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ABSTRACT 
Periodic solutions of the Hamilton-Jacobi equation determine invariant tori 
in phase space. The Fourier spectrum of a torus with respect to angular co- 
ordinates gives useful information about nonlinear resonances and their po- 
tential for causing instabilities. We describe a method to solve the Hamilton- 
Jacobi equation for an arbitrary accelerator lattice. The method works with 
Fourier modes of the generating function, and imposes periodicity in the 
machine azimuth by a shooting method. We give examples leading to three- 
dimensional plots in a surface of section. It is expected that the technique 
will be useful in lattice optimization. 

1. INTRODUCTION 
In earlier papers, we proposed direct numerical solution of the Hamilton-Jacobi equation as a method 

to study particle beam dynamics [l-4]. There are two aspects of the proposal. First, one can compute 
invariant surfaces in phase space (tori) by finding solutions that are periodic in s, the arc length along a 
reference trajectory 131. This is in the spirit of canonical perturbation theory, but is more accurate and 
simpler to implement, especially at large amplitudes. Second, one can use nonperiodic solutions of the 
Hamilton-Jacobi equation to construct symplectic maps for long-term particle tracking (3,4]. 

In Ref. [3], we found periodic solutions for accelerator lattices by formulating the Hamilton-Jacobi 
equation as an integral equation. In the present paper, we introduce a more efficient technique for finding 
periodic solutions, based on an iterative shooting procedure. 

Other proposals for studying invariant surfaces for accelerators have been pursued in recent years. 
Dragt et al. [5], Forest [S], and Forest, Berz and Irwin [y] h ave developed a perturbative algorithm 
to extract normal forms from evolution maps. Guignard and Hagel [8] have worked with successive 
liiearizations of the equations of motion in Lagrangian form. Michelotti [Q] has applied the Deprit 
form of perturbation theory. Moshammer and Hagel [lo] have implemented secular perturbation theory 
applied to the equations of motion. It is difficult to cdmpare efficacy of the various methods since they 
have not all been implemented to the same degree, and comparable results on performance are not 
readily available. The features of our method that we find appealing are generality, accuracy, large 
region of convergence and simplicity of programming. 

2. THE HAMILTONIAN 
We write the Hamiltonian for two transverse degrees of freedom ss follows: 

H(I,Qr,e) = /V(8) .I+ f(s)V(I,@) , 

where /3-’ is a two-component vector formed from Twiss parameters, 

(2.1) 

(2.2) 
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The action and angle variables, I = (11, Iz), @ = (41, &), are related to transverse momenta and 
coordinates by [ll] 

pi = - (21i/@i(S))“2 Sin di - y 
i 

CO8 4i ] 3 

Zi = (21i@i(S))1’2 Co8 & s (2.4 

The function f(s) consists of a series of unit steps; it is equal to 1 over the extent of each nonlinear 
magnet or skew quadrupole and zero elsewhere. For each multipole, V is a polynomial in the zi. For a 

sextupole, 

V(I,@) = i (2: - 324 , 

where S is constant with dimensions (length)-3. For a skew quadrupole, 

V(I,aq = MZlZ2 . (2.6) 

Although the Hamiltonian as described is not entirely general, our method does allow virtually any 
function V(1, a, s) in place of the second term of (2.1). We can account for Maxwellian fringe fields and 
curvature effects. It is not necessary to expand the square root in the original relativistic form of the 
Hamiltonian. 

To account for departures from the design momentum, deviations from the off-momentum closed 
orbit are used as canonical coordinates. To represent the Hamiltonian, there are two possible avenues, 
which we call the “explicit” and “implicit” approaches. In the explicit scheme, we use the p functions 
for the design orbit and a dispersion function D(s) to represent the momentum dependence of the 
Hamiltonian explicitly, as in Eq. (6.12) of Ref. (111. This gives chromatic terms that are quadratic in 
the coordinates, which can be treated as part of the perturbation. In the implicit scheme, we simply 
use the Hamiltonian in its original form (2.1), but with a different closed reference orbit and different 
S functions and multipole strengths for each momentum. The closed orbits and lattice functions are 
determined anew from an auxiliary lattice program each time the momentum is changed. For the present 
account, we suppose that the implicit scheme is used. 

3. HAMILTON-JACOBI EQUATION 

To find invariant surfaces in phase space, we se& a canonical transformation (I, a) + (J, lI!) such 
that the transformed Hamiltonian Hr is a function of J alone. For such a transformation, aJ/as = 
0 and a*/as = VH~ (J), so that J is invariant and 9 advances linearly with s. We obtain the transfor- 
mation from a generating function G(J, a, s) such that 

I= J+Ge(J,*,s) , (3.1) 
W=@+GJ(J,@,S) , P-2) 

where subscripts denote partial derivatives. 

The Hamilton-Jacobi equation is the requirement that the new Hamiltonian Hr indeed depend only 
on J, namely, 

H(J + Go(J,@,s),W) +G,(J,*,s) = HI(J) . (3.3) 

Once the appropriate periodic solution of this partial differential equation for G is known, the invariant 
surface is given by (3.1) in explicit form. To represent the surface graphically, we can take a surface of 
section at fixed s, and plot I(@,s) versus @. The invariant J is a fixed parameter chosen at the start. 
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To find a solution of (3.3), our first step is to expand G in a Fourier series: 

G(J, 0,s) = c e’m”gm(J, s) . (34 
m 

This is a natural step, since by (3.1) and (2.3, 2.4), the generator G must be periodic in @ with period 
2~. Let us now substitute (3.4) in (3.3), h c oosing (2.1) to be the Hamiltonian. Next, take the inverse 
Fourier transform of the resulting equation. We find [writing gm(s) for gm(J, s)] 

( & + im - B-‘(s) 
> 

h(s) 

2r 

= -‘(“)& o / dQrt~--~” V(J + G&,8),@) (3.5) 

+ (NJ) - J . B-‘(s)) 6mo 

where 

Since (3.6) has no term with m = 0, the set of equations (3.5, 3.6) is a closed system for determination 
of the amplitudes gm(s), m # 0, which does not depend on the still unknown function HI(J). In (3.5) 
the presence of the action J, a fixed parameter to be chosen at the start, induces J-dependence of the 
solution gm. 

We truncate the series (3.6), so that (3.5, 3.6) becomes a finite set of ordinary differential equations, 
which may be integrated by a standard numerical algorithm. For the integration, it is convenient to 
pass to the Ynteraction representation” by the change of variable 

hm(s) = eim”(‘)g,(s) , 

a!(s) = 8 /r’(u)du . 
/ 
0 

(34 

(34 

These variables obey, for m # 0, 

2r ah, e-im.w(s) - = -m (2A)2 as 
d@kh’* V(J + Go(@, s), a) , 

‘A= c imeim’(‘-*(8))h,(g) . 

( 3.9) 

(3.10) 

Here B is a finite set of modes. The property & = ht, reduces the set of amplitudes that must be 
considered. A suitable set of independent amplitudes is 

h m,,ma , h-m,,m, 9 hrnl.0 3 km 
(3.11) 

The h, are constant between magnets where f(s) = 0, so that the region of integration reduces to the 
support of f(s). 

The determination of Hr (J) and go(s) is discussed at the end of Section 4. 
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4. PERIODICITY, CONTRACTIVE PROPAGATORS AND THE 
SHOOTING METHOD 

Let C denote the circumference of the reference trajectory. Since (3.1) expresses the invariant surface 
I(@, s), and the points .9 and 8 + C are physically identical, the generator G must be periodic in s. Thus, 
we must find solutions of (3.9, 3.10) such that 

gin(O) = f!hl(C) * (4-l) 
We enforce periodicity by a shooting algorithm, that is, by an iterative procedure in which we sequentially 
adjust the initial value hm(0) = gm(0) until k(C) = eim.*(c)gm(C) satisfies 

L(C) = e2rim’“hm(0) , (4.2) 

which is equivalent to (4.1). Here u = w(C)/27r is the unperturbed tune. 

One requirement on an acceptable shooting algorithm is that it be certain to converge when the 
perturbation V is sufficiently weak (and mr~r + m2v2 differs from an integer for all ml, m2 in the mode 
set chosen). This requirement is not met by a naive iteration 

g’O’(0) + g(O)(C) = g(‘)(o) + g”‘(C) = g@‘(o) + - - - ) (4.3) 

where the arrow indicates one integration through the lattice. Here and in the following discussion, we 
suppress the subscript m, letting g = {gm} or h = {&) stand for a vector with Fourier amplitudes as 
components. 

We form a shooting algorithm that will converge for small V by virtue of the contraction mapping 
principle [12]. Let us recall the latter. In a finite-dimensional vector space, let sb consist of all vectors z 
with ]]z]] 5 b ; sb is a complete metric space with metric d(z - y) = (]z - y]], where double bars denote 
any vector norm. Suppose that an operator A, in general nonlinear, maps &, into itself 

ILWll <b 9 

for all z in sb. Suppose also that A is contractive, i.e., 

llA(z) - A(y)11 5~11~ -v/l, 0 < Q < 1 7 (4-5) 

for all x, y in &,. Then 

2 = 4(x) (4.6) 

has a unique solution in &,. Furthermore, that solution may be computed by iteration, beginning with 
any point zc in Sb: 

xp+l = A(xp) , p = 0,1,2,. . . , 20 E &, , Zp + 2 , p + 00 . (4.7) 

We wish to put the shooting problem in the form (4.6), so that it can be solved by iteration. The 
unknown x will be h(O), the value of h at the beginning of the lattice. 

We exploit the fact that the propagation operator U for h is small and contractive at small V. This 
operator is defined by 

U(h(0)) = h(C) - h(0) . (4.8) 

To compute U(h(0)) one has to integrate the differential equation (3.9) through the lattice, taking h(0) 
as initial value. It is clear that U(h(0)) vanishes as V + 0. Also, by considering the integral equation 
equivalent to (3.9), one can show that U is contractive when aV/aJ is sufficiently small [13]. Note that 
V and aV/aJ are simultaneously small in the limit of vanishing magnet strength. 
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We substitute the definition (4.7) in the periodicity condition (4.2) and rearrange to obtain 

which may be written as 

h(0) = A(h(0)) . (4.10) 

Now if e2rim.v # 1 f or all m E B, we can apply the contraction mapping theorem to (4.10) if the magnet 
strengths are sufficiently small. For small strengths, A maps some set sb into itself, and is contractive 
on that set. 

Note that the corresponding propagator for g, defined as g(C) - g(O), is not small and contractive 
for weak magnets, owing to the term im-Be’g in (3.5). An important step was to pass to the interaction 
picture, to eliminate this term. 

It is not surprising that the ‘small divisor,” eSrcin’” - 1, appears in (4.9). Such divisors are intrinsic 
to the problem of determining invariant tori. They make it impossible to expand the mode set B without 
limit; they become arbitrarily small at large m, whatever the value of v, and spoil convergence of an 
iterative solution. In order to expand the mode set indefinitely, it is necessary to invoke a sequence of 
canonical transformations rather than just one [2]. We find, however, that we can take B so large as 
to get acceptably accurate results with one transformation, provided that we do not work too close to 
regions where invariant tori fail to exist. 

Having determined gm(s),m # 0, we can use (3.5) to determine the new Hamiltonian Hi(J). We 
put m = 0 in (3.5) and integrate on s from 0 to C. The requirement go(O) = go(C) immediately gives a 
formula for Hr (J). Inserting that expression for EIr (J), and integrating (3.5) for m = 0 from 0 to s, we 
obtain go(s). The initial value go(O) is arbitrary; it corresponds to an arbitrary offset of Q with respect 
to @ at 8 = 0, as is seen from (3.2). Knowing HI(J), one can calculate the perturbed tune vr = VHi (J) 
by numerical differentiation. 

5. NUMERICAL METHOD 

We wish to solve (4.9) for h(0). To find U(h(O)), we integrate the differential equations (3.9) over the 
interval [0, C], with initial value h(O), using the fourth-order Runge-Kutta method. The sum in (3.10) 
and the integral over @ in (3.9) are evaluated by the Fast Fourier Transform (FFT). The @ integral is 
first discretized with a number of mesh points for @i at least equal to 2 Mi, where Mi is the maximum 
mode number defined in (3.11). Usually we take 2 Mi mesh points for a first try, and 4 Mi for refinement; 
see Ref. [2], Section 5, for remarks on discretization error. 

We find that gm(s) has rather simple behavior- a function of s over the extent of one magnet. 
For instance, in the case of one transverse degree of freedom at moderate amplitudes, gm(s) is nearly a 
quadratic function of s over the extent of a single sextupole, for each m. This implies that the number 
of Runge-Kutta steps per magnet can be rather small. One or two steps [four or eight evaluations of the 
right hand side in (3.9)] p roved to be sufficient in good regions of phase space. As the dynamic aperture 
is approached, and more Fourier modes are included, it is necessary to increase the number of steps. 

To solve (4.9), we have used simple iteration, as in the contraction mapping theorem, taking as 
zeroth iterate the result of lowest order perturbation theory. The iteration converges provided that the 
invariant action J is not too large. At large J, we apply Newton’s method to solve (4.9), obtaining 
convergence up to the dynamic aperture in cazes studied to date. The Jacobian matrix required for 
the multi-dimensional Newton method was approximated by calculating partial derivatives as divided 
differences. That is, with 

&n(W)) = hm(O) - ,,lim’y _ 1 Urn@(O)) 

we computed divided differences 
F(h(0) + Ahe) - F(h(O)) 

Ah (5.2) 



for some small scalar Ah. A succession of unit vectors e in the various coordinate directions produces 
the full set of partial derivatives making up the Jacobian. This requires one integration through the 
lattice for each e, and therefore is expensive for large problems. 

6. EXAMPLES 
We give results for one cell of the Berkeley Advanced Light Source (ALS). The ALS has very strong 

sextupoles, and therefore is a demanding case in which to test our method. The cell contains four 
sextupoles, and has lattice parameters as given in Table 1. The values stated are for s at the leading 
edge of a magnet. 

We first show results for motion in the horizontal plane only. The formalism described above was 
transcribed for one degree of freedom. We plot I(4) versus 412~ in the surface of section at s = 0. In each 
plot, we show the invariant curve, obtained by solving (4.9)) and also points obtained from single-particle 
tracking. The points from tracking are all on a single trajectory, starting at the point (I, r$) = (I(O), 0) 
on the invariant curve. Tracking was done by means of a fourth-order explicit symplectic integrator [14]. 

Table 1. Berkeley ALS Cell. 

8 (leading edge) Pw QW tl, =a S A&J 

5.775 1.4724 -1.7791 2.4799 -88.09 .20 

10.6957 8.4007 .8658 

6.875 3.9837 2.2722 2.8191 115.615 .20 

1.5798 .4167 1.2217 

9.325 3.1367 - 1.9628 4.5996 115.615 .20 . 
1.4428 -.2681 2.9279 

10.425 2.2972 2.3448 4.8865 -88.09 .20 

7.6031 -7.0624 3.3945 

Circumference C = 16.4, Tunes uZ = 1.189735, I+ = .681577 
s,p,C in meters; S in (meters)-3 
Length of sextupole = As 

Figure 1 shows the result of simple iterative solution of (4.9) at invariant action J = 9 - lo-’ m. 
This corresponds to maximum horizontal displacement at a = 0 of xmax = 4.5 mm. The calculation was 
done with 15 Fourier modes, 1 5 ]m] < 15, and two Runge-Kutta steps per magnet. The agreement of 
invariant curve and tracking is very close. To check the agreement quantitatively, we took 600 points 
(c,@ from tracking, and compared them with the corresponding points (I(#),$:) on our computed 
invariant curve. We formed the measure of error 

L = CFl IW - Cl 
cz IWf) - JI ’ 

(6-l) 

and found L r 4.4. lo- s. This is a demanding error test, since the normalizing divisor in (6.1) is formed 
from distortions, i.e., departures from invariant action, rather than the invariant action itself. If the 
denominator in (6.1) were replaced by 600 J, the value of c would be considerably smaller. 

To judge convergence of an iterative solution of (4.9), we calculate the quantity 

J~+I) _ I lh(p+‘) (0) - dp) (0) I I - 
Il~w9ll ’ (6.2) 

where llhll denotes the sum of the absolute values of the independent Fourier components of h. The 
index p denotes the th p iterate, whether obtained in simple iteration or in Newton’s iteration. 



The run of Fig. 1 is for a value of J close to the largest that gives unambiguous convergence in the 
solution of (4.9) by plain iteration. Consequently, the convergence as measured by r(r) was fairly slow: 
we found r(‘) = 7.6. lo-‘, r(l”) = 7.7. 10-s, I@‘) = 1.6. 10ms, . . . r(@‘) = 3.9 * 10-l’. The time for 60 
iterations in double precision was less than two minutes on a MicroVAX. The pattern of convergence 
was in accord with expectations based on the contraction mapping principle, with Q in (4.5) around 0.7. 

The horizontal dynamic aperture of the ALS as determined by tracking is around 22 mm at 8 = 0. 
To reach such large values, where the nonlinearities are very strong, we find it imperative to solve (4.9) 
by Newton’s method. In Fig. 2 we show results from a Newton iteration at J = 2.22 . 10m6, which 
corresponds to xmax = 7.1 mm at s = 0; this is roughly the aperture required for injection. The 
calculation was done with 15 modes, and 12 Runge-Kutta steps per magnet, the latter being much more 
than necessary. Agreement with tracking is still good, with c = 5.2 . 10m5. Convergence was rapid: 
#I = 1.2 . 10-5, r(z) = 4.2. m-11, r(3) = 4.1.10-16, r(‘) = 3.7 . 10-l’. The computing time was about 
6.5 minutes for two iterations; this could be divided by 3 if four Runge-Kutta steps per magnet were 
used, probably an adequate number. 

J = 9. 1O-7 
I5 modes 
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Figure 2. 

In Fig. 3 we show a run very close to the dynamic aperture, with J = 2. loss m and xmax = 22.4 mm 
at s = 0. Again, we take 15 modes and 12 Runge-Kutta steps per magnet. Agreement with tracking 
is only fair; c = 4.4 . 10m2. Convergence is still impressive: t(l) = 1.8 e 10s2, rt2) = 1.8 . lo-‘, rt3) = 
8.1. 1O-g, r(‘) = 2.2. lo- Is. The 4% disagreement with tracking arises from taking too few modes. In 
Fig. 4, we repeat the case of Fig. 3 but include 63 modes, again with 12 Runge-Kutta steps, and obtain 
c = 4.8 . 10W3. Convergence is slightly slower, r(‘) = 7.7 . 10-12, rt5) = 9.7 + 10-l’. 
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With large mode sets at large amplitudes, as in the case of Fig. 4, it is necessary to use relatively 
many integration steps. For instance, the run of Fig. 4 failed to converge when we tried only five Runge- 
Kutta steps per magnet. At large amplitudes, the differential equations (3.9) appear to have a property 
reminiscent of stiffness, the allowable step size being determined by the high modes, even though they 
play a minor role in the solution. 

In Figs. 5 and 6 we show results for motion in two degrees of freedom. The phase space is now 
five-dimensional (coordinates 11, $1,12,&, s). There are two invariants J1 , J2 for an invariant surface, 
which is a three-torus. Taking a surface of section at 8 = 0, we see that the points (Ii, 41, &), or the 
points (12, 41, &), lie on a tw*dimensional surface, which we may plot in three dimensions (11. In Figs. 5 
and 6 we plot Il/Jl and Iz/Jz, respectively, each versus (&,&)/2 ‘IF. Here 1 (2) denotes the horizontal 
(vertical) plane of motion. 

Figure 5. Figure 6. 

The results shown are for J1 = J2 = 5. lo-’ m, and were obtained by plain iteration using Fourier 
modes with ]m] 5 7 in each variable, and two Runge-Kutta steps per magnet. The agreement with 
tracking is quite good in spite of the relatively small mode set: ~1 = 4.01 - lo-‘, ~2 = 4.07. lo-‘. The 
iteration gave r(r) decreasing slowly to 3.7 - lop5 at p = 25; at larger p it began to increase. The 25 
iterations required 25.5 minutes on the MicroVAX. Notice that the intersection of coordinate axes is at 
0 in the plots; the departure of the surfaces from planarity is quite large. 

In two degrees of freedom, the convergence is somewhat poorer than in one at comparable amplitudes. 
Moreover, the use of Newton’s method is expensive in two degrees of freedom. We are studying ways 
to reduce expense by modified Newton procedures. Another possibility is to avoid Newton’s method by 
making successive canonical transformations so as to reduce the magnitude of the perturbation, along 
the lines suggested in Ref. [2]. This approach seems promising. 

It goes without saying that all results in computation of invariant surfaces are strongly dependent on 
tunes. We have used the tunes of Table 1. Slightly different tunes could give better or poorer convergence 
of our iterative method. 

‘7. CONCLUSION 

We have tested our method in a difficult example, and have found that it gives good accuracy 
and a large region of convergence. Further efforts are needed to reduce computation expense at large 
amplitudes in strongly nonlinear lattices, especially in two degrees of freedom. There are good prospects 
for improvements through modified Newton methods or successive canonical transforms. 
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