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1. Introduction 
i ,c- 

Many systems in statistical mechanics and field theory exhibit string-like ex- 
. 

-.... . 
- 

citations. Superconducting fluxoids, domain boundaries in 2+1 dimensional mag- 

nets, Nielsen-Olesen vortices and electric flux tubes in QCD are a few examples. 

In many respects these objects are similar to the idealized objects of string theory 

which have attracted a lot of interest recently. There are however very significant 

differences. In particular, the existence of massless gauge bosons and gravitons 

does not occur in these other systems. This raises the following interesting ques- 

tion: can ideal string behaviour occur in a more or less conventional field theoretic 

or statistical mechanical system. A related question is whether string theory can 

be simulated on a computer which stores information in terms of local degrees of 

freedom and evolves it according to near neighbor interactions on a discrete lattice, 

as in lattice gauge theory. The purpose of this paper is to show that the answer 

is positive. The basic premise is that for such a system to work it must have an 

instability which would ordinarily exclude it as a sensible theory. Indeed, almost 

everything one might think of calculating diverges except for the spectrum and the 

S-matrix. The nature of this instability is best understood by considering what the 

typical string or world sheet looks like in space-time. We will begin by considering 

the wave function of a string in the light-cone frame. The points of a closed string 

are parametrized by 0 running from 0 to 1. The parameter 0 is defined so that 

the total longitudinal momentum P+ is uniformly distributed over g. Thus the 

longitudinal momentum on an interval dc is dP + = P+do. In what follows we will 

need to regulate the string by chopping it into N segments each carrying longitu- 

dinal momentum P+/N. Each segment is replaced by an indivisible ‘parton’. The 

regulated string Hamiltonian is 

-- 

_ . _ _Y_ H=-): I (14 c_ 
- where FL(;) and J?( ‘) z are the transverse momentum and position of the i-th parton, 

and P+(i) is its longitudinal momentum. In the limit N -+ 03 the usual continuum 
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limit is recovered. Replacing $~(;)/&a by the canonical momentum density fil(a) 

i ,c- and SY?j6a. by a-?/& we arrive at 

. 
H=- 2;+ j da(li: + (!$)2) 

0 

w> 

- 

The regulated string with 2N + 1 partons has 2N normal modes of oscillation. A 

rough way to represent the theory with finite N is to truncate the modes with wave 

numbers beyond N. Another way to describe the regularization procedure is to 

say that the string cannot be subdivided into pieces with longitudinal momentum 

less than l/N. Consider next the ground state wave function of the string with 

regulator N. It is a functional of Y?(a), Q(X(a)). T 0 construct a particular cut-off 

representation of the ground state, we decompose X(a) into normal modes: 

Xi(a) = xim + x(x; cos(27rna) + TQ sin(27;na)) (1.3) 
n>O 

and take into account the modes with wave numbers from 1 to N. The probability 

distribution factorizes in the normal mode basis: 

-.._ . 
- 

P(XA) = (&)‘I2 exp(-n(Xk)2/2) (14 

A typical string configuration can be studied numerically by first generating a 

set of 2N x (D - 2) random numbers XA and Xk and then plotting the string 

as a parametrized curve in the transverse space. In the previous paper [l] we 

have constructed a large number of closed strings in this manner. In fact, an 

overwhelming majority of this statistical ensemble have similar qualitative features. 

In particular we would like to call attention to the following. 

1. The string is smooth. As the number of modes increases there is no tendency 

_ _Y_ to develop small-scale structure in space. Transverse line curvature is a 
- ---- particular quantitative measure of smoothness. In any number of transverse 

- dimensions greater than two the expectation value of curvature is completely 

cut-off independent. 



2. The total length of string grows linearly with N. The entire string consists of 

O(.N)- ‘loops’. The structure of a loop is roughly independent of N. Adding . 
modes simply adds more loops. Furthermore, each loop occupies a fraction 

N l/N of the parameter space 0. Thus, in a fairly uniform manner the 

individual loops tend to carry a longitudinal momentum - P/N. 

3. The size of the region in transverse space occupied by string grows slowly 

with N. In fact, it can be shown that the rms radius of string grows as 

y/ii. 

- 

4. The string becomes space-filling in the limit N --+ 00. Since the total length 

grows as N while the radius grows only as di the string tends to cover 

the same region of transverse space many times. As we remove the cut-off, 

the string passes arbitrarily close to any point in space. 

- 

In addition to observing all of the above properties numerically we have de- 

rived most of them analytically relying only on elementary probability theory [l]. 

Obviously, these properties are very peculiar. The string is unlike any ordinary ob- 

ject studied in a conventional field theory. Consider, for example, the distribution 

of longitudinal momentum in the transverse space. The density of longitudinal 
-.._ . 
- momentum is T++, a component of the energy-momentum tensor. In conventional 

field theory there exists a sensible distribution of longitudinal momentum. On the 

contrary, in string theory the longitudinal momentum becomes uniformly smeared 

over all transverse space. This leads us to the following speculation. Whatever 

dynamics can lead a system to have ideal string behaviour must be unstable with 

respect to creation of more and more string bits of lower and lower longitudinal 

momentum so that eventually string fills all space. 

_ . _ _Y_ 
- 

A related point concerns the theorem of Weinberg and Witten [2] -on the ex- 

istence of massless spin-2 bosons. This theorem states that a theory with a well- 

‘*-behaved Lorentz invariant energy‘ momentum tensor cannot generate gravitons 
- dynamically. How do various theories get around this theorem? In Einstein grav- 

ity one actually cannot define a Lorentz invariant energy momentum tensor. As we 

-- 

~a 
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have seen, the form factors of the fundamental string, although Lorentz-invariant 

.-- by construction, are not at all well behaved. For example, as shown in ref. [I], in 

. the light-cone frame the Fourier transform of T++ is non-zero only at the origin. 

Therefore, -it is possible that string theory uses its infinite zero-point motion to 

allow the existence of gravitons. 

2. Lattice Theory on the Light Cone. 

- 

In this section we describe a light-cone gauge theory due to Bardeen, Pearson 

and Rabinovici [3] which has free string-like excitations in the large-N, limit. This 

theory has a parameter, p, which governs the average length of string in the ground 

state. For ,CL greater than the critical value pC the average length of string is finite 

in lattice units. For p = pC the average length of string diverges. We will be 

interested in the range p < pC where the theory is unstable with respect to infinite 

growth of strings. This instability is similar to the behaviour of the fundamental 

strings reviewed in the previous chapter. In fact we will show that, for p < pC, the 

-.._ . strings in this light-cone lattice theory are identical to the fundamental strings. 
- 

This exact equivalence does not require lattice spacing to be taken to zero. 

We introduce the light-cone variables Z+ = (z” + $-l)/fi, X- = (x0 - 

xDel)/fi, and xi, where i labels the D - 2 transverse directions. Following 

Bardeen, Pearson and Rabinovici we replace the transverse space by a (D - 2)- 

dimensional cubic lattice n’ with integer coordinates. On each directed link of the 

lattice L there is a unitary matrix-valued variable which satisfies 

c 
_ _ _Y_ 

- --- U&L, x-, jr+) = Uj*i(-L, x-, x+) (2.1) ~- 

In the light-cone quantization the variable Z+ is treated as time. After passing to 
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the light-cone gauge A- = 0 the gauge theory light-cone Lagrangian becomes 

i ,c- 

. L =$I dz-{ c tr(&JJ(L)B”U(-L)) + -&(U(c,)U(Lz)u(L3)a(L,))+ 
links plan 

g4/dz-‘x Ix- - x-‘lJ_m(n’, 2c)J-“(Z, cc’)} 
ii 

(2.2) 
In the above formula, oriented links Ll, . . . , L4 form an elementary plaquette of the 

cubic lattice, the index p refers to the + and - directions and the lattice spacing 

has been set to 1 for convenience. The longitudinal momentum current at each 

lattice site is given by 

- J-“(fq = $ c tr{Tm(u(L)a-u(-L) - (a-U(L))U(-L))} (2.3) -- 
L 

where T” are the U(N,) g enerators normalized to tr(TmTn) = smn/2 and the 

sum is taken over all directed links L beginning at the site ii. To make the theory 

tractable, ref. [3] relaxes the condition of unitarity. Thus the matrices U are 

replaced by gM where M(L, x-, .z+) are general N x N complex matrices which 

satisfy 
-.... . 
- 

J&j@, x-, z+> = &q-L, 2-, XL”). (2.4) 

Upon quantization this rule translates into 

Mj(L, z-, XT+> = MJ;(-L, cc-, Iz+> P-5) 

where t does not act on indices but has a purely quantum meaning. In order to 

restore unitarity, ref. [3] ’ t d m ro uces the effective potential for M: 

c 
_ _Y. V(M) = /J MijM$ + g2X M~jik!f$M[~hd$ (2.6) ~-- 

- ---- 

- The speculation of ref. [3] is that the continuum limit of the U(N,) gauge theory 

can be obtained by tuning p and X along a renormalization group trajectory, as 
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the lattice spacing is being taken to zero. In this paper we are not interested in 

i ,c- that. Instead we will argue that, with no fine tuning, there exists a broad range of 

. parameters where this theory exactly reproduces fundamental strings. In terms of 

M the Lagrangian reduces to 

L = 
J 

dx-{ c tr(d,M(L)PM(-L)) - V(M(L))+ 
links 

g2 c t~(M(Ll)M(L2)M(L3)111(L4)) t 

g2 Jdx-‘x Ix- - x-‘IJ-“(Z, x-)J-“(i?, x-‘)} 
z 

(2.7) 

- 
For our purposes it is necessary to add other terms quartic in M which would be 

trivial if gM was unitary. These are the plaquette-like terms tr(M4) shown in 

figure 1. The trace is taken around all possible loops of length 4 and zero area. In 

fact the second term in (2.6) is of this type. All other terms of this type reside on 

pairs of links, L and K, beginning at the same vertex: 

tr(M(L)M(-L)M(K)M( 

-.... . 
- 

Using standard methods we derive the light-cone Hamiltonian 

I{,> P-8) 

p- = g2 Jdx-ilgs tr(-p(L)Aq-L) t x iw(L)M(-L)M(L)M(-L)) t 
2 

A’ c +f(L)hf(-L)M(K)hf(-I()) - Ctr(M(L1)M(Ln)M(L3)M(L4))- 

-W daq 
Jdx-‘C Ix- - x-‘IJ-“(n’, x-)J-“(fi, x-‘)> 

z 
(2-9) 

..-- The link fields may be decomposed into creation and annihilation operators: 
- --- 

- O” dk J -(Aij(k) exp(-ikx-) + B!j(k) exp(ikx-)) 6 (2.10) 

0 

- 
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which obey the commutation relations 

LAG(k), ALl( = [Bij(k), By,] = S;kbjlS(k - a) (2.11) 

Each link is assigned a direction and Aij( k) creates a string bit which carries 

longitudinal momentum k and points from index i to index j along the link’s 

direction. Similarly, B~j (k) creates a bit pointing from j to i and opposite to 

the assigned direction. An oriented string state is defined in the following way. 

Consider an oriented connected loop I? consisting of links L;, with i running from 

1 to N. The Fock state associated with this loop is 

- tr{ O+(Ll, kl) . . .0+&v, h)} IO > (2.12) - 

where O~j = N, -lj2A?. or NF 
$3 1’2Bt depending on whether a given string bit points jk 

along or opposite the assigned direction. 

An important feature of the N, = co theory is that the Hamiltonian maps the 

set of connected oriented closed strings into itself. This allows for the construction 

of a single-string Schroedinger equation. For example, the term -.._ . 
- 

P J 1 dx- +w)w-L)) 
L 

(2.13) 

gives rise to the string potential energy N p C;” k;l. The value of p gets renor- 

malized by normal ordering the f. f term and the plaquette-like terms shown in 

figure 1. The other Hamiltonian terms are capable of acting as kinetic terms which 

locally displace bits of string. The reader can check this by applying various terms 

in the Hamiltonian to simple string configurations. 
; 

. ?z _ ~- 
- --a---- Below we are going to discuss .in detail the lattice model in one transverse 

- dimension. Then the transverse plaquette terms do not exist and the Hamiltonian 

consists of the potential terms, the current-current terms and the plaquette-like 
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terms. Each lattice state can be mapped into a function X(a) used in the light- 

.-- cone descri-ption of the fundamental strings. Let the string carry longitudinal 

momentum ktot. Starting with an arbitrary lattice site, we identify it with X(B = 

0). The first link is represented by a segment between 0 = 0 and CT = kl/ktot. 

Thereafter, each link is represented by a segment with length in parameter space 

proportional to its longitudinal momentum. At the point gi the function X(0;) 

is given by the lattice coordinates of the corresponding site. Between site oi and 

ai+r, X(a) can be defined by a linear interpolation. 

- 

_..._ . 
- 

It is clear that, for sufficiently large values of the string tension p, the ground 

state will be dominated by strings with small number of links, each one carrying 

a significant fraction of the total longitudinal momentum. In this case we do not 

expect a behaviour similar to the fundamental strings. As we decrease p it becomes 

energetically favorable to have a larger number of links with smaller k. In fact, it is 

clear that, for a sufficiently negative p, an instability develops which favors strings 

of infinitely many links each one carrying infinitesimal k. Evidently, in this case 

the a-axis becomes densely populated suggesting the possibility of a continuum 

description in a-space. Indeed, from here on ‘continuum limit’ will always refer to 

the continuum limit in parameter space, and not in real space. 

In order to discuss this phase we need a regulator in the form of a minimum 

allowed longitudinal momentum. Following ref. [4] we will think of the matrices 

M(x-) as anti-periodic in the Z- direction. Then the k-space is discretized and 

the zero-momentum links are excluded so that each link carries an odd integer 

multiple of the minimum momentum kmin. The total length of string cannot 

exceed ktotl kmin = N in lattice units. The limit N + 00 defines our lattice string 

theory. 
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3. Effective Hamiltonian and Equivalence to a Free Field. 
i ,c- 

We &ill begin studying this model in the limit p -+ --oc). In this limit the 
. 

ground state and low-lying excitations consist of strings of maximum possible 

length ktot/kmin = N. To solve for their wave functions we use degenerate per- 

turbation theory in the ‘kinetic terms’ of the Hamiltonian. It turns out that the 

normal ordered current-current interaction has vanishing matrix elements between 

the states of maximum allowed length. The reason is the fact that all the links 

of the ground state string carry equal longitudinal momenta and the matrix ele- 

ments of the current-current term are proportional to the differences of momenta 

between adjacent links. The only terms in the Hamiltonian that act to move the 

string in the transverse dimension are the plaquette-like terms introduced above. 

Fortunately, the model based on these terms is soluble exactly. Below we describe 

the necessary construction in some detail. 

- 

-.._ . 
- 

If the maximum allowed length is N then the string configurations that need 

to be included are labeled by series of N pluses and minuses subject to the closed 

string constraint that their sum iszero. This requires N to be even. It is convenient 

to think of these configuration as series of Ising spins 03(i). There are two types 

of terms that need to be taken into account. The first one, 

A’ C dX-Mij(n)Mjk(n + l)M/k(n t l)Mi(n), 
n J 

is shown in figure lb). The second one, 

Xx dX-~ij(~)~~j(n)~kl(7L)~~(n), 
n J (3.2) 

is shown in figure Ic); It is not hard to show that, to leading order in NC, the ; 
_ _Y_ 

--- action of (3.1) on states in the spin representation is equivalent to 
~4 

- : 

-- 

X'NI( 
1 t 03(7+3(72 + 1) 

2 t a+(++ t 1) t Qn)g+(n t 1,) P-3) 
n 

10 



i ,c- 

. 

where in terms of the standard Pauli matrices 

01 t ia Ul - iq 
a+ = 

2 ’ 
u- = 

2 (34 

and we have set g2NC = 1. Similarly, the term (3.2) is represented by 

AN x(1 - 03(72)03(72 + 1,) (3.5) 
n 

Let us choose temporarily 2X = X’ = 1. Then, up to an additive constant, the 

Hamiltonian is simply given by the quantum XY model: 

- 
H = N ~(o+(n)c+ t 1) + a+)cr+(n + 1)) (3.6) 

n 

Actually, since we have ignored the center of mass motion of strings, the above 

Hamiltonian is only applicable to states that are translation invariant on the trans- 

verse lattice (have zero lattice momentum). A generalization of the effective Hamil- 

tonian to states of finite lattice momentum will be given below. But first let us 
-.... . 
- show that the quantum XY model can be solved by introducing anti-commuting 

variables 

$+(n> = imn J-J a3(4a+(4, (3.7) 
m<n 

T/I-(~) = iSn rl[ aa(444. (3.8) 
m<n 

- 

These are the staggered fermions on the lattice in the parameter space of the 

string.* In terms of these variables the fermion number on a site $03(12) is given 
_ . 22 _ 

--a-- bY #+(4, u4l. Th t e ransverse spatial separation between any two points on r. 

- 
the string is then given by twice the fermion number contained between these two 

* These fermions have nothing to do with the world sheet fermions of superstrings. 
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points. Since the string is closed, we must always work in the sector where the 

,c- total fermion number is zero. We define a fermion doublet 

. 
7/w = g ( 7J23 

Then in the continuum limit N + 00 the Hamiltonian reduces to 

H=i J w dg$+a% (3.10) 

(3.9) 

- 

together with the boundary condition $(a = 1) = -$(a = 0). CY acts on Dirac 

indices as the Pauli matrix ur. It is well-known [5,6] that a Dirac fermion is 

equivalent to a periodic boson variable d( 0 w ic is defined so that the fermion ) h h 

number density 

;[G+‘il(4 = $2 (3.11) 

From the previous discussion it follows that the separation between two points 

on the string is -$=(~#(gr) - $(a~)). Th ere ore the bosonized variable *~$(a) is f 

a smeared version of the original lattice position X(a). The boson Hamiltonian 

equivalent to (3.10) is 

_..._ . 
- in& t 27T C m(aiClm + iiitim) 

m 

(3.12) 

Since the field C$ is defined on a circle of radius & the center of mass momentum is 

restricted to integer multiples of 247. This is connected with the fact that we are 

studying the theory in the sector of zero lattice momentum: the states are invariant 

under discrete shifts of 1 lattice unit. To introduce non-zero lattice momentum let 

us consider string states which pick up a phase exp(ip) when translated by one 

lattice unit. The effective Hamiltonian for this system is 

_ . _ _Y_ H = N x(o+(n)a-(n + 1) exp(2ip/N) + a-(n)o+(n + 1) exp(-2ip/N)) (3.13) 
~- _ ---- n 

-- To justify the appearance of phases in the above formula we note that whenever 

a+(n)a-(n + 1) t ac s on a string state, the center of mass moves 2/N lattice units 
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to the right. Similarly, the conjugate term moves the center of mass to the left. 

i ,c- In fact t.he&teraction (3.13) can be obtained from (3.6) by introducing constant 

. vector potential along the string. Let us make the gauge transformation 

a-(n) + a-(n) exp(-2ipn/N), a+(n) --+ a+(n) ex~(2i~nlN) (3.14) 

which reduces (3.13) to (3.6) at th e expense of a non-trivial boundary condition 

a-(N + 1) = a-(l) exp(-2ip), u+(N + 1) = a+(l) exp(2ip). (3.15) 

In terms of the continuum fermionic variables, 

- 
$(a = 1) = -$(a = 0) exp(-2iip). (3.16) 

Upon bosonization, this condition changes the constraint on the values of the center 

of mass momentum: 

II cm = &h(n t F), (3.17) 

-.._ . 
- 

where n is an integer. It follows that, once we include string states with non-zero 

lattice momentum, the zero mode in the boson Hamiltonian acquires continuous 

spectrum. Therefore, (3.12) b ecomes the standard light-cone free string Hamil- 

tonian. The physical reason for this is the fact that, as N + 00, the possible 

positions of the string center of mass become continuous. 

Now we would like to argue that relaxing the constraint A’ = 2X on the co- 

efficients of the plaquette-like terms does not in general violate the free boson 

behaviour demonstrated above. In fact, this adds a term 

- 

- _ ^Y_ --c C a3(n)a3(n + 1) (3.18) c_ 
- --- n r 

- to our effective Hamiltonian. This term can be interpreted as introducing depen- 

dence on extrinsic line curvature into the string Hamiltonian [7]. Depending on the 
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sign of the coefficient c it favors alignment or anti-alignment of adjacent links. The 

c .=- continuumlimit of this new Hamiltonian is the Thirring model. For any positive 

. value of c, the Thirring model is equivalent to a free boson field. The only effect 

of changing c is resealing of the string tension. Increasing c makes string wiggles 

look bigger on a fixed lattice scale. Therefore pairs of adjacent links become more 

aligned in agreement with the fact that positive c favors alignment. Small and 

negative c does not violate free boson behaviour either. However, there exists a 

critical negative value of c at which this behaviour collapses. Beyond this point 

the behaviour of lattice string is actually dominated by the lattice. The above dis- 

cussion actually confirms the simple intuition that one should be allowed to take 

the spatial continuum limit in our lattice model without changing the equivalence 

with fundamental strings. However, if we increase the lattice spacing beyond the - 

typical size of string wiggles in the ‘fundamental’ phase, a transition to the lattice- 

dominated phase takes place. Another implication of this discussion is that, for a 

broad range of parameters, introduction of extrinsic curvature terms does not alter 

the critical behaviour of strings. 

We have demonstrated that the spatial behaviour and energy levels of our 

lattice string theory are completely determined by the equivalence with a massless 
-..- . 
- free field in a-space. For example, as shown in ref. [l] and reviewed in the appendix, 

this guarantees that the growth of the mean squared radius of string is logarithmic 

in the length of string. As in the usual string formalism, the ground state energy is 

quadratically divergent in the cut-off. However, in our system it has the negative 

sign. Conventionally, in the light-cone formalism this divergence is absorbed in 

renormalization of the speed of light. 

Consider next the corrections to the limit 1~ + -oo. Then the terms in the 

Hamiltonian which act to decrease the total length of string become important. For 

_ . ..-- example, the plaquette-like terms can replace three links of longitudinal momentum 

~- &-kmin by one link of ‘momentum 3 k,;, . Such perturbations act locally on the string 
- and in the continuum limit can be represented by a series of operators local in 

a-space. The only operators that can affect the critical behaviour in a-space are 

; 
-- 
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renormalizable and super-renormalizable. Let us for simplicity restrict ourselves 

“’ to the case-of zero lattice momentum. Then, the only operators that need to be 

. considered are symmetric under X + X t 1 and X t -X. In terms of the bosonic 

variable 4(a) these operators can be written as 

J daI12(o); J da( $)2; J dN#+ (3.19) 

The first two simply renormalize the already existing terms in the Hamiltonian. 

Their only effect is resealing of the string tension. The third operator is restricted 

to even functions of C$ periodic under $ + $+ $. This narrows the choice down to 

F(4) = cos 42/;;nqS where n is an integer. Such operators have dimensions 4n2: for 

any n they are non-renormalizable and therefore irrelevant. The above arguments 

indicate that a range of p must exist in which the effect of corrections is absorbed in 

renormalizing the string tension. Since for large and positive p there exists another 

phase of the theory where strings have finite length, there must be a critical value 

p.= pcs, where a phase transition occurs. 

-...._ . 
- 

A straightforward generalization of the lattice field theory described above can 

be given in any number of dimensions. If the number of transverse dimensions is 

24 then, in the phase where strings are infinite, all the finite energy spectrum is 

identical to the spectrum of the conventional bosonic string. The same equivalence 

applies to the expectation values of products of vertex operators. 

- 

4. Conclusions. 

._ 

Perhaps the most striking result of this paper is that a discrete theory is com- 

pletely equivalent to a free string in continuous space. No spatial continuum limit 

is required. This occurs because the instability only allows string bits with vanish- 

“Yngly small longitudinal momentum. Typically the light cone time scale for motion 
_- of the i-th string bit is - P+(i), i.e., the string bits move very rapidly. These rapid 

motions completely wash out any memory of the lattice. Presumably this is deeply 

& 
-- 
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connected with the critical behaviour of two-dimensional field theory and probably 

i .-- cannot occur for objects other than strings. It is evident that this equivalence does 

. not depend on the details of any particular lattice structure. We expect that there 

exists a very large universality class of discrete theories which exhibit identical 

behaviour for a broad range of parameters. The important ingredient in all such 

theories is the existence of the instability. 

- 

Another interesting question is the connection between the theory discussed 

above and the N, = 00 &CD. Th e original work of ref. [3] suggested that QCD is 

a very special limit of this theory in which the spatial continuum limit is taken as 

the parameters are carefully tuned along some renormalization group trajectory. 

This should be contrasted with the fundamental string behaviour which occurs for 

a broad range of parameters, without necessity of taking the lattice spacing to zero. 
- 

The construction of a discrete field theory which exactly reproduces bosonic 

strings makes it clear that string theory has vastly fewer short distance degrees of 

freedom in space than a conventional quantum field theory: roughly one degree of 

freedom per Planck unit is sufficient. This was already suggested by the smoothness 

of the string pictures of ref. [l]. This probably underlies the exponential fall-off of 

-. ..- . 
- 

fixed angle scattering amplitudes at high energy[8]. 

The model we have studied required the number of colors N, to be taken to 

infinity. It is interesting to inquire what new effects are induced by a finite N,. We 

find that the string can then split and join in a manner qualitatively similar to the 

conventional picture of string interactions. The string coupling constant is of order 

l/N,. It should be possible to determine whether the l/NC expansion reproduces 

the bosonic string amplitudes. This is the subject of our current investigation. 

__ 
._ --- 
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FIGURE CAPTIONS 

1) The plaquette-like terms which would be trivial if the link variables were 

unitary. 

. ._ 
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