their obvious value. In any case, the method 

is clear in concept and easily realized, and it allows convenient internal checks 

of accuracy. By increasing the number of modes, etc., it is possible to estimate 

accuracy without relying entirely on comparison to other tracking programs. 

. 
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