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ABSTRACT 

The longitudinal impedance of an array of cylindrically symmetric cavities 

connected by side pipes is estimated in the high-frequency limit. The expression 

for the impedance is obtained for an arbitrary number of the cavities. The 

transition from the case of a single cavity to a periodic structure is studied. The 

impedance per cell decreases with frequency w as w e-1/2 for a small number of 

cells. For a large number of cells the impedance decreases as w -l/2 or as wT3J2 

depending on a certain relation between the frequency and the number of cells. 

The parameter which governs the transition from one regime to the other is 

found. In particular, for the infinite periodic structure there is only the second 

regime and the impedance decreases as w -3/2 for all frequencies. 
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1. INTRODUCTION 

There is a pronounced trend in the recent conceptual designs of the next 

generation of linear colliders, FEL drivers and synchrotron light sources: they all 

use many bunches with small bunch lengths. Evaluations of the stability of the 

particle motion and of the corresponding current limitations in all such devices 

require an accurate estimate of the impedances1 for the high-frequency region. 

There is a certain discrepancy at present time in the estimates of the longi- 

tudinal impedance, obtained for different models. The optical resonator model,2 

which is applied to an infinite periodic set of thin discs, predicts a decrease in the 

longitudinal impedance with frequency as wV3j2 and some numerical calculations 

are consistent with this result.3 On the other hand, the analytical evaluations of 

the longitudinal impedance for a single cavity4’5 give a quite different behavior: 

the impedance goes down as w -li2. This dependence for a single cavity was also 

obtained in a simple diffraction mode1.6-8 In this paper we find agreement with 

the results obtained in both models. The observed difference in behavior of the 

impedance obtained in the two models can be attributed to the fact that the 

region of applicability for each model is different. 

Here we present an analytical evaluation of the longitudinal impedance for 

an idealized RF system, namely, for a linear array of M cylindrically symmetric 

cavities connected by a pipe of a radius a. The frequencies w under consideration 

are well above the cutoff frequency of the pipe but at the same time small in 

comparison to the particle Lorentz factor 7: 

1 < wale < 7 . (1) 

Figure 1 gives the layout of the geometry considered and the coordinate system 

used. Each cell consists of a cavity with a side pipe. The length of a cavity is g, 

the radii of the cavity and of the pipe are b and a, respectively. The total length 

of a cell is L. At the entrance and at the exit the system of cells is connected to 
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semi-infinite pipes of the same radius a. The number of cavities M is considered 

to be a variable parameter. In the limit of small M M 1 our calculation gives the 

same result as one obtained for a single cavity. When M is very large there are two 

frequency regions with different behavior of the impedance. In the asymptotic 

region of extremely large frequencies the impedance decreases as wB1i2. For 

moderate (but still very large) frequencies, which satisfy a criterion developed in 

the paper, the impedance falls as w -3/2. We give the parameter which governs 

the transition from one regime to another. In particular, for the infinite periodic 

structure, there is only the second regime and the impedance decreases as w -312 

for all high frequencies. Such behavior of the impedance agrees perfectly with 

the results mentioned above. 

The crucial point in calculations of the radiation fields for any periodic struc- 

ture is an accurate description of the interference of waves produced in different 

cells. The interference pattern of a field in a periodic structure can be built up 

only if the structure is long enough. Let us consider the phase shift 

A4 = $i(.ra - a) - 42 - tl) (2) 

between two waves radiated by a relativistic particle with velocity v at two ob- 

stacles with coordinates zr and 22 = zr + S along the structure at the moments 

tr and t2 = tr + S/V, correspondingly. The longitudinal component of the wave 

vector lcll for a structure with a transverse dimension a is related to the frequency 

in the following way: 

where u is of the order of one. For a relativistic particle 11 M c and in the high- 

frequency limit ka > v the phase shift is of order of S/2ka2. For the interference 

to be of any importance the phase shift in Eq. (2) has to be of the order of ?r 

or larger. This means that for a periodic structure with the cell length L the 

number of cells A4 = S/L must satisfy the following inequality: 
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M > ?r(ka)(a/L) . 

Note that this requires larger M if the frequencies under consideration become 

higher. If condition (3) is satisfied, behavior similar to that of an infinite periodic 

structure can be expected. Otherwise, the impedance per cell is close to the 

impedance of a single cavity. For an accelerator with a given length or a given M 

the behavior of the impedance per cell in the limit k ---+ 00 is always the same as 

that for a single cavity. The condition in Eq. (3) is necessary but not sufficient. 

The sufficient criterion is given below. 

In the next section the solution of the Maxwell equations, with appropriate 

boundary and matching conditions, is represented by an expansion of the Fourier 

harmonics of the field in a series of eigenmodes with unknown coefficients. An 

exact infinite system of linear algebraic equations for these coefficients is derived. 

The impedance is expressed in terms of these coefficients. In Sec. 3 the solution of 

the system is found in the zeroth approximation. In the next section an improved 

diagonal approximation is described for a particular case of a single cavity. We 

demonstrate how the basic system of equations can be simplified to make it 

solvable. Here we follow the derivation of our previous paper5 and reproduce the 

result for a single cavity. In Sec. 5 the developed method is used to derive an 

explicit expression for the longitudinal impedance of an array of cavities with an 

arbitrary number of cells. In the next section this expression is used to derive the 

longitudinal impedance averaged over a suitable frequency interval for a system 

with a small number of cavities. We obtain here the first two terms of a series in 

a parameter which depends on M and the frequency. The main term reproduces 

the same dependence as that for a single cavity. In Sec. 7 we consider the system 

with a large number of cells. We show that for an infinite periodic structure the 

behavior of the longitudinal averaged impedance decreases as wm312 in agreement 

with the optical resonator model. For a finite number of cavities there is always 

an asymptotic region of frequencies where the average longitudinal impedance 
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per one cell decreases as ws1j2, i.e., in the same way as for a single cavity. The 

criterion for the transition from the regime w -3/2 to the regime w -li2 is given. In 

conclusion we discuss the approximations used and the implication of the results 

for accelerator design and for the evaluation of the total energy loss for a bunch 

of particles distributed over a finite length. 

2. THE BASIC SYSTEM OF EQUATIONS 

Due to the axial symmetry of the problem, the cylindrical coordinate system 

with radial coordinate r and longitudinal coordinate z is appropriate. We choose 

the plane z = 0 to coincide with the beginning of the first cavity. For cylindrically 

symmetric (monopole) modes, Fourier harmonics of the electric field generated 

by a particle with charge e and velocity u moving along the axis of the system 

can be written as a sum of the field of a particle in a pipe and the radiation field 

Ercld produced due to the presence of the cavities. For the region inside the pipe 

r 2 a, the radial and longitudinal Fourier components of the electric field are 

E, = Q7eikZG1 (r, a) + Eiad , 

Ez = -iQeikzGo(r,a) + EFd , 

where k = w/c, Q = ek/ncy2 and 

Go,1 (r, a) = Ko,l &r/r) =F lo,1 @r/r) ;;;;;;;; . 

(4 

(5) 

(6) 

Here and throughout the rest of this paper the subscript w is omitted. The 

radiation field components inside the N-th cavity a < r < b, NL<z<NL+g 

are 



n=O 

E," = C(tin/b)gk')(r) cos(Xn<~)DE , (8) 
n=O 

where 

S~“‘l’(r) = Jo,1 (Pnr/b)No(Pn) - No,1 (pnr/b)JO (pn) , (9) 

pn = bdk2 - Ai, An = nr/g, <N=z--NL . (10) 

lo,r, Ko,J, Jo,J, No,1 are the modified and regular Bessel functions of the first or 

second kind of the zeroth or first order, respectively, and 0: are unknown coeffi- 

cients for the N-th cavity, N = 0,1, . . , .M - 1. The field components in Eqs. (4) 

and (5) and Eqs. (7) and (8) are constructed in such a way that their tangential 

projections are equal to zero on all the metallic surfaces: at r = a in the pipe 

and r = b in the cavities for an appropriate values of z, and at z = NL and 

z = NL + g for an arbitrary values of r in the interval b > r > a. 

Matching the radial components of the field from Eqs. (4) and (7) in the 

N-th cavity on the surface r = a, 0 5 <N < g defines the coefficients D$ in terms 

of the radial component of the radiation field EFad. Matching the z-components 

of the field from Eq. (5) and (8) at r = a gives a relation between the t and 

z components of the field Erad , produced in the N-th cavity. In each region 

o<$N<g 

Eiad (a, z) = z c (E) &!@ cos(X,<N)eikNL(7QG1 (a, a)un (k)-l- 
n n &)(a) 
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e -ikNL 

/ 
d<sin(Xn$)Eiad(a,NL -I- S)) . 

0 

(11) 
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Here 

(12) 

(13) 

g 

Un(k) = 
/ 

dceikc sin(X,<) . 
0 

In each region g 5 <N 5 L 

Erd(a,z) = 0 . 

The radiation field Erad satisfies the homogeneous wave equation and has 

to be finite at r = 0. It can be represented as a superposition of cylindrical 

eigenfunctions with unknown coefficients A(q): 

00 
ELad(r, z) = ; 

/ 
dqA(q)Jo(xqr/a)eiqz , (4 

-CCl 

cm 

EFad(r,z) = -i; 
/ 

dqA(q)~h(xqrla)eY’ , 
-CCJ 

(15) 

where 

xq = adk2 - q2 + in . (16) 

An infinitely small imaginary part E is added in Eq. (16) to comply with the 

radiation condition. Notice, that the longitudinal impedance is given by the 

coefficient A(k) 

Z(k) = GoA( 20 = 377 Ohm . (17) 



Substituting Eqs. (14) and (15) into Eqs. (11) and (13) one obtains the following 

integral equation for the function A(q): 

’ 
;Un(k)G (a,a> 

00 

-ia 
/ 

d&'Un (d) 
-h (x’d ei(q’-k)NLA(q’) 1 , Xq’ -00 (18) 

where the following notations are introduced: 

c 
n 

(k) _ h do’ Cal ~ w d=tan ((b - a)dG) , 
b !#(a) 

(19) 

Notice that 

and 

B 

K(q) = 
J 

dcesiqf coS(Xnc) . 

0 

C(q) = -i+Un(q) 
n 

IK&7)12 = 4q2 sin2 i(q - An) 
(q2 - Xi)2 . 

(20) 

(21) 

(22) 

In the rest of the paper we assume that b > a since when b = a all C,(k) = 0 

identically. Consequently, all A(q) = 0 and there is no radiation produced as it 

should be in a smooth pipe. 
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We look for the solution of Eq. (18) in the form 

Functions V,(q)e-qNL are orthogonal 

00 

J 
dqV,*(q)Vm(q)e-‘qL(N-N’) = Irg&,mSN,N’ . 

(23) 

That enables us to obtain the following system of equations for B:(q): 

B,N(q) = C,(k) &Un(k)Gl(a,a)+ ’ 
ag n 

xq, Jo(xq,) V,*(q’)Vm(q’)e’(q’-k)L(N-N’)B~‘(q’) . 
(25) 

The right-hand side of this equation does not depend on q. That means that the 

coefficients I3: do not depend on q either but are functions of k only. Thus the 

problem of solving the integral equation (18) for function A(q) is reduced to the 

problem of finding a solution of the system of linear algebraic equations (25) for 

coefficients BF. For a relativistic particle with 7 >> ka, an asymptotic expansion 

of modified Bessel functions gives Gr (a, a) = y/ka and Eq. (25) takes the form: 

B,N = &C&(k) &V;(k) + M2 c r;;N’~,N’ , (26) 
N’=O m 

where N = 0,l , . . . . M - 1 and the following notation for matrix elements is 

introduced: 

xq, Jo(Xq,)V~(q’)Vm(q’)ei(q’~k)L(N~N’) . (27) 
--oo 

To satisfy the radiation condition, Eq. (16)) the path of integration in the integral 

in Eq. (27) must be shifted above the negative real axis and below the positive 
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real axis of the complex plane q. The integral can be replaced by the sum over 

residues in the zeros of the Bessel function JO(Q) = 0. Nondiagonal matrix 

elements are 

Vn*(UI)V;n(ul)eiL(ul-k)(N-N’) for N > N’ 

V~(ur)Vn(ul)e-iL(U~+k)(N-N’) for N < N’ ’ 
(28) 

where 
dk2 - (vl/a)2 for y < ka 

?.Ll = . (29) 
id(yr/a)2 - k2 for ul > ka 

In the sum in Eq. (28) all terms with ul > ka are exponentially small. Hence, 

the summation over 1 may be truncated at y = ka. The imaginary part of the 

diagonal term is: 

where the summation is performed up to 1 which satisfy inequality ul 5 ka. 

The longitudinal impedance in terms of the coefficients J3$ is 

M-l 00 

Z(k) = -20 C CVn(k)B,N(k) - (31) 
N=O n=O 

So far the system, Eq. (26), is the exact set of equations defining the radiation 

of an ultrarelativistic particle. 

3. THE ZEROTH ORDER APPROXIMATION 

The system, Eq. (26), is too complicated to be solved exactly. In the high- 

frequency limit we can expect that it can be solved by the method of iterations. 

In the zeroth order approximation we neglect the second term in the brackets in 

Eq. (26): 
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Then the impedance per cell is 

z - = -i&e jVn(k)12s 
M . 

n=O 
(33) 

Notice that in the zeroth order approximation the impedance per cell does not 

depend on the number of cells in the array. 

For large wave numbers k the impedance is a fast changing function of k and 

goes to infinity at the resonance values 

which are defined by the equation Cil(knr) = 0. The impedance can be pre- 

sented as a sum of the Breit-Wigner resonances with infinitely small widths. 

Representing C;l (k) in the vicinity of a resonance as 

c,-‘(k) = R,1’(k - knl + in) 

with 

R 
nl 

= _ 14 + ml2 
k,l(b - a)3 ’ 

the real part of the impedance is given by the sum of b-functional terms 

(35) 

(36) 

(37) 

Practically, we are interested in ReZ averaged over some interval of wave numbers 

Ak. It is clear that Ak has to be large in comparison with the difference between 

resonance frequencies 6 k 
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6k = k,(l+q - h M 
rrrl 

k(b-a)2 ’ (38) 

The choice of an appropriate Ak can be made in the following way. The 

factor IVn(k)12 g iven by Eq. (22) h as a maximum value of order of (g/2)2 for 

n = no and rapidly decreases as (r/g/n - ~~01)~~ for n # no where 

kg no=- . [ 1 7r (39) 

Here the square brackets mean the integer part of the argument. The main 

contribution to the impedance is therefore given by mode no which, of course, is 

different for different k. Hence, it is convenient to choose the averaging interval 

. as 

Ak = z/2g , (40) 

which for large k is large in comparison with the difference Eq. (38). 

For a rough estimate of the real part of the impedance in Eq. (37) it is enough 

to take into account only the term n = no. The average impedance therefore is 

’ 

where 

(42) 

The impedance, estimated in this way with Ak from Eq. (40), differs from Law- 

son’s estimate6 

(43) 

only by a numerical factor of z/3. Numerical calculations confirm that this result 

is independent of the choice of the size of the interval Ak. 
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We conclude that with good accuracy the main contribution to the impedance 

comes from eigenmodes with eigennumbers 

n = no and 0 5 1 I lmaz - (44 

This result has a very simple physical meaning. For a pillbox cavity the 

eigenmode with the eigennumbers (n, I) >> 1 is characterized by the wave number 

knl = d(nm/g)' + (u&)2, u*Fyx . 1 (45) 

The mode can be considered as a wave with wave vector components kl = d/g 

and ICI1 = nr/g. Interaction of a particle with the wave gives a contribution to 

the impedance for a frequency w if w/c M k,l and the phase shift within the time 

of flight through the cavity g/v is small: 

(w - klp) (g/w) < 7d2 - (46) 

For a relativistic particle and for n = no from Eq. (39), this condition means that 

1 < dm which is essentially the same as given by Eq. (42). 

The zeroth order approximation does not take into account either the interfer- 

ence of the radiation from different cavities or the finite widths of the resonances 

contributing to the impedance. In the next section we derive a method which 

allows us to improve the calculations. 

4. DIAGONAL APPROXIMATION 

We start with a somewhat simpler case of a single cavity. In this particular 

case Eq. (26) takes the form: 

Bn = &Cn(k) 3 + CrirnBrn . 
m 

(47) 

In the zeroth order approximation the sum on the right hand side of this 

equation was neglected altogether. The approximation can be improved by taking 
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into account the fact that the main contribution to the sum is given by the 

diagonal term m = n. All the other terms give only small corrections and can be 

taken into account by the method of iterations. In this diagonal approsimation5 

we get for the impedance the following expression: 

(48) 

in which the definition 

cot ((b 
(49) 

is used. The sum in Eq. (48) is again determined mainly by terms n w no. 

Similarly to what is done in Eq. (33) the impedance in Eq. (48) can be 

represented as a sum over the Breit-Wigner terms. The resonance frequencies 

are now given by the condition Re y(k) = 0 and finite resonance widths are 

defined by Im Iin. Evaluation of I’& has been done in Ref. 5. For k within the 

range nr/g < k < (n + l)z/g a good estimate for I’in is: 

(50) 

The resonance frequency shift, given by ReI’i, is small and the expansion around 

a resonance frequency k,l takes the form: 

y(k) = Ri/(k - knl + i7nl) 3 (51) 

where 

R,, = - 
al2 

g2(b - UP&,, ’ 

1 l2 
7nl= - - 

( 1 Slfi %az * 
(53) 

Hence, in the diagonal approximation ReZ is not singular, as it was in the zero- 

th approximation in Eq. (37), although it may have rather sharp peaks if ml is 
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small. That is the main qualitative feature of the diagonal approximation for a 

single cavity. 

The ratio of the resonance width ml to the distance between adjacent reso- 

nances 6k is small for the resonances with 1 < Ima=: 

Therefore, the averaging over Ak for resonances with different I may be performed 

independently. Since the integral over a Breit-Wigner resonance does not depend 

on its width, the result for the real part of the impedance is the same as in 

Eq. (43). The diagonal approximation allows us to estimate corrections, given by 

the next iterations, and to prove that in the high-frequency limit they are small.5 

5. GENERAL EXPRESSION FOR THE LONGITUDINAL IMPEDANCE 

Consider now a structure consisting of M cells. The interference of waves, 

generated in different cells is crucial to the evaluation of the impedance for the 

multi-cell structure and has to be taken into account. We describe the interaction 

of a particle with each cell in the same way as it is done above for a single cavity. 

Therefore, we consider Eq. (26) in the diagonal approximation for the lower 

indices, retaining only terms m = n = n,, but keeping the summation over the 

upper indices N’. It gives: 

B,Ny(k) = 2 + 
M-l 

c rzn-N’BN’ 
n , 

N’=O,N’#N 

where N = O,l,..., M - 1; I’rLN’ is defined in Eq. (28) and y(k) is defined in 

Eq. (49). 

It should be noticed that the system Eq. (55) is difficult to solve numerically 

for the interesting case M - ka >> 1. Indeed, the rank of the corresponding 

matrix is M. In addition, the coefficients in Eq. (55) oscillate rapidly with a 
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typical period of l/M. Therefore the computational time for the calculation of 

the averaged impedance increases with M as M3. 

To simplify Eq. (55) consider the behavior of its matrix elements as given 

in Eq. (28). All the elements with N < N’ contain factors which oscillate with 

the sum frequencies ul + k - 2k. After averaging over the frequency interval 

they would give only a negligibly small contribution. On the other hand, all the 

elements with N > N’ contain factors which oscillate with the small difference 

frequencies ul - k. These terms describe the interaction of a particle with the 

waves traveling in the same direction. Therefore, we may assume that 

rN-N' = 0 
nn for N<N’ , ’ 

and rewrite Eq. (55) in the form 

B,Ny(k) = 2 + Nc I’rn-N’B,N’ . 
N'=O 

(56) 

(57) 

By omitting the terms with N’ > N we neglect the interaction of a particle 

with the waves traveling in the opposite direction. In particular, we neglect the 

decay of the modes in the cavities into these waves. Since we do that in the non- 

diagonal terms, for consistency the same should be done in the diagonal terms as 

well. In other words, Im I’in in the definition of y(k) Eq. (49) should be divided 

by 2. 

Equations (57) are the recurrence relations between coefficients Br. All the 

coefficients can be found sequentially starting with the zeroth one : 

B; = 
iv, 

kazy(k) ’ (58) 

Notice that expression (58) gives the impedance of a single cavity. 
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It is also possible to solve the system of Eqs. (57) explicitly. To do that 

we notice that the N-th coefficient is expressed through coefficients with indices 

N’ < N. Although we are interested in only the first M coefficients, the procedure 

can be formally extended to any N. Since the kernel I’rLN’ depends only on 

the differences N - N’, Eq. (57) can be solved by applying the discrete Laplace 

transformation. The discrete Laplace transforms of Bf and I’fn, respectively 

are defined in the complex plane .s as follows: 

B,(s,k) = 2 ewN8Br , 
N=O 

rn(s, k) = 2 emNeI’rn , 
N=l 

with LT 3 Re s > 0. 

Hence, the Laplace transform of a solution of Eq. (57) is: 

- * 

Bn(s’ k, = 2 (y(k) - l?,(sf k))(l - es8) ’ 

(59) 

(60) 

(61) 

The inverse transformation now gives the solution of Eq. (57): 

iR+U 
B,N= 

/ 
ds 

-eN8Bn(s, k), a>0 . 
27rrr (62) 

-ir+a 

The impedance in Eq. (31) f o an array with arbitrary number of cells M is now 

given by the following expression: 

WC) = -&& 2 IVn(k) I2 *T” ds (y(k) _ rn;y$ ;cosh s _ 1) - @3) 
n=O -ir+u 

Here 

rn(Sy k, = 2 2?ril~~~r)12 eiL(kpuf)+8 _ 1 
I=0 

(64 
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and 

ul = j/k2 - (~~/a)2 + ie, UlM7r . 1 (65) 

The integrand in Eq. (63) is the same on two parallel lines s = -i?r + LT and 

s = +i?r + o, -oo < 0 < 0 . Therefore, we can add integrals over these two lines 

extending the contour of integration in the complex plane s from -oo - i?r, then 

from -ix + Q to iz + u and back to -oo + in. The integral is then equal to the 

sum of the residues at the root of the equation cash s = 1 and at the roots of the 

equation 

y(k) = L&k) . (66) 

Expression (63) gives the longitudinal impedance of an array with an arbitrary 

number of cavities M. The next two sections contain a more detailed analysis of 

the general formula of Eq. (63) f or small and large M, respectively. 

6. SMALL NUMBER OF CAVITIES 

For an array with small M, it is convenient to rewrite Eq. (63) introducing 

a new variable t = ee8. That inverts the infinite point into zero and transforms 

the contour of integration into a circle with radius ItI < 1: 

z=- $ c IVn(k)12W 9 
n 

where 

Ick) = f 

&(l - tM) 
tM(1 - t)2(y - Tn(t, k)) * 

(67) 

(68) 

Here the function Tn(t, k) E I’n(S, k). Th e only singularity inside the contour is 

at the point t = 0. The function Z’n(t, k) may be expanded into series over t: 

Tn(t,k) = tf(t,k) 3 
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where 
co 

f(t, k) = c u,tm--l , 
m=l 

with the coefficients 

am(k) = c ~lVn(uI)12e-imL(t-ut) . 
1 

(70) 

(71) 

The integral in Eq. (68) is g iven by the finite double sum: 

I(k) _ ‘ii M2 ($ Mg’ M -;,- m [a;;;(t)] t=O . 
j=O m=O 

. (72) 

The same result can be obtained by solving the triangular matrix equation (57) 

directly. 

In particular, for M = 1, I(k) = 27ri/y. That again gives the impedance of 

Eq. (48), and after averaging over a frequency interval, the result of Eq. (43) for 

a single cavity. 

In general, for small M the main contribution in Eq. (72) is given by terms 

with small j, m: 

I(k) = $ M + i”<(M - m - l)Om+r + . . . . 
m-0 1 

Suppose now that the following condition is fulfilled: 

<Cl . 

An estimate for om gives in this case: 

and from Eq. (73) we obtain 
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(74) 

(75) 



I(k)=? Ul + . . . 1 . (76) 

The average impedance per cell is now given as an expansion: 

(Re (d)) = g/z[l+ 5k(~~a)~+--] 3 (77) 
in a parameter r - M1/2/(ka)3/2 which is small, provided the condition in 

Eq. (74) is fulfilled. In this case, the real part of the impedance per cell is 

the same as that for a single cavity. Notice that the condition in Eq. (74) is the 

opposite of the condition in Eq. (3). 

For large M expansion (77) is not applicable. This case is considered in the 

next section. 

7. LARGE NUMBER OF CAVITIES 

All roots of Eq. (66) are pure imaginary. To prove that it is convenient to 

change the independent variable of the integrand in Eq. (63): s = it. Neglecting 

exponentially small terms with 1 > ka/rrr, the function Pn(t, k) E I’n(it, k) can be 

rewritten as 

Pn(t,k) = C I;;-$ [,,t$-i] , (78) 

with real $+ = L(k - ul) + t. The imaginary part of Pn(t, k) does not depend on t 

and cancels the imaginary part of y(k) = I’:,(k). Therefore, all the roots tm(k) 

of equation 

S(t, k) s y(k) - Pn(t, k) = 0 (79) 

are real. The pole which arises from the term (cash s - 1) in Eq. (63) contributes 

only to the imaginary part of the impedance. 
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The real part of the impedance per cell is now given by the sum of residues 

of the roots -n 5 tm(k) 2 ?r of Eq. (79). For Re Z/M we get: 

where the factor 

F(t,M) = sin2(Mt/2) 
M sin2 (t/2) 

is introduced. 

Formula (80) has also an equivalent integral form: j 

z Re-=D 
M 

‘O C (Vn12 1 dtF(t,M)b(S(t,k)) . 
n --ff 

(81) 

(82) 

The impedance in this form can be averaged over the frequency interval 

Ak = ?r/2g [see Eq. (40)] in the same way as it is done in Sec. 3 for a single 

cavity: 

c Ivn12 ‘z j dt (aGtktik,, ’ (83) 
n l=O-, 

where the second summation is performed over the roots k,l of Eq. (79) up to 

Z,,,(k) which is given in Eq. (42). 

Substituting expression (49) for y(k) into Eq. (79), we obtain the following 

equation which defines the roots k,,l: 

cot x,1 = rgt6uH u)XnlRe tPnCt9 k)) 3 

where x,1 = (6 - a)dkF - Xn2. 
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Evaluation of the roots k,,l is facilitated by the following considerations. On 

the left-hand side of Eq. (84) th ere is one cotangent function rapidly changing 

with k. On a given interval Ak cot x,1 has a large number (- 4) of branches 

going from +oo to -oo. On the right-hand side of this equation there is a sum 

of many cotangent functions changing slowly. The period of variation of the 

cotangent terms in the sum defining Re Pn(t, k) in Eq. (78) is much longer than 

the considered interval Ak. It is of the order of L or even smaller for small 1 

(of the order of kL). For most intervals of averaging this means that P,(t, k) is 

approximately constant in the narrow interval Ak < k. For large Pn(t, k) the 

roots k,l lay close to the values which are defined by the equation xl = TZ. Those 

exceptional intervals where one of the cotangents in Re Pn occasionally is very 

large will be considered separately below. 

Hence, to find (dS/ak)k=knt it is sufficient to differentiate the most rapidly 

varying term cot x,1 in Eq. (79): 

(aS/dk)k=k,l = 
!12(b - U)t2 I2 + (lmaz/02 

12 
, 

U 

where the function 

r(t, k) = uzma;;mp;;t’ k, 

(85) 

(86) 
is approximately independent of 1. Performing now the summation over I in 

Eq. (83) and using the estimate IVn12 = (g/2)2 for the most important values 

n N no we get: 

where 

Q(k,M) = krg (s)‘] ;F(t;2M) (I- arcy’) . 
-T 

(87) 

To evaluate function ((t, k) we notice that each root defined by Eq. (84) lies 

between such frequencies for which one of cot x,1 is infinite. For our purpose it 
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is sufficient to estimate Re P,(t, k) for t < 1. For such values of t, substantial 

contribution to the sum give terms for which L(k - ul) - t << 1. Using the 

estimate IVn12 B (g/2)2 and retaining the first terms in the expansions of cot ~,4/2 

in small values +l < 1 and of ul in small values ul/ku we obtain: 

RePn(t,k)-%C ’ 
I=o uf + 2ktu2/L ’ (89) 

Here the summation over 1 can be extended to infinity since the terms with large 

1 do not change the result. For ((t, k) in Eq. (86) we obtain:’ 

t(O) = &d&i-$& , 

where 

Q= /q, t?(t) = [t 

for t<o 

(90) 

(91) 
(t-27r for t > 0 

In Fig. 2 we compare the function Re Pn(t, k) calculated by using the exact 

formula of Eq. (78) and the approximate expression obtained by substituting 

expression (90) for t into Eq. (86). A s one can see the approximate expression 

reproduces all the features of the exact formula. 

For an infinite periodic array of cavities 

limMhooF(t, M) = 2~6(t) (92) 

and, according to Eq. (82), th e real part of the impedance for such a structure 

can be expressed as a sum of b-functional contributions from each eigenmode. 

This is similar to a pill box cavity, since modes of an infinite array of cavities are 

stationary. 
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For the function Q(k, M) we obtain in this case 

@(k,oo) = 1 - 2TL 
a* ’ 

and the average real part of the impedance per one cell is: 

(Re (;) ) = (;;,2 (x>‘E+ O(k-2) . 

(93) 

(94 

It decreases with frequency as (ku)-3/2. 

To evaluate the impedance for finite M >> ku we split the integral in Eq. (88) 

into two parts !D = 91+ Qpz, such that in the first part q defined by Eq. (91) is in 

the region (q( < ~01, Jr(uor) = 0, and in the second part uor < IqI < dm. 

In the first integral [ is constant: [ = (u/4L)m and the main contribution 

comes from the interval 0 < ItI < l/M, where the factor F(t, M) is large: F N M. 

As a result Qr = 1. In the second integral the main contributions come from the 

vicinities of the roots of 51(q): qm = ulm, where e + 0. Near the root qm the 

function e can be approximated by 

r(t) = 4&i 
2Lulm (q - Ulm) - i(q - hm) 9 

from which follows a good approximation for the last factor in Eq. (88): 

1 

( 
l- 

arctan e 

1 
(l/3) 

” t = 1 + [(‘(q - hm)2] . 

This expression has the correct behavior in the vicinity of the roots q = Vim of 

t(q) and decreases as t2 far from them. The vicinity of the root qm contributes 

to the integral Eq. (88) with the weight F(t, M) N 4/Mt2. The magnitude of this 

contribution decreases with m as UC,. Therefore, the main contribution comes 

from the roots qm which are found in the region t 5 1. That justifies the way the 
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estimate Eq. (90) for e is obtained. The second integral cP2 is equal to the sum 

of the contributions of the roots qm: 

~2-L-433’2~ , 

where we used the formula9 

Therefore, the factor Q for M >> ku is 

+=1+-& ($)""G . I (96) 

For M + 00 Q = 1 as is shown above. The same is true as far as the second 

term in Eq. (96) is small: 

,,,,-&(~)““,,+ . (97) 

If the inequality (97) is fulfilled, the real part of the average impedance decreases 

with frequency as (ku)-3/2. For a given large M the transition from the regime 

(ku)-li2 Eq. (77) to th e regime (ku)-3/2 Eq. (94) takes place in the range 

ku2 
-<Me (F)3’2E . 

L (98) 

In other words, the real part of the average impedance per cell decreases with 

frequency as (ku)-3/2 if 

ku << M213 (i>“” (A-)“” 

and, as (ku)-lj2 for very high frequency, 

(99) 

(100) 

The intermediate region is the transition area. The transition from one regime 
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to another is illustrated in Fig. 3. The curves represent the function <p versus 

ku2/ML for different values M and are obtained by numerical integration of 

Eq. (88) with e defined by Eq. (90). The data are in agreement with the analytical 

estimates given above. 

Now we are ready to discuss two exceptional situations which can arise in 

calculation of the roots Eq. (84). 0 ne, mentioned above, happens when the 

function Re Pn(k,t) reaches a very large value inside an averaging interval. Our 

evaluation of the roots of Eq. (84) is not valid in this case. The value of the 

derivative aS/ak at such a root, however, also becomes very large.Since the 

derivative enters the denominator of the expression for the average impedance, 

the contribution from such roots is very small. Evaluation of that contribution 

shows that the frequency dependence of the average impedance stays the same 

- kw3i2. The coefficient in Eq. (94) is defined with the accuracy of the factor of 

order 1. 

Another special case arises when (dS/dk)knl becomes very small at the same 

point where S(knl) = 0. At such point a peak in Re 2 can be produced. Such 

an event, however, when both S(k,l) and (i9S/ak)k,l are equal to zero, is rare 

and requires a realization of a special combination of the system parameters. In 

general, these resonances might restore the magnitude of the total energy loss 

to that for a single cavity. Such rearrangement of the emission spectrum is a 

well-known phenomenon for the radiation in periodic structures. We have not 

investigated this possibility and leave this question open for future analysis. 

CONCLUSION 

The explicit expression for the longitudinal impedance of an array with an ar- 

bitrary number of identical cylindrical cavities connected by side pipes is obtained 

for the high-frequency region 7 >> ku > 1 . Our result is based on the solution of 

the exact system Eq. (26), d erived from the Maxwell equations with appropriate 

boundary conditions. To obtain the solution we have done two approximations. 
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Firstly, we have shown that there are only a few modes in the cavities which 

substantially interact with a relativistic particle in the high-frequency limit. For 

a single cavity the correct result, within a factor of order of one, is easily obtained 

in the diagonal approximation when the interaction with only a single mode is 

taken into account. This approximation is independent of the number of cavi- 

ties in the array. Secondly, we neglected the interaction of a particle with waves 

travelling in the opposite direction taking into account only the interaction with 

waves which travel in the same direction as the particle. That reduces the infi- 

nite set of Eq. (26) to the recurrence equations in the form of Eq. (57). They are 

solved explicitly with the result given by Eq. (63). The interference and phase 

difference of the waves, generated in different cells, is taken into account. Since 

we are interested only in the impedance averaged over frequency, there is no need 

to calculate the exact frequencies of the eigenmodes for the array. 

The explicit expression for the impedance in Eq. (63) is valid for an arbitrary 

number M of cells in the array. Averaging this expression we obtained that the 

real part of impedance for a small number of cavities decreases with frequency as 

k-‘12. For a 1 arge number of cavities the asymptotic frequency region is divided 

into two. For an extremely high frequency, the real part of the impedance depends 

on frequency similar to that for a single cavity, i.e., as km1i2. For moderate (but 

still large) frequencies satisfying the criterion of Eq. (97), the decrease of the 

impedance is much faster - km3j2 due to th e interference of the radiated waves 

emitted from different cavities. There is a continuous transition from one regime 

to another in the range of values of the parameter M given in Eq. (98). 

This result agrees well both with numerical calculations fulfilled for a small 

number of cavities7 and with the optical resonator model.2 

The fast decrease of the real part of the impedance as km3i2 has a direct 

implication on the design of a short bunch accelerator. Indeed, had the asymp- 

totic decrease of the longitudinal impedance followed the law kb1j2, the main 

contribution to the total energy loss would be given by the high-frequency tail of 
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the impedance and the total energy loss would depend on the longitudinal rms of 

the bunch Q as u- lj2. The situation is quite different when the impedance falls 

off as k-3’2. In this case, the total energy loss is defined by the low-frequency 

range of the impedance and, in general, is smaller than in the first case. 

The appropriate parameters for two accelerators, the Stanford Linear Col- 

lider (SLC) and the TeV Linear Collider (TLC), are given in Table 1. If the 

total number of cavities in the accelerator is assumed as the parameter M of 

the criterion in Eq. (99), the impedance falls off as k-3’2 for both designs. The 

parameter M, however, could be smaller than the total number of cavities for 

different reasons (sectioning of the accelerator, changes in its geometry, produc- 

tion errors, etc.). If that is the case, the longitudinal impedance would fall off 

slower in the frequency range around the typical bunch frequency fa = c/27ru 

and the total energy loss would be large. For the impedance to decrease as k-3’2, 

the accelerator should be designed to ascertain the inequality M >> Mb, where 

the minimal number Ma is: 

M, N (u/c~)~‘~(u/L)~~i+ . 

For the considered accelerators, Ma is given in the last row of the table. 
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Table 1. Relevant parameters of two accelerators. 

N Parameter 

1 fo @Hz) 
2 a b-4 

SLC TLC 

3.0 11.0 
1.163 0.52 

3 b (4 4.134 1.12 
4 9 b-4 2.915 0.729 
5 L (cm) 3.499 0.875 
6 Q b4 1.0 0.040 
7 fa (-4 47.7 1.194 * lo3 
8 12.3 1.1 * 103 



FIGURE CAPTIONS 

1. Geometry and the coordinate system. 

2. Comparison of the exact Eq. (78) ( so 1 l’d curve) and the approximate Eqs. (86) 

and (90) (dashed curve) formulae for ReP,(t, k) : ka = 100.0. 

3. Illustration of the transition from the dependence wA3i2 to the dependence 

W -‘I2 for the real part of the longitudinal impedance (see text). Function 

@(k, M) obtained by a numerical evaluation of the integral in Eq. (88) is 

plotted versus the parameter ku2/ML for different numbers M of cavities. 

a) Blow-up of the region 0 < ku2/ML < 0.5, b) region 0.5 < ku2/ML. 

Curves are labeled by numbers corresponding to: 1. M=500; 2. M=l,OOO; 

3. M=3,000; 4. M=lO,OOO; 5. M=30,000. 
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