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ABSTRACT 

Computer simulation of electron and ion sources is made by using a class of 
computer codes known as gun design programs. In this paper, we shall first list 
most of the necessary and some optional capabilities of such programs. Then 
we will briefly note specific codes and/or authors of codes with attention to 
specialized applications if any. There may be many more such programs in 
use than are treated here; we are only trying to cover a range of examples, 
not perform a comprehensive survey. 

CAPABILITIES AND LIMITATIONS OF GUN PROGRAMS 

At the most basic level, an electron gun program should be able to accu- 
rately define the boundaries and the electric fields that result from imposing 
voltages or these boundaries. Ease of entering the boundary data is important 
but should not be so limited as to compromise the necessary versatility. Such 
details as isolated grid wires, dielectrics and shadow grids require significant 
amounts of information to be defined. Generally, there are two ways in which 
the needed detail can be expressed: 

1) Through the use of a regular square or rectangular mesh with interpo- 
lated fractional meshes to define boundaries, and 

2) Through the use of a deformable: triangular mesh. 
Most of the paper will concentrate on specific methods used in the pro- 

gram EGUN.’ We will discuss the mathematical algorithms and discuss their 
implementation with respect to an example of a Pierce diode. 

A gun program, as distinguished from other beam transport programs, 
must be able to treat longitudinal space-charge effects and, in particular, must 
be able to calculate the space-charge limited current of an emitter. 

Any charged particle transport program must be able to accurately inte+ 
grate individual particle motion through the defined fields. A gun program 
must do this from very low velocities, typified by the emission of ions, through 
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fully relativistic velocities. Not only must the equations of motion be com- 
pletely defined, with no approximations, but also the mathematical methods 
must not break down, especially at very low velocities. 

Beam transport calculations should include the effects of self-fields, both 
space-charge and self-magnetic fields. There are essentially two ways in which 
this is typically done: 

1) by calculating the forces on each individual particle, or ray, from every 
other ray, or 

2) by solving for Poisson’s equation with space-charge and separately cal- 
culating the self-magnetic field term. 

The first of these has the advantage that, for relativistic beams, the self-fields 
nearly cancel each other, to (1 - $/c2), and thus the method is intrinsically 
more accurate. This method, however, lacks the flexibility required to perform 
many of the functions of a general purpose program. This is because it is 
necessary to keep particles in step with each other, which is not always possible 
as, for example, in the case of a depressed collector. A third approach, which 
effectively combines the above two, is to reduce the space-charge by (1 - uz/c2) 
when there are no significant longitudinal fields, e.g., in the transport of an 
intense beam through a drift pipe. This makes it possible to use the second 
method near the cathode, and since particles are not usually highly relativisitic 
there, this approach is generally quite accurate. 

Externally imposed magnetic fields play a critical role in many electron 
guns and transport systems. In some ways this subject is larger than the 
subject of electron guns themselves. A recipe for the design of a magnetically 
focused device is as follows: 

1) Make a preliminary test without a magnetic field. 

2) Perform the actual design using an ideal magnetic field that can perform 
the needed transport function. This field can be expressed in any form 
that is compatible with Maxwell’s equations. For example, if the field 
on the axis is chosen, it can be expressed in terms of ideal point coils, or 
ideal solenoids, thus avoiding problems inherent with off-axis expansions. 

3) Convert the ideal field to a form that can be built using realistic magnetic 
elements, aided by a magnet design program. 

4) Take output from the magnet design program and use it to check the 
effects of the realistic fields on the beam transport problem. 

From the above, it follows that the ray tracing program should have a variety 
of options for specifying magnetic fields including a simple uniform field, ideal 
coils, and by accepting results from a magnet design program. 
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Optional capabilities are usually designed to fulfill objectives of a specific 
application. Some of these include: 

1) treating plasma discharge ionization sources including finding the emis- 
sion surface of a plasma, 

2) including neutralization, second species or secondary emission, 

3) operating in other coordinate systems besides the usual two-dimensional 
cylindrical or rectangular coordinates. This includes full three- 
dimensional as well as mixed round beams in rectangular coordinates 
or round beams offset in cylindrical coordinates. 

4) Optional capabilities also include other applications of Laplace’s Equa- 
tion such as finding peak surface fields, calculating capacitance and ac- 
counting for dielectrics. 

We should also note some of the limitations of electron’ gun programs of 
this type (we are not here dealing with fully electromagnetic particle-in-cell 
programs) : 

1) Two-dimensional calculations of electric fields: either cylindrical or rect- 
angular symmetry. In cylindrical coordinates, a cylindrically symmetric 
beam is propagated along the axis. In rectangular coordinates, both the 
electrodes and the beam extend infinitely far in the directions normal 
to the “plane of the paper” on which the problem is shown. In both 
symmetries, the nominal direction of propagation of the beam lies in 
the “plane of the paper” but transverse motion is allowed. Thus, for 
example, the spiral motion of a beam in an axial magnetic field can be 
simulated. 

2) Time independence: these are dc calculations after the beam has reached 
“steady state.” A common characteristic of such programs is that if 
steady state cannot be achieved, for example, if an attempt is made to 
propagate a beam beyond the space-charge limit, then the programs will 
not converge to a satisfactory steady solution. Under such conditions, 
one is not justified in claiming any physical reality for the results. 

3) Idealized, computer models: the nature of modeling programs is to ignore 
various real complications. Such things as tolerances out of cylindrical 
symmetry, stray electrons or ions, partially poisoned cathodes, etc., may 
play large parts in any real device but are usually ignored in models. 
Other aspects of models; finite elements, numbersof trajectories, discrete 
iteration steps, etc., may also affect the accuracy of the results. One 
should not expect a computer code to yield exactly correct predictions 
of operating parameters. One should expect that the effects of varying 
input parameters, particularly for small perturbations, should be reliably 
reflected in changes in the real device. Of course, some predictions are 
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better than others; for example, the EGUN’ program typically predicts 
gun perveance correctly to within a few percent but has a somewhat 
harder time in predicting beam diameter for a high intensity beam. 

It is useful to examine the limitation on time independence. If an electron 
gun is suddenly turned on (for example, with a laser photocathode), the initial 
burst of current can substantially exceed the space-charge limited current, and 
the kinetic energy of the beam can exceed the product eV, where V is the 
diode voltage. The electron optics of the front of the pulse closely resembles 
the electrostatic solution without space-charge. Later on in the pulse, the 
conditions will converge to the space-charge limited solution, assuming that 
the cathode can emit adequate current. The time constant for this transition 
is typically the transit time of the space-charge limited particles across the 
gap of the diode, at most a fraction of a nanosecond for electrons. Accurate 
simulation of pulses shorter than the transit time must use the particle-in-cell 
approach, while pulses longer than the transit time can use the more economic 
electrostatic programs. 

CHARACTERISTICS OF DIFFERENT PROGRAMS 

Since there are several authors of gun design programs at this conference, 
it will not be necessary to include much detail about other programs. The 
program SNOW, written by Jack Boers2 of Varian Associates, is predom- 
inantly a program for the design of ion sources. Boers is reporting on the 
development of a three-dimensional version of SNOW at this meeting. 

The Darwin model of solving for electromagnetic fields has been used by 
John Boyd’ of LLNL to develop a program called DPC, for Darwin Particle 
Code. This program bridges a gap between electrostatic programs, of the type 
discussed here, and the fully electromagnetic PIC codes. The Darwin method 
relaxes the so-called “Courant Condition” for electromagnetic programs and is 
especially useful for applications involving pulses of a few tens of nanoseconds 
in length. , 

The best example of the triangular mesh approach is in a program by 
Richard True4 of Litton Industries. This is a general purpose program which 
is particularly useful for the design of high area-convergence guns, such as for 
TWT’s, because of the feature allowing the mesh to be concentrated near the 
axis. 

The program EBQ, written by Art Paul5 of LLNL, uses the direct can- 
cellation of self-magnetic and space-charge forces and is thus especially suited 
for intense beam transport. 
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A pair of general purpose ion and electron source programs from GSI have 
been reported by SpLdke.’ They are AXCEL-GSI and KOBRAS, the latter 
being a three-dimensional code. 

EGUN 

We will now briefly describe the organization of the program EGUN’ and 
also describe in some detail some of the important algorithms. In opera- 
tion, the program starts by reading and checking the input boundary data. 
The program then solves Laplace’s equation, i.e., Poisson’s equation without 
space-charge. The result of this calculation, together with all the boundary 
information is then printed. 

The Poisson solver in EGUN is a column matrix inversion routine that 
compares favorably in speed to conventional point-by-point over relaxation 
schemes. Boundary interpolation, both for the Poisson solver and for partial 
differentiation of potentials near boundaries, is based on 

vb - v, vw=vp+ As , 
where VW = potential of a mesh point behind the boundary, 

V’ = potential of a mesh point nearest to the boundary, 

vb = potential assigned to the boundary, 

Ax = vector distance to the boundary from the point at ‘p’. 

Next, the first iteration of electron trajectories is started. These are initi- 
ated by one of four schemes: 

1. “GENERAL” cathode in which electrons are started assuming Child’s 
law holds near a surface designated as the cathode. This surface can be 
of any arbitrary shape and may include holes and shadow grids. 

2. “SPHERE” for a spherical cathode (cylindrical in rectangular coordi- 
nates) in which the electrons are assumed to be emitted at right angles 
to the surface defined by a radius of curvature and a radial limit. Child’s 
law for space-charge limited current is again used. 

3. “CARDS” in which the specific starting conditions for each ray are spec- 
ified in an 8(Fcolumn card format. 

4. “GENCARD” which combines the versatility of “CARDS” with the as- 
sumptions of Child’s law from “GENERAL.” This is especially useful 
for cases involving very nonuniform current emission. 

The three methods for initiating space-charge limited flow all include a 
Busch’s Law calculation to account for magnetic flux through the cathode. 
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On the first iteration cycle, space-charge forces are calculated from the 
assumption of paraxial flow. As the rays are traced through the program, 
space-charge is computed and stored in a separate array. After all the electron 
trajectories have been calculated, the program begins the second cycle by 
solving Poisson’s equation with the space-charge from the first cycle. For 
problems meeting the paraxial assumptions, especially if relativistic electron 
beams are involved, this one cycle may be sufficient to solve the entire problem. 
For other problems in which space-charge is negligible, e.g., spectrometers and 
phototubes, a single cycle is usually adequate. 

Subsequent iteration cycles (as many as are requested) follow the above 
pattern. The Child’s law calculations for the starting conditions are remade 
by averaging the perveance used for the previous cycle with the perveance 
calculated directly from the solution of Poisson’s equation. 

An additional starting option is “LAPLACE” intended for any application 
of Laplace’s equation not involving electron ray tracing. In this case the num- 
ber of cycles is used simply to improve the accuracy of the solution of Laplace’s 
equation. The “LAPLACE” option includes a provisionfor inputting arbitrary 
data in the uspace-chargen array. The output from LAPLACE includes a list 
of the fields on the entire boundary. This can be used to find local peak field 
strengths and to calculate the capacity of part or all of some configuration. 

The program always operates in two dimensions; either R and Z in cylin- 
drical coordinates or Y and X in rectangular coordinates. The rectangular 
coordinate output retains the. R and Z labels, however. Electron orbits are 
calculated through azimuthal changes (labeled “PHI”) referenced to the Z axis. 
In rectangular coordinates, PHI is actually the third Cartesian coordinate. 

EGUN uses a four step Runge-Kutta method of solving the relativistic 
differential equations given below. Suitable substitutions are used to reduce 
the three second-order equations to six first-order differential equations. 

The independent variable is time but the time interval is calculated from 
the allowed iteration step and the velocity. It is necessary to use fairly short 
steps because of the auxiliary calculations that must be made at each mesh 
unit. Thus it ,is generally not helpful to use any self-checking ucorrectorn 
solving routine. If some unusual application requires shorter iteration steps, 
the results usually show this by their internal inconsistency. 

The relativistic differential equations are 

z = (Y(1 - P2)l12 [-&(I - i2) + iliE, + iiE, - c&B4 + CAB, I 

A2 
fi = a(1 - p2)1’2 [-E,(l - Ii”) + ikE, + hiE4 + ciB4 - CAB,] + R 
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2 = a(1 -p2)1i2 [-EO(l--')+iAE,+riAE,- ciB, 1 hi 
-c&B4 -R 

where 

p2 = i2+k2+/i2 and p =v/c . 

The constant CY = eX/m,c2 where e is the charge on the particle, m,c2 is the 
rest energy of the particle, and X is the constant of proportionality between 
the real coordinates and the dimensionless coordinates. Thus, 

2=X2, r = XR, a=XA and ct=XT . 

By an arbitrary choice, X = 5.11 x lo5 mesh units so that CY = 1.0 mesh 
unit per volt. Inspection of the differential equations shows that they are 
dimensionally correct if the electric fields are specified in volts per mesh unit. 

Dimensionally, E = uB, so that in mksa units E is in volts per meter, w 
is in meters per second and B is in webers per meter.2 Then, cB has units of 
volts per meter. To convert to program fields of volts per mesh unit, magnetic 
fields are multiplied by the value UNIT in meters per mesh unit. Magnetic 
field input to the program is in gauss, which is the common engineering unit, 
and is internally converted to webers/meter2. 

The azimuthal magnetic field B4 comes from the current in the electron 
beam and is called the self-magnetic field of the beam. The magnetic field 
created by an axial current is 

B# =Ef 
27rr 

webers/meter’ . 

The field is assumed to be due to an infinite conductor which is a good ap- 
proximation in the area in which the field is significant. After multiplying B$ 
by the scale factor and expressing r in meters which requires multiplying r 
by the scale factor also, the scale factor cancels as might be expected. Thus, 
the scale factor only enters for external magnetic fields. The current I is the 
summation of the current in the trajectories at lower radii than the trajectory 
being calculated, but including the one being calculated. 

Two field components are neglected. The azimuthal electric field is ne- 
glected because of the axial symmetry assumed. The axial magnetic field can 
have a contribution from the beam due to azimuthal velocity of the beam. 
The magnitude has been shown to be less than one gauss in most practical 
cases and so is neglected. 
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The space-charge is calculated to supply the right side of Poisson’s equa- 
tion which is 

v2v= P= L . 
EO UC0 

The element of area for J is r x 1.0 square mesh units where r is the particle 
radius. The velocity is only the Z-component since the space-charge is being 
spread between adjacent points on the same column. The one mesh unit space 
between adjacent points accounts for the 1.0 in the area expression above. 

In the finite difference form, the right-hand side becomes 

RO= 36~ x lOgI x~O-~ (3.77 x 10-4)1(K) 
ABS(ZDOT) x 3 x 108 = ABS(ZDOT) ’ 

where RO is to be spread between two adjacent mesh points in inverse ratio to 
the distance from the ray to each point, I(K) is the current in the one radian 
segment of the ray (in microamperes) and ZDOT is the velocity in units of 
c. If the angle of inclination, dR/dZ, exceeds 45', the calculation is made for 
RDOT. The absolute value of ZDOT is used to allow a negative ZDOT. 
The explicit value of R is canceled by the R which would convert the current 
to current density, thus avoiding special problems as R + 0. 

In practice, however, there are still some space-charge problems near the 
axis. In rectangular coordinates, if the axis is a plane of symmetry, then any 
trajectory between R = 0 and R = 1 has a mirror image between R = 0 and 
R = -1. (A reminder...when in rectangular coordinates, the axis still retain 
their cylindrical labels.) To account for all the space-charge on the axis, 
the calculated charge is doubled. In cylindrical coordinates, the algorithm 
for distributing the space charge proportionately to the distance between the 
adjacent points is not a very accurate solution within one mesh unit of the 
axis. Good smooth laminar flow near the axis results by simply making the 
space-charge on the axis equal to that found for the first row. 

Magnetic fields, except for the self-magnetic field of a beam, are input 
directly in one of three ways: 

1. by specifying the field along the Z-axis, 

2. by specifying a set of coils (giving position, radius and current), or 

3. by using the vector potential output from a magnet program such as 
Poisson. It is interesting to note that Colman7 has converted several 
accelerator physics programs including Poisson to run on the IBM-AT. 

In cylindrical coordinates, the field is interpreted as an axial magnetic field 
with radial terms as required by Maxwell’s equations. The off-axis fields can 
be made by either a sixth-order expansion from the axial fields or, for the case 



of a set of coils, by directly using the appropriate elliptic functions. When 
the vector potential input has been used, local interpolation is used in place 
of the expansion. 

In rectangular coordinates the magnetic field can be defined to be princi- 
pally in any one of the three Cartesian directions. Off-median plane expan- 
sions are made in the direction of the field on the median plane. If the median 
plane is the R-Z plane, then the field is in the PHI direction and the field 
extends to infinity in the R-direction. This fits the configuration of the pole 
face of a dipole magnet. (Remember that R, Z and PHI are here taken to 
be orthogonal Cartesian coordinates.) If the median plane lies normal to the 
plane of the problem, through the Z-axis, then the field extends to infinity 
in the PHI direction. In this case, the direction of the field on the median 
plane can be either in the Z-direction or in the R-direction, depending on the 
symmetry of the coils that produce the field. The off-median-plane expansions 
in rectangular coordinates satisfy Maxwell’s equations to second order. 

Self-magnetic fields are calculated for both coordinate systems from the 
current in the rays on the present cycle. A built-in sort routine insures that 
the rays are sequentially numbered from the axis outwards. The self-magnetic 
field calculation assumes all the current from the previous rays lies on the axis 
in an infinitely long conductor. If the ray being calculated crosses the last 
preceding ray, then the current from that ray is dropped. If the ray continues 
to cross other rays, then the current from those rays is only dropped if the 
ray goes below the minimum radius of a previous ray. Note that if the self- 
magnetic field is very significant, then almost by definition, one is dealing with 
an intense relativistic beam. This problem is generally better suited to the 
paraxial ray approach, as solved in the first cycle, in which the space-charge is 
offset by the self-magnetic field directly, rather than by the offsetting effects 
of two large terms. Best results can be obtained for such problems if the 
electron gun region can be separated from the drift and focusing regions in 
which the self fields are so important. For cases where the beam is already 
relativistic in the gun, a new option allows the user to define a kinetic energy 
above which the direct cancellation of space-charge by the self magnetic field is 
used, as described earlier, instead of the normal separate terms. This permits 
the Child’s Law calculation to be used near the cathode and the paraxial 
calculation to be used when the beam is at higher energy. 

In rectangular coordinates, the self-magnetic field assumes symmetry about 
the Y = 0, (R = 0) plane. If this is not correct, or if for other reasons it is de- 
sired to turn off the self-magnetic field, then an external field of strength zero 
can be specified. In any c&e, in rectangular coordinates, the self-magnetic 
field functions only if there is no external field. 
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A single variable controls plotting. Normally, at least the last cycle is 
plotted. The first cycle may also be plotted or one may even plot every 
cycle. Ray tracing plots may include equipotential plots, either separate or 
overlaid with the trajectory plots. Figure 1 is an example of the graphic 
output showing a Pierce diode with equipotential lines and trajectory paths. 
If there is an external magnetic field, then this field is also plotted, overlaid 
on the trajectory plots. A feature that is especially useful if a magnetic field 
is present, is an option that allows one to choose a single trajectory for which 
the azimuthal position PHI, is plotted as a function of Z. Finally, there are 
a pair of simple plots; current density versus radius and alpha versus radius, 
where Alpha = arctan dR/dZ. The latter plot is equivalent to a phase-space 
plot. 
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Figure 1. The computer drawn simulation of a Pierce diode, as de- 
scribed in the text. This particular sample was plotted on a dot matrix 
printer using data sent directly from the PC, not using a screen dump 
routine. 
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PERFORMANCE 

EGUN has been available for many years in various Fortran versions and 
is now available from the author as EGN87c, written in C and including an 
integrated plotting package for the IBM class of PC’s. The problem shown 
in Fig. 1 required 22 seconds to run on the IBM 3080 and 23 minutes on an 
AT-equivalent machine with 8 MHz clock. The PC had the Intel8 80287 
(R) Math coprocessor installed and 1.1 Mbyte storage, which permits writing 
the program output directly to virtual disk space. This factor of roughly 60 
between the PC and the IBM 3080 seems to hold for a variety of configurations 
for this program. Faster AT clones and PS-2 machines, both based on the 
80286 processor, reduce this time by about half while 80386 based machines 
with the 32-bit architecture reduce the time a further factor or two to three. 
IBM XT-type PC’s based on the 8086 processor are only about 50% slower. 

As usual with a space-charge-dominated configuration such as this, the 
problem is run for several cycles in order to achieve convergence. In this case, 
the problem iterated for seven cycles which has long been the default standard 
for EGUN. There are several convergence processes going on simultaneously in 
the program. First there is the solution to Poisson’s equation, which is the only 
one that is even remotely guaranteed mathematically to converge. Then there 
is the convergence of the Child’s Law problem on the cathode. This can be 
divided into two parts, local and global. The global convergence of perveance 
is achieved by constantly averaging the perveance found by solving Poisson’s 
equation, with the perveance used in the previous cycle. The perveances found 
on successive cycles for the problem in Fig. 1 illustrate this process. The 
numbers (all in units of microperveance, defined as IVs3i2 x 106) are: 1.06, 
0.84, 0.71, 0.70, 0.76, 0.76, 0.75. The final value of 0.75 agrees to within the 
expected tolerance of the observed value for this tube of 0.70. The perveance 
value before averaging is obtained by defining a starting surface at least two 
mesh units in front of the cathode and calculating the current that would flow 
to that surface given the voltage found on the surface by solving Poisson’s 
equation. For the first cycle, this initial value of the perveance is then divided 
by two. The user can specify an initial value of perveance, and can also 
request that this value be maintained for a specified number of cycles. This is 
one way in which temperature limited emission can be modeled. Sometimes 
knowing the desired perveance helps the program to converge faster, but the 
method described above, dividing the no-space-charge value by two, frequently 
converges faster than the alternatives. 

Usually the local perveance convergence, that is, convergence of local cur- 
rent density along the cathode surface from cycle to cycle, follows the global 
calculation without showing hot spots. Exceptions may occur for particu- 
larly “bad” designs, or for cases when the starting surface is too close to the 

11 



cathode. It is necessary to define a starting surface that is at least two, and 
preferably three mesh units from the cathode. 

Another convergence process concerns the final beam configuration. If 
there are enough rays, i.e., at least one per mesh unit on the starting surface, 
then usually the seven cycles are enough to give radial convergence to the 
particle distribution. More cycles may be needed if the problem concerns 
intense relativistic beams for the reasons discussed earlier. Guns requiring high 
area convergence ratios may also require more program cycles to find a self- 
consistent solution to the beam diameter. Strong magnetic fields somewhat 
aid in the convergence, just as they add stability to the beam in practice. The 
normal criterion for stability is to examine the output to see whether there is 
much change from cycle to cycle. The program always reduces the iterative 
step by a factor of two on the last cycle and also reduces the error criterion for 
the Poisson solver by a factor of ten. These two measures test for robustness 
of the solution to calculational limits. In the example of the problem in Fig. 1, 
the beam radius after seven cycles was 8.7 mesh units. After six it was 8.8 
mesh units, a small enough difference to consider the problem converged. 

DIAGNOSTICS 

The program contains three classes of diagnostics: 

1. Input data diagnostics, particularly for the NAMELIST entries, which 
must correspond to the list of expected elements, and for the boundary 
data that must fulfill a variety of criteria to be used to determine dif- 
ference equations for the Poisson solver. Boundary diagnostics include 
definite errors that would cause the problem to fail, and warnings about 
data points that do not fit some predetermined criteria of what bound- 
ary data should look like, but which may actually be correct. The user 
should of course be certain that he fixes or clearly understands why each 
warning is given. There are also fairly extensive diagnostics provided for 
magnetic field input data, including a plot of the axial field profile that 
can be plotted at any chosen radius (but usually on the Z-axis), and a 
table of the on-axis and off-axis magnetic fields. 

2. Program operation diagnostics, including messages about the progress 
of EGN sent to the PC terminal, tabulation of the time spent in each 
subroutine and the time required for each program cycle, as well as the 
total time. Convergence data for the Poisson solver is printed on-line 
and in the listing. 

12 



3. Physics diagnostics including tables of potentials and space-charge, and 
initial and final data for each trajectory, with an option of printing each 
iteration step from up to six trajectories. The final trajectory informa- 
tion is used to calculate the emittance of the beam. 

Even though, by its very nature, EGUN is not a statistical program, aber- 
rations due to nonlinear fields and nonuniform space-charge distributions cause 
the beam to fill an area in phase space from which emittance can be derived. 
For the problem illustrated in Fig. 1, the calculated normalized emittance area 
is about 10 rr mm-mrad. This is an especially low value for such a gun, which 
shows that this is an especially good design. For a uniform beam, which is 
the ideal of an electron gun, the normalized emittance is 

en = 4P7(< 22><x’2>-<xxx’>) 2 l/2 
9 

where x’ = &r/d+ the <> brackets signify weighted averages for all the parti- 
cles, and /37 is the relativistic velocity times the relativistic mass. It is the /37 
product that makes this the “invariant” or “normalized” emittance, as it is 
usually called. It is invariant because subsequent acceleration does not cause 
the emittance area to change. 
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