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. 
1. Introduction 

The past fifteen years of high-energy physics have seen the successful elucida- 

tion of the strong, weak, and electromagnetic interactions and the explanation of 

all of these forces in terms of the gauge theories of the standard model. We are 

now beginning the last stage of this chapter in physics, the era of direct experi- 
- mentation on the weak vector bosons. Experiments at the CERN @ collider have 

- 

_ isolated the W and 2 bosons and confirmed the standard model expectations for 

their masses. By the end of the decade, the new colliders SLC and LEP will have 

carried out precision measurements of the properties of the 2 boson, and we have 

good reason to hope that this will complete the experimental underpinning of the 

structure of the weak interactions. 

Of course, the fact that we have answered some important questions about the 

working of Nature does not mean that we have exhausted our questions. Far from 

r it! Every advance in fundamental physics brings with it new puzzles. And every 

advance sets deeper in relief those very mysterious issues, such as the origin of the 

mass of electron, which have puzzled generations of physicists and still seem out of 

- reach of our understanding. With every major advance, though, we have a chance 

to review our strategy for probing deeper into the laws of physics, and, indeed, 

we are obliged to rethink which new questions are the most pressing, and which 

avenues for further research have the most promise. 

-- - 
In these lectures, I will review the array of new phenomena which might be 

discovered in electron-positron reactions conducted at energies well above the 2’. 

Before beginning a discussion of what new phenomena we might find, or how we 

might uncover them, I would like to address the question of why such a program 

of research is important. I will argue the question of what we should be looking 

for, and what discoveries will. be the most illuminating, as we search for the next 

layer of fundamental physics. With this background, we can then discuss in some 

considerable detail the contributions that the study of electron-positron collisions - 
at high energy can make in this search. 
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1.1. OUR PRESSING QUESTION 

- 

- 

Toward what question, then, should we orient ourselves in the next era of 

high-energy physics ? Many authors have given arguments toward a particular 

conclusion, and of these the most cogent is the case made by Lev Okun in his talk 

at the 1981 Lepton-Photon conference. [‘I Ok un represented our understanding 

of the fundamental interactions in terms of complementarity-yin and yang- - - 

- according to the scheme of Fig. 1. On the one side, we have the couplings of 

-- 
Figure 1. Schematic presentation of the standard model, after L. B. Okun, Ref. 1. 

matter to gauge vector bosons, characterized by the gauge-covariant derivative 

D, = (& - igA,. T - ig’B,Y) . (14 

This equation represents everything that we understand about the weak interac- 

tions. The beauty of the description of the weak interactions in terms of unified 

gauge theories comes precisely in the fact that the form of the interaction is com- 

3 



pletely determined by the local symmetry group SU(2) x U(1). The complemen- 

tary property is the generation of masses for fermions and vector bosons. Here the 

- formula is completely unsatisfactory: 

m = 1 
g, A, etc. . (a) , 

> (1.2) 

where g and X are some coupling constants and (a) is a parameter carrying mass 

-.. .-. 

dimensions, usually called the ‘Higgs vacuum expectation value’. From a physical 

point of view, the origin of this mass parameter, and hence the origin of all masses 

in the standard model, is a complete mystery. 

Actually, the standard model itself gives us some information on the nature 

of (Q). Because the weak vector bosons are gauge bosons, they can acquire mass 

only if the gauge symmetry of the standard model is spontaneously broken. In 

_ that case, the vector boson masses are generated by the Higgs mechanism. The 

mass of the W boson can be written - 

mw = ;sw 7 (1.3) . . 
- 

where g is the gauge coupling constant appearing in (1.1) and (a) characterizes 

the. strength of SU(2) x U(1) .breaking. Th e simplest mechanical model of this 

effect postulates one SU(2) doublet of scalar fields 
-- - 

cp+ cp = 
( > cp” 

with a potential energy function minimized at the value 

(1.4) 

Even within so simple a model, however, many physical properties are left unex- 

plained. The masses of fermions and of the physical neutral scalar are given by 
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. 
formulae 

mf = $j(m) , mH = d(a) , 

where the dimensionless coupling constants Xf, X are not predicted by the theory 

and may be adjusted by hand. 

In general, this line of analysis gives us very little information about the origin 

of masses. We learn from (1.3) that (a) has the value 

(!9 = 250 GeV . (1.7) 

From the striking experimental phenomenon that 

p = m&/(m$cos2t3,) = 1 (1.8) 

to an accuracy better that l%, we learn that the dynamics which gives rise to the 
- 

[2,31 W and 2 masses should have its own SU(2) global symmetry. But here our 

concrete knowledge ends. The one other conclusion on which we can build is that 
- . 

whatever physics gives rise to (a) acts on the standard model gauge theory from 

outside. Thus, (a) signals the presence of a new sector of forces and interactions- 

the -Higgs sector. This sector of Nature adds on to the known sectors of matter 

and gauge forces. It is waiting to be discovered. 
-- - 

Even if we have no certain knowledge of the nature of this Higgs sector, we can 

explore the range of possibilities given by theoretical models. These generally fall 

into one of four classes. In the first two, the Higgs mechanism is generated by a 

set of scalar fields with a potential energy function given a priori. In the minimal 

scenario, there exists one doublet of scalar fields, as described in the paragraph 

above. After spontaneous symmetry breaking and vector boson mass generation, 

the Higgs sector contains one physical neutral scalar Ho. The couplings of this 

pazticle to matter fermions and to itself determine the masses of those particles, 

according to (1.6). Unfortunately, the model does not predict the values of these 
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coupling constants, except to-place rather weak bounds on their values. In a 

non-minimal scenario, one would add further doublets of scalars. Each additional 

doublet~adds four more physical scalars (H+, H-, HF, Hi) and also increases the 

number of undetermined free parameters. The simplest extensions of the standard 

model, then, have a maddening lack of predictive power. 

- On the other hand, models which actually explain the breaking of SU(2) x U(1) - - 

tend to be quite complex. These models again are of two types. In the we& 

coupling scenario, the field whose condensation drives the symmetry breaking is 

an elementary scalar particle, linked to other particles by interactions which are 

constrained by some new form of symmetry. The most successful models of this 

type are supersymmetric theories, in which the Higgs scalars acquire a symmetry- 

breaking potential energy through their interaction with other forms of super- 

matter. The mass scale (a) of SU(2) x U(1) b rea m k’ g is, in general; set by the scale 

- of supersymmetry breaking. In the strong-collpling scenario, the Higgs scalar is a 

composite state, and its condensation is driven by a new set of strong interactions. 

-Technicolor models, in which SU(2) x U(1) is broken by a fermion pair condensate, 

- belong to this class. In models of this type, the scale (@) is determined by the new 

stro.ng interactions, which must then appear at or even below 1 TeV. 

I find it compelling that the phenomenon of SU(2) x U(1) breaking is a phe- 

nomenon of dynamical origin and not simply a feature to be parametrized. What- 

-- 

-- - ever the dynamical mechanism might be, this idea has important consequences for 

future particle experiments: 

1. There exists a new sector of particles, communicating by new forces, beyond 

the particles of the standard model. 

2. The mass scale (a) = 250 GeV sets the scale of masses and symmetry break- 

ing effects within this new sector. 

This sector might contain only a few particles, but it is more likely to be very rich. 

In-particular, the symmetries which must be broken to generate (a) can easily 

protect a variety of other new particles from acquiring masses much larger than 
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(@). Table 1 lists a number of possible states which might gain mass just at the 

weak interaction scale, depending on what precisely is the fundamental symmetry 

of the Higgs sector. 

Table 1: Possible new particles in the TeV region, 
and the symmetries which would constrain their masses 

- 
Particles: Protected by: 

new quarks and leptons SU(2) x U(1) 
new 2’ SU(1)’ 
squarks, sleptons supersymmetry 
exotic fermions SU(2) x U(l), U(1)’ 
techni-pions, H* chiral SU(N) of new strong interactions 

- 

a - 

This conclusion is often expressed in a slightly different language: If one as- 

sumes that the fundamental interactions have a grand unification at energies of 

1015-10’g GeV, one needs to explain why the weak interaction scale is so much 

lower than this more basic scale of masses. In any natural explanation, the weak- 

interaction condensation is forbidden by some symmetry which is broken only below 

1 TeV. That symmetry, again, can protect many other states of the grand unified 

theory from acquiring large masses; these states should then appear in experiments 

at the weak scale. 

Whichever way one expresses the argument, the conclusion is the same: Ac- 

companying the weak-interaction symmetry breaking, there should exist a class 

of new particles-the ‘TeV multiplet’. These particles should be light enough to 

be detected in the coming generations of collider experiments. The exact nature 

of these particles reflects the underlying symmetry of the Higgs sector and points 

to the mechanism of SU(2) x U(1) breaking. That is, the properties of these 

particles identify directly the next extension of the fundamental interactions. I 

consider it the most pressing problem in high-energy experimentation to discover 

these particles and determine their quantum numbers. 



1.2. OVERVIEW OF THESE LECTURES 

_ .- In these lectures, I will consider the reactions in high-energy electron-positron 

colliders which will enable us to discover and characterize these new states. My 

analysis builds on earlier work along these lines reported in Refs. 4-8, and on the 

- -work of an ongoing study at SLAC. Th e analogous question for pp colliders has 

also been studied in considerable detail; the basic results have been reviewed in 

the lectures of Chris Quigg at this school PI and the exhaustive review article of 

1”’ Eichten, Hinchliffe, Lane, and .Quigg. I should begin, then, by reviewing the 

_-. relative advantages and disadvantages of experimentation by e+e- reactions. 

There are three important advantages in probing new physics through e+e- 

reactions: 

1. The elementary processes are s-channel, nonstrong interactions. Thus the 

basic event topologies, both for signal and backgrounds, are very simple. 

Peripheral reactions, such as the two-photon process, generally have small 

cross sections. 

2.. Familiar and exotic particles are produced democratically. Thus signal-to- 

background ratios are generally large, even before restrictive cuts are im- 

posed. 

-- - 
3. Polarization e$ects are large and measureable. At least in linear e+e- collid- 

ers, it is straightforward to longitudinally polarize the electron beam. This 

gives an additional, quite interesting method for probing new physics. 

These three properties contribute to an experimental environment which is excep- 

tionally clean and which allows unambiguous identification of novel effects. The 

degree of cleanliness which should be achievable in TeV-energy colliders, and the 

powerful use one can make of this environment, is discussed in some detail in Gary 

Femman’s lectures at this 1”’ school. On the other hand, e+e- colliders are well 

known to suffer one significant disadvantage: 
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The basic magnitude of all cross sections, familiar and exotic, is set by the 

point cross section 

- 

lR+= 86.8 fb 

(&M (TW)2 * 
0.9) 

- 
That is, all cross sections are small. 

To give a more concrete idea of the problem, let us compare the situation of a 

future e+e- collider to that of PEP. At PEP, th e experiments to search for new 

particles were essentially complete after an integrated luminosity of 50 pb-‘. At 

, ECM= 29 GeV, this corresponds to 5000 R -‘. The data sample corresponds to 

lo7 set running with a luminosity of 5 x 103' cmW2sec-l. The analogous data 

sample of 5000 R-l at a 1 TeV linear collider would require lo7 set running with 

_ a luminosity of 5 x 1O33 cms2sec -l. This poses a severe constraint on the design 

of future colliders. However, accelerator physicists at SLAC and CERN have re- - 
cently expressed optimism about designing machines with luminosities of 3 x 1O33 

- cm-%ec-l and above. For the remainder of these lectures, I will share their opti- 
- 

mism that such colliders can be built. The technical problems of machine design 

which must be addressed are discussed further in Gary Feldman’s lectures. 

In these lectures, I will concentrate on setting out the various reactions which 

might produce new physics at a TeV-energy linear e+e- collider and on reporting -- - 
the cross sections and general characteristics expected for these processes. I will 

proceed as follows: I will begin in Section 2 by discussing the standard model at 

TeV energies, reviewing the various fermion and boson pair-production processes 

which are expected to be the most important standard processes at a new e+e- 

collider. In Section 3, I will discuss the pair-production of new fermions and bosons, 

and some searches for new physics involving reactions of the standard model. In 

Section 4, I will describe the properties of new 2’ bosons as they would be seen 

by-a high-energy e+e- collider. Finally, in Section 5, I will review the physics 

of Higgs and W bosons at high energy and explain how the Higgs mechanism of 
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vector boson mass generation manifests itself experimentally. Section 6 presents 

some conclusions. 

.- 
Throughout these lectures, I will adhere to two conventions which reflect the 

major themes of my presentation. First, since all of the processes I will discuss 

have cross sections of the order of the point cross section (1.9), I will quote all 
- -cross sections in units of R. This will immediately allow one to assess the im- 

portance of each particular reaction relative to other modes of e+e- annihilation. 

The conversion to more standard units can be made directly using (1.9). Second, 

I will, wherever possible, quote polarized cross sections taken between states of 
__. definite helicity rather than simply polarization-averaged cross sections. In these 

lectures, we will be discussing physics in the regime well above the W mass, where 

the weak interactions are as important as the electromagnetic interactions. In 

this regime, the left- and right-handed electrons, and the helicity- states of other 

- matter fermions, behave like distinct species. We should be prepared to find large 

polarization effects which can be characteristic signatures of old and new reactions. 

- 2. Standard Model Processes 

Let us begin by describing the most important processes of the standard model 

which would appear at a TeV-energy e+e- collider. These processes are of some 

-- - interest in their own right; in addition, they provide the dominant background 

processes for particle search experiments. For the most part, we can argue about 

these high energies by smoothly extending the familiar results from currently avail- 

able energies. But there is an important new feature, the emergence of reactions 

involving the pair-production of weak vector bosons. At ECM = 1 TeV, the pair- 

production of W bosons is the most important single component of the e+e- 

annihilation cross section. 

- 
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2.1. PERIPHERAL PROCESSES 

The-two most prominent processes at high-energy e+e- colliders are those al- 

ready fam iliar from  current experiments-Bhabha scattering and two-photon pair- 

production reactions. Bhabha scattering (e+e- + e+e-) is well known to have a 

- -differential cross section which diverges in the forward direction and settles down 

to a value of a few R at wide angles. I will present explicit formulae for the cross 

section in my discussion of electron compositeness, Section 3.3. 

e+ 

e+ 

4-88 6003A2 

Figure 2. The two photon process. 

The two-photon process involves the creation of ferm ion pairs from  virtual 

photons emitted by the colliding electron and positron (Fig. 2). For our purposes, 

-- - the main feature of this reaction is that it is readily distinguished kinematically 

from  annihilation processes. The cross section is quite small, both in terms of the 

absolute rate it provides to a detector and in terms of the background it implies 

for relatively large invariant masses of the produced system. Estimating the rate 

at fi = 1 TeV using a Weizsacker-Williams spectrum for each photon, one finds 

for low invariant masses161 

- 1OOnb (~11 > 1 GeV 
a(e+e- -b e+e-qij) - 

0.5nb 1~11 > 10 GeV ’ 

11 

P-1) 



+ 

4-88 6003A3 

Figure 3. Collinear photon radiation to the Z” resonance. 
- 

and for high invariant masses 

a(e+e- + e+e-qq) - 

- 

500R la 1 > 25 GeV 

1 > 100 GeV ’ 5R In 
(2.2) 

a - 

-Since. the final states which would be detected are simply pairs of quark jets, this 

- process is not an important background to searches for new, heavy states. 

.At very high energies, pair-production of two photons and other pairs of vec- 

tor bosons can also have large forward peaks. The reaction involving photons 

are cleanly .distinguishable from new physics; the other reactions of this type are 

--- 

-- - mainly interesting away from the forward direction. I will discuss their general 

characteristics in Section 2.3. However, I should note one interesting feature here. 

In the part of phase space for e+e- ---) ~2” in which the photon is emitted di- 

rectly forward (Fig. 3), the electron stays close to its mass shell and the cross 

section for 2’ production is enormously increased. By taking the photon from 

a Weizsacker-Williams distribution, or simply by integrating the cross section for 

+yZ” production over forward angles, one finds (in units of R, eq. (1.9)) 

-c??e+e--t 7Z")S3. (i - sin2 0,)2 + (sin2 0,)2 

2 sin2 8, ~0~2 8, 1 - ;l-&fs; -log($) (2.3) 
Z e 
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This corresponds to 31 units of-R at ,/Z = 1 TeV. Essentially all the the 2’ bosons 

are emitted with a substantial boost along the beam axis: ~(2’) = 11. Fortunately 

or unfortunately, it is difficult to imagine that many of these 2’ bosons would be 

well reconstructed. 

2.2. FERMION PAIR-PRODUCTION 
- 

The study of efe- annihilation into fermion pairs is the bread and butter of 

electron-positron collider experiments at current energies, and this process will re- 

main an important one at TeV.energies. The main new feature is that the two 

diagrams with a photon and a 2’ in the s-channel (Fig. 4) now compete on the 

same footing, giving rise to large forward-backward and polarization asymmetries. 

The cross section for this process is most simply written in terms of helicity states; 

+ 

4-88 6003A4 

r 
x 

f 

2” 

e- e+ 

-. - Figure 4. Diagrams contributing to e+e- annihilation to fermion pairs. 

an elementary process would then be a reaction eief; ---) qLqR. By helicity con- 

servation, left-handed particles annihilate only right-handed antiparticles, and vice 

versa. The two nonzero cross sections from states of definite helicity are 

N,{J~RRI~+ +COSO)~ + ]~RL~~~(~-cos~)~) . 

(2.4 
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Again, the cross sections are expressed in R units. The quantity ~LR is the am- 

plitude for a left-handed electron to annihilate to a right-handed quark or lepton, 
_ .- plus itsantiparticle, and the other amplitudes f are defined similarly. Explicitly, 

for fermion generations of the standard form, 

- 
ILL = -Q + 

(-3 + sin2 &,)(I3 - Q sin2 0,) s 
sin2 8, ~0~2 8, s-m 2 

Z 

(sin2 O,)( I3 - Q sin2 t9,) s 
fRL = -Q + 

sin2 ~,COS~ 8, s-m 2 
Z 

fLR = -Q + 
(-3 + sin2 O,)(-Qsin2 0,) s 

sin2 8, ~082 8, s-m 2 
Z 

a - 

(2.5) 

fRR = -Q + 
(sir?&,)(-Q sin2 0,) s 

sin2 8, ~0~2 8, s-m% ’ 

The factor NC accounts the number of colors and the QCD correction to the cross 

section; it is 
f 

1 for leptons 
NC = 

’ 3.. (1 + 2 + . . .) for quarks 
(2.6) 

L- - 

-- - 

Because (2.4) h as such a simple dependence on cos 0, the amplitudes f can be 

directly converted into the basic integral measures which characterize the process of 

fermion pair-production. The total cross section from unpolarized beams is given 

by 

otot = - : [I~LLI~ + I~LRI~ + I~RLI~ + I~RRI~] . (2-V 

-For the purposes of this talk, I will define the forward-backward asymmetry using a 

theorist’s notion that one can integrate over all solid angles. Then this asymmetry 
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is given by 

AFB= 
s CO6 e>o - Los e<o d co9 8 (do/d cos e) 

s CO6 e>o + Los e<o d cos e (daldcos e> 

= (0.75) (I~LLI~ + I~RR(~) - (VLR(~ + lfRL12) 
I~LLI~ +I~RR/~ + J~LR~~ + lfRL)2 ' 

Finally, the polarization asymmetry is 

A 
o(eie+ + fJ, - +j$+ -+ f7) 

pol = 
a(eie+ + f?) + a(++ -+ ff> 

= (I~LLI~ + I~LRI~) - (VRLI~ + I~RR(~) 
lh12+ lfLR12+ IfRL12+ jfRR12 ' 

-- - 

e+e- + 6quarks 

P-8) 

P-9) 

200 600 
4 -88 E c.m. mrJ3A5 

Figure 5. Total cross section for e+e- + p+p- and e+e- + q?j, assuming six light 

quarks. 

Figures 5, 6, and 7 illustrate some properties of these formulae in the regime 

well above the Z”. Figure 5 shows the total cross section to p pairs and to all quark 

pairs. (The cross sections are given in units of R; note that the p pair cross section 
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- - 

- -r 

- 

is slightly greater than 1 R due to the contribution of the Z”.) The asymptotic 

- 

200 600 
E .-w c.m. mo3*6 

Figure 6. Forward-backward asymmetry for the production of /A, b and t pairs. 

total cross section for quark pair-production is 8.5 R. Figure 6 shows the forward- 

backyard asymmetry for the three species for which it is most easily measured-p,, 

f b, and L Figure 7 shows the polarization asymmetry for production of these three 

-- - 

1 I I 
b 

t 

-1 I I 
200 600 

E .-68 c.m. mm*7 

- Figure 7. Polarization asymmetry for the production of ~1, b, and t pairs. 

a - 
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species. If the t quark is relatively light, it may be difficult to separate the t? 

and bx events, especially since t quarks are expected to rapidly decay to b quarks. 

In that case, it is worth noting that the contributions of t and b to the forward- 

backward asymmetry can substantially cancel if the quark direction is measured 

as the direction of a charged lepton from a semileptonic decay. However, the 

contributions of t and b to the polarization asymmetry always add. Even assuming 

maximal confusion, we have 

A&t - b) = 0.18 , Apol(t + b) = 0.44 . (2.10) 

The asymptotic values of the total cross sections and asymmetries for the basic 

fermion species of the standard model are summarized in Table 2. In addition 

to the features noted in the previous paragraph, there is one more which is of 

_ importance. Due to the 2’ diagram, the cross section for producing neutrino pairs 

is substantial. For three generations, 

a(e+e- -+ vii) = 0.75 R. (2.U) 
f. 

This is a large background to searches for e+e- annihilation into completely invis- 

ible final states. 

-- - Table 2: Properties of e+e- annihilation into fermion pairs for s >> rn; 

* AFB - A PO1 
U 1.86 0.60 0.34 
d 0.96 0.64 0.62 
e- 1.13 0.47 0.07 
v 0.25 0.12 0.15 
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2.3. VECTOR BOSON PAIR-PRODUCTION 

At center-of-mass energies well above rnw, the weak vector bosons behave as 

light elementary states, on the ‘same footing as the photon. It is therefore easy 

to understand that these particles might have very large pair-production cross 

sections. In fact, these vector boson pair-production reactions become some of the 

largest components of the total e+e- annihilation cross section. 

To understand the size of these processes, it is simplest to begin with a very 

well known reaction, e+e- + 77. The lowest-order Feynman diagrams for this 

process are shown in Fig. 8. These diagrams lead to the following expression for 

Figure 8. Feynman diagrams for 

e+e- -+ yy, Z’y, Z”Zo. 

6003AP 

e+e- annihilation into neutral vector bosons: 

the differential cross section (as always, in units of R) 
-- - 

da -=- 
dcos0 

(2.12) 

where 

t = -$(l - cod) u = -$(l + co&) . (2.13) 

This formula is averaged over electron polarization states, but it receives equal 

contributions from eief; and eiei annihilation. Because photons are identical 

particles, the total cross section is obtained by integrating (2.12) over cos0 > 0 

only. 

- .- 
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- 

Since the production of Z”y and 2’ pairs involves just the same two Feynman 

diagrams, these cross sections may be estimated straightforwardly by multiplying 

(2.12) by the appropriate factors’of sin2 8, to give the electron coupling to the 

2’ for each of the two possible ,electron helicities. To determine the precise cross 

sections, one must also work out the dependence on [12’ mz. For e+e- -+ Z”7, the 

differential cross section from unpolarized electrons and positrons is given by 

da 3 (3 - = -. - sin2 0,)2 + (sin2 a,)’ . 

dcos0 4 2 sin2 9, cos2 0, 

- m$)2 + (t - m$)2 
ut 7 

where 

t- = -$s-mH)(l-toss), u = -k(s-m$)(l+cos0). (2.15) 

-This formula may be integrated over all values of cos 8. For e+e- --) Z”Zo, the 
. . 

-. differential cross section from unpolarized electrons and positrons is 

da 3 (3 - sin2 e,)4 + (sin2 e,y - = -. 
dcos8 4 2 sin4 8, ~084 8, 

. (l-q)1’2 
-- - . I ~+~+4rn~~-rn~ ($+$)} ’ 

where 

t= -i(s - (s(s - 4mi))1/2 cos e) + m2, , 

U = -$s + (s(s - 47-&)1/2 c0s 0) + rns . 

u - 

(2.16) 

(2.17) 

This formula should be integrated only over cos 8 > 0. The final boson pair- 

production process, e+e- + W+W-, has a considerably more complicated struc- 

ture113’141 I will postpone my discussion of this reaction to Section 5.3. . 
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Figure 9. Differential cross sections for e+e- annihilation into two vector bosons. 

The four differential cross sections for boson pair-production are shown in 

Fig. 9. The three new processes are comparable in size to e+e- + 77, and 

- actually the W pair-production process is somewhat larger. All four processes 

- 

have large forward peaks, generated by the t channel exchange of electrons (or, 

for W production, neutrinos). For the W+W- and Z”Zo reactions, this forward 

peak is eventually cut off by the W mass, producing a finite cross section of order 

(for. W pairs) 25 R at 1 TeV. I have already noted that the 2’7 reaction is cut off 

only by the electron mass; indeed, one can recover the formula (2.3) for forward 

Z’.production by integrating (2.14) over its forward and backward peaks. 

-- - 

3. New Particles and Couplings 

I have argued in Section 1 that, in the energy region near 1 TeV, we should 

expect the standard model to be supplemented by a rich array of new particles. 

The search for these particles will be the major task of a high energy e+e- collider, 

and the discovery of such new particles will shed important light on the mechanism 

of the weak interaction gauge symmetry breaking. 
- 

For the most part, the theory of the production of these new particles is very 

simple: The new states are pair-produced in just the same way as the familiar 

- .- 
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particles of the standard model. In this section, I will present a sampler of hypoth- 

esized states and discuss some other basic experiments which bear on the physics 

of the TeV scale. 

3.1. NEW FERMIONS 
- 

One obvious possibility, as we probe to higher energies, is that we will discover 

further generations of quarks and leptons. If these fermions have the quantum 

numbers of members of standard generations, their production characteristics fol- 

low exactly the discussion of Section 2.2. The main difference between these heavier 

fermions and conventional ones comes in their pattern of decay. If mQ > mw, so 

that the heavy quark can decay to an on-shell W boson, this decay mode becomes 

dominant. The corresponding width is decay is 

r(Q + wq> = crM . ($>‘. (1+2%). (l-$92 , 
16 sin2 8, 

(34 

times generalized Cabibbo mixing angles. Gary Feldman will discuss the practical 

importance of this decay mode: At an e+e- collider, the W in the final state can 

be reconstructed by combining jets identified calorimetrically. Thus, the signature 

-- - of a heavy quark is a striking one, and the heavy quark events should be easy to 

isolatePll 

If new heavy quarks exist, how heavy should they be? A priori, the standard 

model gives little concrete information constraining these masses, but there are 

two milestones which set the general scale. The first of these comes from the 

observation of Pendleton and [“I Ross, and Hi11[161 that there is a fixed point in 

the renormalization of the quark-H&s boson coupling X, (eq. (1.6)). If X, is 

sniXl1, the QCD renormalization tends to increase it at larger distances, but if A, 

is large, effects nonlinear in A, tend to decrease it. The precise evolution equation 
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(at one-loop order) for a heavy-charge (3) quark is 

_ .- dXU - = xv. 
dlog r 

+Sg,2 + ;g2 + 

(3.2) -I 

- 3tr (ALA, + XtXu) - ; (AtxU -&A,) 
I 

; 

a similarequation applies for AD. If quark-Higgs coupling constants are randomly 

distributed at the scale of grand unification, their renormalization down to the 

weak interaction scale tends to drive them to the point of balance between these 

two renorm-alization effects, that is, toward the value 

(3.3) 

where NH is the number of heavy generations accumulating at this point. This 

corresponds to quark masses of 

f 
mu NN mg N 300 GeV/JNff . P-4) 

. Note that the u and d quark masses within the heavy generations become closely 
’ P71 degenerate.- Bagger, Dimopoulos, and Masso have studied the rate of evolution -- - 

and confirmed that the flow toward this fixed point is fast enough that we might 

expect convergence of one-or possibly several-new generations to within about 

20% of the fixed point value. Figure 10 illustrates the convergence of couplings A, 

which they have observed. 

The second milestone comes from the observation that, as the mass of the new 

quark becomes very heavy, the coupling A, must increase to the point where the 

quark-Higgs system becomes strongly coupled. Chanowitz, Furman, and Hinch- 
~&j-D4 have noted that one has entered this strong-coupling regime at the point at 

which the lowest-order S-matrix elements for quark-quark scattering due to Higgs 
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-- - Figure 10. Renormalization-group flows of quark-Higgs boson coupling constants, 

according to Ref. 17: ( a evolution of the magnitude of Aq for various initial conditions ) 

at the grand unification scale; (b) evolution of the u to d quark mass ratio in a heavy 

generation. 

exchange becomes so large as to violate unitarity. They showed that this point 

occurs at 

4Jz7r 
mQ = - = 550 GeV. 

~GF 
(3.5) 

?I%& value actually need not be an upper bound to quark masses in the standard 

model; above this mass, models with heavy quarks merge smoothly into technicolor 
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models. But the calculation does indicate that we may find heavy quarks, relatively 

decoupled from the weak symmetry breaking sector, all the way up to this rather 

high scale. 

In addition to further standard generations, we might expect to find fermions 

with nonstandard electroweak quantum numbers. Many varieties of weak-inter- 
- action models contain additional (‘mirror’) generations with (V+A) rather than 

(V-A) coupling to the W and similarly parity-conjugate couplings to the 2’. (Two 

disparate examples, are given in Refs. 19, 20.) Theories which produce new 2’ 

bosons often contain additional fermions which receive mass when the extended 

gauge symmetry is broken. The class of theories discussed in Section 4, for exam- 

ple, can- contain a charge (-5) q uark D which is neutral under weak interactions 

and a lepton doublet (N, E) with vectorlike weak interactions. The basic integral 

quantities for e+e- annihilation to these states are given in Table 3. 

Table 3: Properties of e+e- annihilation into fermion pairs 
with nonstandard weak quantum numbers 

dtot AFB - A PO1 - 
mirror 

: 
1.86 -0.60 0.34 
0.96 -0.63 0.62 

e- 1.13 -0.47 0.67 
vectorlike D 0.36 0 -0.60 

N 0.50 0 0.16 -- - 
E 1.21 0 0.65 

It is worth comparing the entries in this table to those in Table 2; some differ- 

ences are striking. For example, the vectorlike D quark has a polarization asym- 

metry which is large and opposite in sign to that for a standard d. The substantial 

forward-backward asymmetries for ordinary quarks flip sign for mirror generations. 

These obvious features should be readily observable when the new states are pair- 

prorluced at an e+e- collider. 
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3.2. NEW SECTORS OF BOSONS 

_ - Beyond the question of identifying new fermions, we can hope that TeV energy 

experiments will reveal a rich sector of particles which form the mechanics of the 

SU(2) x U(1) symmetry breaking. Issues arising directly from the interplay of 

symmetry breaking, Higgs bosons, and W bosons will be discussed separately in 

Section 5. But, as I have noted in Section 1.1, mechanical models of weak interac- 

tion symmetry breaking are often complex, with intricately arranged spectra of new 

particles. In this section, I would like to discuss the two most prominent classes 

of such models, models based on the ideas of supersymmetry and technicolor. I 

do not have space here for a detailed review of these ideas, but, in any event, this 

is hardly necessary, since there are excellent general reviews of these theoretical 

schemes. For supersymmetry, the basic structure of the phenomenological theory 

- has been set out in Refs. 21-23 and the signatures in e+e- annihilation have 

been discussed ,in some detail by Barnett at a previous session of this P41 school. 

The basic principles and phenomena of technicolor theories have been explained 

in Refs. 25-27. In this section, I would like simply to recall the basic principles of 
- 

these theoretical constructions and the particular new particles they predict which 

would give the most prominent signatures at an e+e- collider. 

The basic idea of supersymmetry is the postulate of a fundamental space-time 

-- - symmetry iinking fermion and boson states. Its main prediction is the doubling 

of the spectrum of fundamental particles-for each known fermion, we expect a 

bosonic partner, for each known boson, a fermion. In all cases, there are good 

theoretical reasons why the partner which is familiar to us should be the lighter 

of the two. However, the heavier partners can be no heavier than the mass scale 

of supersymmetry breaking. If this is linked with the weak scale, we expect all of 

the undiscovered partners to appear below energies of about 1 TeV. The spectrum 

of a realistic supersymmetric extension of the standard model, taken at a random 

po?& in its parameter space, is shown in Fig. 11. Note that the scalar partners 

of the leptons, u quarks, and d quarks in the lighter generations are expected to 
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be almost degenerate; however, the scalar partners of the left- and right-handed 

species may have substantially different masses., The fermionic partners of gauge 

and Higgs bosons are expected to mix strongly; it has become common to label 

these mixed states as simply ‘neutralinos’ and ‘charginos’. 

- 

400 

E *O” 

loo 

0 

GauYas -----3- 
Hqqsmos - 

-- 
-- - 

Hws - 
-- - = - - - - -- ---- 

s-Matter - 
--- 

Figure. 11. Spectrum of a supersymmetric model of the strong, weak, and electro- 

- magnetic interactions, taken at an arbitrarily chosen set of its parameters (from Ref. 

28). 

-- - 
If the mass scale of fermion superpartners is relatively low, the pair-production 

of these partners would be an prominent contribution to the e+e- annihilation cross 

section. These states should decay characteristically to their fermionic partners 

plus (unobserved, penetrating) neutralinos. The pair-production cross section for 

these scalars from longitudinally polarized beams is readily computed to be 

- 
da 

- (e,ei 
dcos8 

+jf) = ;Nc - IhI sin2 e 

(3.6) 
da 

- (e,el 
dcos8 

+fT) = ;Nc - IhI sin2 e . 
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The amplitudes f are given by- 

fL = -Q + (;$;iTof;;Qz ’ 2 
W W S--m z tw 

where, for squarks and sleptons 

Qz- = Ii-Qsin2Bw. P-8) 

Here 1; is the weak interaction quantum number, equal to (-3>, for example, for 

the partner of eL and to 0 for the partner of ei. The color factor is 

1 for sleptons 
NC = 

’ 
(3.9) 

- 3 - (1 + % + . . .) for squarks 

Table 4: Properties of e+e- annihilation into supersymmetric partners 
of quarks and leptons 

-. 

CL 0.63 0.94 
- ER 0.40 -0.60 

9 0.43 0.91 
dR 0.10 -0.60 
EL 0.30 0.65 
lR 0.26 -0.60 
i7 0.13 0.16 

As a matter of principle, scalars cannot have a forward-backward asymme- 

try; the other two integral quantities can be computed from the amplitudes f as 

inndicated in (2.7), (2.12). Th e expected values of the total cross sections and po- 

larization asymmetries for superpartners of matter fermions are shown in Table 



‘1 

. 

_ - 

- 

4. In assessing the total cross sections, one should recall that the thresholds for 

two and possibly three generat ions of each species should be very close together. 

A striking feature of the information in this table is the wide variation of the po- 

larization asymmetry. The superpartners of the left- and r ight-handed quarks, for 

example, have polarization asymmetries with large values and the opposite signs. 

The feature can probably be  used to measure the mass difference between the two 

squarks of each charge. 
a  - 

At the other extreme, let us consider the case in which the mass scale of 

supersymmetry is relatively high. In this case, the first sign of the presence of 

supersymmetry m ight come from the pair-production of neutralinos, since these 

are normally the lightest supersymmetric states. Let us label the two lightest - 
neutral inos as gr,g2. The 21, as the lightest superpartner, is likely to be  absolutely 

stable. In principle, one could search for the pair-production of 21; however, this 

_  would -be very difficult because the substantial process of neutrino pair-production 

is a  background. A more promising reactions is the process - 

e+e- + 5322 * (3.10) 
- 

The. Feynman diagrams contributing to ths reaction are shown in F ig. 12. The 

precise expression for the cross section is complex and mode l-dependent, since it -- 

contains the m ixing angles which parametrize the j;l mass eigenstates. However, 
-- - 

4-66 6003A 12 

F igure 12. Contributions to the cross section for the production of neutralinos 
through e+e- -+ 2122. 

- 
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one can say generally that the Z exchange diagrams dominate unless ma >> 1 TeV 

and that, for rnz N 1 TeV, the total cross section for this process is of order 0.1 R. 

The signature can be striking: The 21 should be unobserved, and the 55 should 

decay according to 

-- 

. . 

- 22 + 21 + f?, Z”, Ho, , . . , { > (3.11) 

producing events with single, weakly interacting states ejected at large transverse 

momentuml2g1 

The basic idea of technicolor is the postulate of a new set of strong interactions 

in the form of a gauge theory of fermions and gauge bosons. The expectation is 

that this theory would have chiral symmetry breaking and spontaneous fermion 

mass generation in just the manner of the familiar strong interactions. If the new 

- fermions have the weak quantum numbers of a standard generation, this process 

can then be shown to break SU(2) x U( 1) p s on aneously in just the manner required t 

for the standard model. Potentially, this model gives rise to many new states, called 

‘tec.hnipions’, which one might think of either as composite Higgs bosons built of the 

new fermions or as the pions and kaons associated with the new strong interactions. 

Normally, at least one charged scalar is expected to appear, and scalar particles 

A - 

with more exotic quantum numbers-for example, color octet scalars or scalars 3- 

with lepton-quark quantum numbers-are also possible. Though these particles 
-- - 

are composite, they are small; as long as we remain well below the energy scale 

of the new strong interactions, we can treat them, in their coupling to the weak 

and electromagnetic interactions, as pointlike elementary particles. In that case, 

their cross sections for pair-production are again given by (3.6), (3.7). The weak 

charges Qz are given by 

QZ = 13-2Qsin20,, (3.12) 

where I3 is the vector isospin and Q is the electric charge. In general, the coupling 

of a pair of such composite scalars to a gauge boson is given by the vector part of 
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the gauge current. The color factor NC is .; 
I 

1 for color singlets 

NC = 
3 - (l+ + + . . .) for color triplets 

. 

8 - (1 + % + . . .) for color octets 
- 

(3.13) 

The total cross sections and polarization asymmetries for a variety of composite 

scalars are compiled in Table 5. 

Table 5: Properties of e+e- annihilation into pairs of technicolor bosons 

dtot A pal 

charged Higgs H* 0.3 0.65 
color 8 H* 3.0 0.65 
leptoquarks (TU) 2.6 0.48 

- (EU) 0.4 0.31 
(3w) 0.4 0.31 
(FD) 0.5 0.88 

- . 

Though some models of technicolor place the new strong interactions at a mass 

scale of 2 TeV or higher, other models have new resonance structure at a relatively 

-- - low energy, Farhi and SusskindL3’] have introduced models with especially rich 

spectra of technipions, and in these models, the technicolor analogue of the rho 

meson has a mass of 900 GeV. This meson manifests itself experimentally as a res- 

onant enhancement in technipion production-a striking effect on the cross section 

for e+e- annihilation into heavy states. The form of the technipion cross sections 

expected in the neighborhood of the techni-rho is shown in Fig. PI 13. 

- 
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Figure 13. Resonant enhancement of composite Higgs boson production due to the 

presence of the rho meson of technkolor strong interactions. 

3.3. LEPTON SUBSTRUCTURE 
- 

In addition to searching for exotic reactions, it will be an important task for 

physicists at a high energy collider to measure the conventional reactions of the 

standard model with high precision. In some cases, such precision measurements 

can be as telling as new particle searches in illuminating physics beyond the stan- 

dard model.. One further alternative for the direction which this physics might take 

-- - is that quarks and leptons themselves might be composite states, with constituents 

bound at the energy scale of a few TeV. At the moment, the most stringent tests of 

this idea come from the detailed study of Bhabha scattering, and so one should ex- 

pect that the study of Bhabha scattering at TeV energies might allow the discovery 

of lepton substructure. 

The principle of the experiment is the following: 1311 If electrons are composite, 

they should be expected to possess new interactions beyond those of the standard 

model. These new interactions might arise from exchange of common constituents - 
or, equivalently, exchange of vector mesons of the strong interactions responsible 

for constituent binding. The amplitude for Bhabha scattering is then given by 
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the sum of the Feynman diagrams shown in Fig. 14; the last diagram represents 

_ _ the newt coupling. If the size of the composite leptons is very small, that is, if the 

YJ” 

x 
e’ e+ 
4-00 

+ 

x 

YJ” + 
x 

e- e+ e’ e+ 
6003A14 

Figure 14. Contributions to the cross section for Bhabha scattering in a model with 

lepton substructure. 

momentum scale of binding is very large relative to 4, the constituent exchange 

- interaction can approximated by a four-fermion contact interaction. Using helicity 

conservation, we can write any electron-electron contact interactions in the general 

form 

+ %‘iR @L+L)(~RYpeR)] , 

-- - 
where A is the momentum scale of constituent-binding, g is a dimensionless effective 

coupling constant; and the 7 parameters are of order 1. One might think of A as 

the mass of the rho meson in these new interactions. Since the new forces are 

strong, it makes sense to use the familiar rho meson to estimate g; let us write 

(3.15) 

Thus, though the contact interactions are suppressed by a large mass scale, they 

are enhanced as strong interactions competing with interactions of electromagnetic 

strength; futher, the new effects can be seen as interference terms rather than 
- .- 
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_ - 

as competing reactions. This_ means that Bhabha scattering is extraordinarily 

sensitive to effects of electron compositeness; in fact, the current lower bounds on 

A from PEP and PETRA experiments are already of order 2 TeV. t32l 

Using (3.14) and (3.15), tie can write the the differential cross section for 

Bhabha scattering of longitudinally polarized beams as 
- 

da 3 
dcos e 

(eie+R) = 2 

da 
dcos e 

(eiet) = i 
(3.16) 

da 
dcose (e$i) -= 5 3 [s2Dd)] , 

- where 

-1 
DLL = s+t I+ (3- sin2 e,)2 

sin2 8, ~0~2 8, 
- 

1 
DRR=& A+ 

( sin2 e,)2 
sin2 8, ~0~2 8, 

( 1 
2 +t ',2 +Qp- > 

%LLS 
s-m z -2 

1 1 
+ 

+%RRs - (3.17) 
S--m b t-m; cd2 

(3 
- 

DLR(s). 
sin2 

0,)(- 
sin2 

0,) 
1 2-- 

= 
sin2 8, ~0~2 8, 

+rlLRs -. 
s-m; ~~112 

-- - 

In practice, it will be difficult to create a polarized e+ beam, so I will present 

numerical results for polarized e- scattering from unpolarized e+. A measure of 

the sensitivity of the Bhabha scattering cross section to contact interactions is 

given by 

(3.18) 

where the subscript 0 denotes the cross section computed in the standard model 

(A-2 = 0). It is no problem to normalize the measured cross section; the cross 
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section at large angles can sim$y be compared to the cross section in the forward 

peaks, which is never appreciably affected by short-distance physics. In Figs. 15- 

17, I have plotted A as a function of cos0 for three choices of the parameters of 

the new interactions. The error bars on each graph reflect the expected statistical 

errors for an integrated luminosity of 104’ cm-2sec-1 (lo3 R-l) at &= 1 TeV, 
- 

-based on 8 bins in cos 8. The first two cases corespond to the coupling of vector 

f . Figure 15. Observability of contact interactions in Bhabha scattering at &= 1 

TeV, estimated for polarized e- beams and an integrated luminosity of 1040 cm-%ec-l. 

The following parameter values were used: A = 40 TeV, I]LL = ERR = QRL = -1. The 
.dotted line shows the effect of changing the overall sign of the contact term. 

-- - 

currents (Fig. 15) and left-handed currents (Fig. 16). The third case is one devised 

by Schrempp as being particularly troublesome because of the cancellation of the 

leading contributions from the contact term. But note that the use of polarized 

electrons straightforwardly resolves this ambiguit Y[ 331 . It seems clear, then, that a 

TeV e+e- collider would be sensitive to electron compositeness at the level of 50 

TeV or beyond. 

-An important property of the formulae (3.17) is that the effect of contact 

interactions increases with s. Eventually, when the reaction energy reaches the 

scale A, we expect to see geometrical cross sections: o - Am2. This means that, if 
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Figure 16. Contact interactions in Bhabha scattering, estimated as in Fig. 15 but 

using: A = 30 TeV, ALL = -1, ?)RR = ~)RL = 0. 

-. - 
Figure 17. Contact interactions in Bhabha scattering, estimated as in Fig. 15 but 

using: A = 30 TeV, 77~~ = -?)RR = -1, ~]RL = 0. 
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the binding scale of leptons is near the TeV scale, we should expect to see extremely 

large cross section for e+e- reactions. Translating the geometrical estimate to R 

units, we have 

- 
3 

CT---- -BR 
47~2 A2 

- 4500 A2 ZR. (3.19) 
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Figure 18 shows the effect- that one would see in the total cross section for 

e+e- + p+p- if the process can be mediated by a contact interaction with A in 

the few TeV range!’ If the compositeness of leptons is associated with the weak 

scale, its effects should be visible very soon; these effects might dominate the 

physics of TeV e+e- collisions. 
- 
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Figure 18. Eflect of contact interactions on the total cross section for e+e- + 

p+p-, for purely left-handed couplings (of either sign) and A = 3 6 TeV. 

--- 

-- - 4. New Z” Bosom 

One effect which would be dramatically visible at a high-energy electron- 

positron collider is a new resonance, a new elementary vector boson coupling to 

e+e- annihilation. As we will see, such an object, if it exists, generates enormous 

cross sections, of order lo4 R at the resonance peak. We should explore whether 

such an object is likely to appear and what its properties might be. 

From a purely theoretical point of view, there is considerable motivation to 
- 

expect further neutral weak bosons. Grand unified gauge theories began with the 

group SU(5), th e smallest group which envelops the SU(3) x SU(2) x U(1) gauge 

.- .- 
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group of the standard model. But attempts to derive constraints on these theories 

and to solve problems of physics which arise in them led naturally to the consider- 

ation of~larger grand unifying groups: SO(lO), Es, and others. The larger groups 

contain additional neutral bosons, and one can easily construct scenarios in which 

these bosons remain massless at the level of the grand symmetry breaking and so 

_ .- 

- survive down to the weak scale. In particular, superstring models of unification 

naturally contain gauge bosons of an & grand unifying group, and it is quite 

generic for extra neutral bosons to appear with masses below 1 TeV.1341 

In principle, we might also expect charged bosons to appear, though the spe- 

cific case of a right-handed W boson is ruled out below about 2 TeV through its 

potential influence on the KL-Ks [351 system. However, the constraints on new 

neutral bosons are surprisingly weak. Direct production experiments at hadron 

colliders are sensitive only a small distance beyond the familiar 2 d WI . More strin- 
[371 gent constraints come from the analysis of neutral-current weak interactions. 

One should also require that the mixing of the familiar 2’ with the new boson not 

-shift is mass by more than the 3 GeV tolerance permitted by the rapport between 
[3f31 the .standard model and experiment. These last two constraints on the mass 

and.mixing angle of a new 2’ are shown in Fig. 19. 

The start of physics at the.Tevatron Collider should significantly improve our 

knowledge of whether new neutral bosons exist. Neutral weak bosons are produced 
-- - copiously at proton-antiproton colliders by quark-antiquark annihilation and are 

made visible in their decay to lepton pairs. If one assumes that 5 events of pjj + 

(e+e-) + X, with all (e+e-) pairs in a single mass bin, would suffice to provide 

evidence of a new Z”, the curves in Fig. 20 show the potential of the Tevatron 

to discover a new 2’ for two advertised levels of integrated luminosity. From the 

figure, it seems likely that, in the early 1990’s, we will know if there is a new 2’ 

boson with mass below 500 GeV. It seems quite appropriate, then, to anticipate 

the very interesting physics which would become accessible if such a state does 

appear. 
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Figure 19. Constraints on the mass and mixing angle of a new neutral gauge boson 

(i) from the analysis of low-energy neutral current data (Ref. 37) and (b) from the 
- . constraint that the shift of mz be less than 3 GeV (Ref. 38). In both cases, couplings 

are assumed to be of the ‘superstring-inspired’ form (explained below). 

4.1. EXTENDINGTHE STANDARD MODEL 
-- - 

The extended groups for grand unification, especially the exceptional group 

Es, strike fear into the hearts of experimentalists, but there is really nothing so 

difficult about them. In this section, I would like to describe enough of the group 

theory of extended models of grand unification to allow us to compute properties 

of new 2’ bosons which arise from Es, including, in particular, the new bosons 

which appear in string-inspired theories. This can be done with very pedestrian 

means, requiring nothing more than a good understanding of SU(3).[3g1 

- -Why is & interesting in the first place as a grand unifying group? The su- 

perstring theories have a special, and somewhat exotic, motivation for the appear- 

- .- 
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-Figure 20. Mass values for a 2 O’ boson corresponding to 5 events of pj? -+ Z”’ + X; 

20’ + e+e- 

TeV,JL=’ 

at the Tevatron collider (a) for &= 1.8 TeV, JL = 1037, (b) for &= 2 

103s. I take K = 1.8, consistent with CERN collider results, and structure 

functions from Ref. 10. The couplings of the Z”‘, and the angle 8, are taken according 

to the scheme of Section 4.1. In this scheme, a generation of fermions contains exotic - 
states in addition to the usual quarks and leptons; in each region, the upper bound 

assumes that these exotics are much heavier than the Z”‘, and the lower bound assumes 

that they are much lighter. 

ante of this [40’411 but Es was originally introduced by G;irsey, Ramond, and - group, 

Sikivie[421 because it is a natural extension of SU(5), bringing together the various =- 

components of the theory in a more symmetrical way. -- - 

The relation of &j to the components of SU(5) is indicated in Fig. 21. The 

embedding of the standard model gauge group in W(5) is well-known. SU(5) is 

the group of unitary transformations of a vector of 5 complex dimensions, and this 

sits naturally within the group SO(10) of rotations of a lo-dimensional real vector. 

SO(10) also contains the standard model gauge group in a different way, through 

the group SU(3)c x U(1) x SU(2),5 x sum, where sum is the standard weak 

isospin, sum is its right-handed counterpart, the U(1) is (B-L), the difference 
- 

of baryon and lepton number, and the SU(3)c is color. The embedding works 

because the groups SU( 2) x SU(2) and SU(4) happen to be identical to SO(4) 
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Figure 21. Embedding of the standard model gauge group in the exceptional group 

Es. 

; and SO(6), respectively; SU(3) x U(1) is an obvious subgroup of SU(4). This 

-structure motivates the SO(10) g rand unified theory. One virtue of this theory is 
. . 

- . that the two separate fermion multiplets required for SU(5) grand unification, the 

5 and the 10, are unified into a single multiplet in SO(10). 

But now we can go one step further. The group SU(3)c x U(1) x sum x -- 

sum can clearly be made more symmetrical by extending it to SU(3)c x 
-- - 

sum x sum. This group is the core of an extension of SO(10) which gives 

precisely Es; in fact, we can think of &, as the smallest simple group which con- 

tains this structure. The generators of &, which are relevant to phenomenology 

all live in this SU(3) x SU(3) x SU(3) subgroup. Thus, we can understand the 

properties of extra neutral gauge bosons arising from J?& by working with these 

SU(3) components. Let me now reconstruct the properties of these bosons in the 

notation given by Langacker, Robinett , and [431 Rosner. 

- 

SU(3) has two diagonal generators, T3 and hypercharge. Let me write these 

as 
_- - 
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T3 = 
f _ 
( 1 -- 3 

0 
, Y= (4-l) 

The matrices T3 and (Y/m) f orm an orthonormal basis of generators, in the 

sense that - 

tr (T3)2 = tr --& 2 = 0; tr (T3.Y) = 0. 
( > 

1- 

(4.2) 

Out of these ingredients, we can build an orthogonal set of commuting generators 

of &. Clearly, we should begin by listing the standard model charges 

T:, Yc , T; . (4.3) 

The first two of these are the commuting generators of color, the third represents 

weak isospin. You can check that the more complex combination 

- . Y = T; - ;(YL+YR) (4.4) 

is exactly the hypercharge Y of the standard model. There must be two more -- 

combinations of generators orthogonal to these. One is given by 
-- - 

X = 42’; + (YL+YR). P-5) 

The combination of left and right hypercharges is just proportional to (B-L), so 

x lives inside U(1) x SU(2) x SU(2), th a is, inside SO(10). The last orthogonal t 

combination is 

1c, = (YR - YL) - (4.6) - 

This last generator appears only when SO(10) is extended to &. 
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Now that we have explicit forms for the commuting charges of Es, we can 

work out the quantum numbers of fermions in any given Es representation. As 

is standard in grand unification, I consider all fundamental fermions to be left- 

handed; right-handed quarks are considered to the antiparticles of left-handed 

antiquarks. To reconstruct a standard generation, we should study a multiplet 

-. -- 

- -of left-handed fermions in the fundamental representation, the 27. This can be 

understood as the following symmetrical combination of representations of the 

three SU(3) groups: 

(3,ZJ) + (&1,3) + (1,3,9 - (4.7) 

To understand the content of this representation in terms of standard models quan- 

tum numbers, we identify the quantum number under SU(3)c with color, decom- 

_ pose sum into weak isospin representations according to 

- 
3--+2+1, (4.8) 

- . and. break up the 3~ into three sum singlets. The quantum numbers of the 

various fermions under the additional commuting generators may be computed 

from the explicit formulae (4.4) - (4.6). 0 ne should replace each T3 or Y by 0 for 

a 1, by the. appropriate diagonal element of (4.1) for a 3 and by the negative of 

-- - this diagonal element for a 3. For example, the component of the (3,%, 1) which 

transforms as a (3,2) under color x weak isospin has 

Y= -;+q, x = (-1)) 1c, = -(-1) * (4.9) 

Carrying out this evaluation for all of the fermions in the representation (4.7) 

gives the set of quantum numbers listed in Table 6. The particles denoted by 

a (*) comprise the members of a standard generation, plus the antiparticle of a 
- 

right-handed neutrino. These states form an irreducible 16-dimensional represen- 

tation of SO(l0). Th e remaining particles, excluding the very last one, form a 
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- 

. 

Table 6: Quantum numbers of fermions in the 27 of Es 

x x !k 
(39% 1) + (372) l/6 -1 1 

(37 1) -l/3 2 -2 
(U3) + (W l/3 3 1 

cc 1) -213 -1 1 
(%l> l/3 -2 -2 

(1,3,q + (W -l/2 -2 -2 
(191) 0 -5 1 
(17 2) 2 -2 112 
(171) 1 -1 1 
(19 2) -l/2 3 1 
(111) 0 0 4 

(ID) 
(w, dL) 

DL 
m 
@a 
6%) 

WL,EL) 
(3 -- 

(NR,ER) - 
(4 

@L&I 
S 

(*I 

(*> 
(*> - - 

(*I 

(*> 
(*I 

lo-dimensional vector under SO(U). The decomposition of the 27 into represen- 

tations of smaller grand unifying group thus proceeds as indicated in Table 7. In 

general, the extension to Es brings in new fermions with exotic quantum numbers. 

These fermions‘may or may not be accessible at the new resonances, though they 

-should have masses of order 1 TeV or below. 
- . 

Table 7: Decomposition of the 27 of Es into 
representations of SO(10) and SU(5) 

-- - 16 10+5+1 
27 - + - + 

10 5+5 
+ + . 
1 1 

To turn this group-theory exercise into a set of definite predictions about 

physics, let me make the following assumptions about the spontaneous breaking of 

E6: First, I will assume that, in addition to the standard model gauge symmetry, 
- 

one linear combination of x and 1c, remains unbroken at the scale of grand unifica- 

tion; the corresponding neutral vector boson 2” should have a mass of order the 

--- 

_- - 
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weak interaction scale. Second,-1 will assume that the ratio of the coupling of this 

new U(1) boson to the coupling g’ of the standard U(1) factor in SU(2) x U(1) is 

not appreciably renormalized between the scale of grand unification and the weak 

scale. This assumption seems at ‘first ad hoc, but Robinett and Rosner have shown 

that it holds in a wide class of models with a new 2 ’ !441 Finally, in accord with 

the conclusion of Fig. 19, I will ignore mixing of the 2” with the familiar 2’. 

_ .- 

To fix the extended neutral current Lagrangian, we should be careful to nor- 

malize the various U(1) charges properly. Because the 27 contains 6 weak SU(2) 

doublets, we have 

tr (7’,?)2 = f -6 = 3 . (4.10) 

Take this normalization as the standard. The sum of the squared hypercharges 

over the 27 can be assembled from-Table 6; we find 

tr(Y)’ = 5. (4.11) 

Since,. in the grand unified theory, the same coupling constant multiplies each 
. . 

- . generator with the same normalization, we have the following relation between the 

SU(?) and U(1) couplings: 

. g’ = 
J ;g. (4.12) 

-- - This is the well-known statement that SU(5) and its extensions predict sin2 Bw = $ 

at the scale of grand unification. Because the couplings g and g’ obey different 

renormalization group equations, this relation is modified at lower energies and 

becomes sin2 9, N 0.22 at the weak scale. We can continue this procedure to 

normalize x and $; from the table 

tr (x)~ = 120 , tr ($J)~ = 72 . (4.13) 

This gives the relations 
- 

1 1 5 
9x = - 

245 
g’ ,9$ = s 

J 
59’ * (4.14) 

--- 
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Following Robinett and Rosner, we assume that these relations are not renormal- 

ized. To evaluate the coupling of the Z”’ at the weak scale, we thus use (4.14) 

directly with g’ replaced by (e/ cos 0,). Let us introduce an angle 6 to parametrize 

which single linear combination,of the normalized x and II, charges survives to the 

weak scale. Then the extended weak neutral current Lagrangian can be written 

- 
LNC = eA, JgM + e 

sin2 0, cos2 8, 2, J$ 

where the new charge Q’ is given by 
. - 

Q’ = --&sinO.x - ;g.coss.+] . 

(4.15) 

(4.16) 

In the first superstring-inspired models containing only one extra U(1) boson, 

-a particular linear combination (4.16) was singled out!451 In these models, and 
. . 

- more generally in models in which E6 is broken by Higgs bosons in the adjoint 

representation, it is impossible to leave color and SU(2),5 unbroken without also 

preserving YL. Then the unbroken U(1) or o onal to ordinary hypercharge will be th g 

a linear combination of Y and YL. This can be arranged by setting sin 6 = &@; 

-- - then 

Q’ = ;v 7 with 77 = zx - ;ti = 3Y + SYL . (4.17) 

Whatever one might say about the logic of this choice, the ‘superstring inspired’ 

U(1) boson does provide a particular, and quite generic, choice, in the middle of 

the phase space of the class of models I have defined. 

- 
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4.2. PROPERTIES OF A Z”’ RESONANCE 

Noti that we have set up a concrete theory of a new 2’ boson, we can straight- 

forwardly work out its predictions for e+e- annihilation, on and off the new res- 

onance. Even off of its dramatic resonance peak, the 2” creates substantial per- 

- - turbations of the basic integral measures of fermion pair-production. To compute _ _ 

these effects, we simply return to the pair-production amplitudes given in eq. (2.5) 

and add the obvious additional term of the form 

tQ’)e - (&‘I s 
- cos2 0, s - m2,, . 

(4.18) 

For the right-handed components, &‘(f~) = -Q’(TL). Setting, as an example, 

lo4 

103 

lo* 

10' 

100 

I I I 

200 400 600 800 

4-88 E c.m. W03A22 

Figure 22. Total cross section for e+e- ---) p+p- and e+e- + qij, assuming six 

light quarks, including the effects of a new 2’ boson. 

mp = 600 GeV and couplings of the ‘superstring-inspired’ form, we find the 

-behavior of the total cross section, forward-backward asymmetry, and polarization 

asymmetry shown in Figs. 22-24. The presence of the new resonance is manifest 
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200 600 
E 4-w c.m. 1003AZJ 

Figure 23. Forward-backward asymmetry for the production of p, b and t pairs, 

including the effects of a new Z” boson. 

in the whole region above the familiar 2’. 

- 

-- - 
-1 .o 

200 400 600 800 

4-66 
E c.m. 6003A24 

Figure 24. Polarization asymmetry for the production of p, b, and 

the effects of a new Z” boson. 

a - 

t pairs, including 

On resonance, the most important decays are to fermion pairs, and the relative 

imprtance of the various species reflects directly the particular linear combination 

of U(1) currents to which the boson couples. The general expression for the decay 
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width to a particular mode is - 

- 
a - 

Table 8: Computation of the decay widths of a new gauge boson 
into-quark and lepton pairs 

L R tot,al fraction 

vi7 $&a2 X 9 
z 16% 

ez $(3)2 $12 g 18%. 

UU &(-1)2 &. 12 2 % 11% 

d2 $(-1)2 & * (3)3 g 55% 

- . 

The example of the pure SO(10) gauge boson (sin 6 = 1) is worked out in 

detail in Table 8, using the simplifying assumption that exotic states outside the 

standard generations are too heavy to be pair-produced. The various columns 

-- - list the factors (Q’)2 for the left- and right-handed components of each fermion 

species, then convert these to relative branching fractions. Note the increased 

importance of the charged lepton decay mode relative to the familiar Z”, and the 

great importance of decays to dii. Summing the weights and multiplying by 3 

generations, we still arrive at a very small value for the width: 

r tot = 6.6 GeV , for rnzj = 600 GeV (4.20) 

ana couplings, again, of the SO(10) f orm. This calculation of the branching frac- 

tions has direct implications for the value of the peak cross section for production 

- .- 
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of the Z”, through the formula 

_ .- 
127r r(ZO’ + e+e-) 

g(e+e- + 2”) = - = 
M;, rtot 

$ BR(ZO’ --f e-‘-e-) R . (4.21) 

In the example worked out in Table 8, this gives the enormous value 

- 
gpeak = 1010. R . (4.22) 

Such dramatic peaks appear quite characteristically in models with a new 2’ boson 

below 1 TeV. 

Given the presence of this huge resonance, the obvious experimental challenge 

is to determine the precise form of the current to which this new boson couples. 

One way to carry out this task would be to measure the asymmetries of fermion 

pair-production for various species. The forward-backward asymmetry just on 

- resonance is given by 

AF~B = 0.75 ((QLLQ;L)P + (Q:RQ;J') - ((Q:LQ;R)2 + (QdRQjL)?) 
(QLQjd2 + (Q:RQjd2 + (Q:LQjRj2 + (Q:RQ;R)2 

- . 
and the polarization asymmetry is given by 

A poi = (&X2 - (Qkd2 
(&X2 + (Q&l2 ’ 

-- - For production of lepton pairs, we have the relation 

AFB = 0.75(A,o1)~ , (4.25) 

(4.23) 

(4.24) -- 

as on the familiar 2’. Cvetic, Lynn, and StuartI have noted that the three 

readily measured quantities 

A pol 7 AFB(e+e- + tq , AFB(e+e- + bb) (4.26) 

coiitain independent information and so may be used together as a powerful con- 

straint on the 2”. Under the general assumptions I have given in Section 4.1, the t 
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quark always has a purely axial-vector coupling to the Z”, and so the asymmetry 

to tt vanishes. In Fig. 25, I plot the other two quantities from (4.26) against one 
_ .- another. It is clear from the plot that these two measurements, plus the test of 

the vanishing of the top quark asymmetry, determine the angle 0 up to a twofold 

ambiguity and put the more general theoretical scheme to a severe test. 

- 

1 

-1 

1 0 -1 
sin 8 6003A75 

Figure 25. Comparison of the polarization asymmetry and the forward-backward * 

asymmetry to b5 on resonance for new 2’ bosons of the class described in Section 4.1. 

-. . 

Throughout this section, I have ignored mixing of the 2” with the familiar 

2’. However, even a small mixing induces additional interesting effects. The most 

important of these is that the 2” would now be allowed to decay to conventional 

--- 

-- - weak bosons, opening up the following two process 

zO’ + w+w- ) 2-O’ + ZOHO . (4.27) 

Figure 26 shows the peak cross sections for these processes for a 400 GeV Z”, as 

computed by Dib and t471 Gilman. Apparently, the new resonance could be a source 

of insight not only into extensions of the standard model gauge group but also into 

the properties of the Higgs boson. 
- 
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600 
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0 0.02 0.04 0.06 

. I. MIXING ANGLE O,,, DUU)I,, 

Figure 26. Peak cross sections for e+e- -+ Z”‘, followed by decay to W+W- and 

H”Zo Gal states (from Ref. 47). 

5. Higgs Boson and W Boson Physics 

My final topic will be the processes at high-energy e+e- colliders which involve 

the production of Higgs bosons and W bosons. Given the philosophical orientation 

. . which I set out at the beginning of these lectures, this topic is probably the most - 
crucial of all, since the reactions we will now discuss probe directly the nature of 

the mechanism of SU(2) x U( 1) s y mmetry breaking. In addition, precisely because 
_^- 

of their connection to symmetry breaking, the analysis of these processes brings 

in a new theoretical feature which I would like to discuss in some detail. The -- - 
main theme of this section is that the production or scattering of massive vector 

bosons at high energy can be analyzed accurately in terms of the production of the 

corresponding Higgs particles; measurement of these cross sections measures the 

cross sections in the Higgs sector. 

The idea of an identity between vector bosons and Higgs bosons comes directly 

from the Higgs mechanism of vector boson mass generation. In gauge theories, the 

vector bosons are required to be massless by the gauge symmetry principle. As 
- 

massless vector particles, they have only two possible polarization states, the two 

transverse polarizations of a photon. If the symmetry is spontaneously broken, 

.- - 
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the vector particles can obtain mass. In its own rest frame, the massive vector 

boson has spin 1 and hence must have 3 polarization states. Where did the extra 

degree of freedom come from ? When a global symmetry is spontaneously broken, 

it is generally true (and I will show later in a concrete example) that the sector 

responsible for the symmetry-breaking must contain a massless scalar particle, 

-called a ‘Goldstone boson’, with the quantum numbers of the symmetry current. 

If this current couples to a gauge boson, the Goldstone boson is absorbed into the 

gauge boson and mixes with it. This state provides the missing degree of freedom, 

and all 3 polarization states become massive. 

- 

This physical picture strongly suggests that the converse of the Higgs mech- 

anism might also be true. At high energy, the transverse and longitudinal polar- 

ization states of a massive vector boson are cleanly distinguished. It is natural 

to suggest that the longitudinal polarization state has just the interactions of the 

- Higgs scalar which was eaten up when the vector boson became massive. This 

Equivalence Tkeorem between longitudinal vector bosons and Higgs scalars was 

first introduced by Cornwall, Levin, and Tiktopoulos [481 and Vayonakis PI and ex,- 
[501 tended and clarified in a beautiful paper of Lee, Quigg, and Thacker. Recently, 

some very general proofs of the theorem have been presented by Chanowitz and 

Gaillard 15r1 1521 and Kunszt and Soper. 

In this section, I will discuss this Equivalence Theorem and its ramifications 

-- - for W boson and Higgs boson reactions at high energy. I will begin by presenting 

a formal argument for the theorem, and then working through a few relatively 

simple examples of its application. This will prepare us for a detailed analysis of 

the process e+e- + W+W-; I will explain how this process provides a sensitive 

test of the gauge-theory structure of the weak interactions. I will then discuss 

reactions involving W boson scattering and Higgs boson production in W boson 

fusion. My discussion will draw heavily on the physical arguments presented in 

the papers of Lee, Quigg, and Thacker and Chanowitz and Gaillard cited above. 
- 

a - 

-- - 
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Figure 27. A massive vectoi boson (a) at rest and (b) in motion. 

5.1. LONGITUDINAL W BOSONS, AND THE EQUIVALENCE THEOREM 

a - 

I must begin with some formal discussion of the properties of longitudinal 

vector bosons in gauge theories. Consider a massive vector boson,. first in its rest 

- frame,. and then in motion along the 3 axis (Fig. 27). In the rest frame, the vector 

particle may be polarized along the i, 2, or 3 axes. Anticipating the boost, I lyill 

write the polarization vectors as 

-. . E$(k) = (0,2,E2,0) 
(5.1) 

@) = (O,O,O, 1) . 

The polarization vectors for the’moving boson can be found by boosting (5.1) along -- 

the 3 axis: -- - 
c;(k) = (o,&2,0) 

E;(k) = ($O,O,$ . 
(5.2) 

A more invariant description of the same formulae is the following: for given vector 

boson momentum P‘“, the polarization vectors @(lc) are the three vectors satisfying 

c2 = -1, E. L = 0. The invariant sum over polarization vectors takes the form 

- (5.3) 

Both (5.2) and (5.3) make clear that there is something pathological about the lon- 

- .- 
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gitudinal polarization state: As E + 00, the components of c$ become extremely 

large, according to 

(5.4) 

Noting that CT can become large without violating the conditions given above (5.3) 

- -_ because k2 = m2 ? so the square of the large term stays bounded. The vector E: _ _ 

becomes large by becoming parallel to the large but increasingly lightlike vector 

k@. 

How does this strangely singular polarization state arise from spontaneous 

symmetry breaking. 7 Let me discuss this in the minimal version of the standard 

model,.with one scalar doublet of Higgs particles. For simplicity, I will also ignore 

the U( 1) boson in the remainder of this section; that is, I will set sin2 0, = 0. 

The Lagrangian for the Higgs scalar doublet in the standard model takes the 

detailed form 
- 

Jc = (QlY)+PY) - VW 7 (5.5) 

f where 

and V(p) is a potential energy for the 9 field which favors spontaneous symmetry 

-- - breaking. Expanding (5.5) in terms of the components of q, we find 

L = ; [(a,d”)” + (&ba)“] - V(v) + g AfJ; + . . . P-7) 

where 

Jfi” = i [+o +Taapy - /jpy+py 1 . 
Let us choose the following concrete form for V(v): 

- 

VW = -P2(Y+Y) + ; (Y+d2 . 

(54 

(5.9) 
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The point 9 = 0 is unstable, and the minimum of V occurs at a value 

(5.10) 

The curvature at the minimum of the potential gives the mass of the scalar boson - 
-in terms of the parameters of (5.9) as 

mH. .= Jzp = dip) . (5.11) 

u - 

The Lagrangian expanded around the minimum of the potential also contains a 

mass term for the vector field 

SL: = s2(d+(Ap - . +(A, . T) (9) = f (; (a))’ A;A; . (5.12) 

. . 
-. In the simplest presentation of the theory, one can use the gauge symmetry 

to remove the fields $l, $2, $3 appearing in (5.6). However, it is interesting to 

calculate a bit further in a gauge such as the Feynman gauge which keeps these t - 

states present in the formalism. Expanding the potential V(p), one finds that 

-- - they are massless; these are, indeed the Goldstone bosons associated with the 

spontaneous breaking of weak SU(2). Expanding the current (5.8), one finds a 

term linear in the 4” 

(5.13) 

thus, the Lagrangian (5.7) contains a term which mixes the vector fileds A; with 

the massless bosons. Long ago, Schwinger [531 argued that this vertex is necessary to 

altiw gauge bosons to become massive consistently with the fundamental equation 

of current conservation. We must insist that the gauge boson vacuum polarization 
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{Fig. 28(a)) satisfies k,lIf‘” t 0. But in order for this diagram to provide a 

-. -- 

b) j-L- . . . . . . . . m U 
o” 

4-88 

Figure 28. Vector boson vacuum polarization: (a) the basic form of the amplitude, 

(b) the pole term which allows mass generation, (c) the Ap-4 mixing vertex. 

- mass for the vector boson, we must have IIpv(k) + gpvm2 as k + 0. These two 

requirements-are consistent with one another only if 

- . TV> k (gPv-!$C) m2. (5.14) 

But the l/k2 singularity in the second term of this structure looks quite unusual. 

However, the A,--4 mixing vertex leads to the diagram of Fig. 28(b) whose value 

-- - is 

(ig?k’) -$ (ig F I$‘) = -i (s (@))2 F . (5.15) 

This is of just the right form. We may identify the amplitude for A,--$ mixing to 

be 

Fig. 28 = i m kp , (5.16) 

where m is the vector boson mass acquired through the Higgs mechanism. 
- 

- This argument has a profound generalization to the couplings of a massive 

gauge boson. Following the logic of the previous paragraph, we recognize that the 

- .- 
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.boson vertex shown in Fig. 29(a) has two components: in the first, the boson 

couples directly to an internal line of the diagram, in the second, the boson mixes 

with the Goldstone boson, which in turn couples to the internal states. The Ward 

Figure 29. Vert.ex for emission of a massive gauge boson: (a) decomposition of 

the vertex-into direct and indirect couplings; (b) ff t f e ec o contracting the vertex with 

(V/m). - 

- . 
identity states that dotting kp into the vertex gives zero. We can simplify the 

contraction of kp with the second component of the vertex using the explicit form 

(5.16) of the mixing vertex . 
t - 

-- - kP.(imkp*&) = -m; (5.17) 

this gives the diagrammatic identity shown in Fig. 29(b). Now, if the boson 

momentum kfi is not collinear with any of the other external lines of the vertex, it 

will be a good approximation to replace (kp/m) by the longitudinal polarization 

vector c:(k). (Th is is not a good approximation for the dot product of k with the 

second component of the vertex shown in Fig. 29(a), but that hardly matters now.) 

The identity in Fig. 29(b) is then seen to be a relation which equates the coupling - 
of a high-energy longitudinally polarized massive gauge boson with the coupling of 

the Goldstone scalar boson it ate up to become massive. This is the Equivalence 

- .- 
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Theorem. It is presented diagrammatically in Fig. 30. (More complete proofs of 

the theorem, applicable to the case in which several longitudinal bosons couple to 

the same basic amplitude, are presented in Refs. 51 and 52.) 

Figure 30. Statement of the Equivalence Theorem. 

- 5.2. EXAMPLES OF THE EQUIVALENCE THEOREM 

To clarify the physical content of the Equivalence Theorem, I would like to 

. . . give a detailed analysis of three processes which provide simple illustrations of t,he - 
result. All three of these processes are important in their own right as parts of the 

physics of Higgs and W bosons at high energy. 

Let me first return to a formula which I presented, without extensive discussion, 

.Y - in Section 3.1. Look back at eq. (3.1), which g ives the width for a heavy quark to 

decay to a light quark and an on-shell W boson. One might expect this width to 

be of order crM, where M is the heavy quark mass, but in fact it is enhanced by a 

further factor of (M/mw)2. T o understand the origin of the enhancement, let us 

compute this decay rate explicitly. The vertex for W emission by a heavy quark 

(Fig. 31(a)) is 

- 
M = 5 G> Y’ ( q) u(Q) c;(k) . (5.18) 

For simplicity, I will ignore the mass of the emitted quark. The square of this 

.- - 
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-amplitude, summed over finalistate polarizations, is 

- 
= $ [qpQ” + q”Qp P'q. &I. C-1) g (Pd!c) . 

(5.19) - - 

Figure 31. Decay of a massive quark to a light quark and a W boson: (a) decay’ 

vertex, (b) kinematics. 

- 

In the second line, I have summed over W polarizations using the formula (5.3). If 

the W is at high energy, the second term of the polarization sum gives the largest 

contribution, and (5.19) is well approximated by 

-- - 
(5.20) 

For A4 >> mw, the final quark and the W each have energy approximately (M/2), 

and (5.20) becomes just 

We-t hen recover 

r= a 
itI3 

16 sin2 8, q * 

(5.21) 

(5.22) 
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If, instead of considering W emission by a heavy quark, we had considered 

Higgs boson emission, we would have been led to the same formulae. The vertex 

for a heavy quark to decay by emission of the Goldstone scalar is 

M = Xf i?(p)(+u(Q) . 
- 

Squaring, and inserting for the fermion-Higgs coupling Xf the formu .la ( l.S), we 

find 

- 

(5.23) 

(5.24) 

which agrees exactly with (5.21). A byproduct of this analysis is an understanding 

- of the~angular dependence of W emission by a heavy quark. The kinematics is 

shown in Fig: 31(b). S ince the W bosons mimic scalars, they carry off no spin. 

Since the final quark Q must be left-handed, angular momentum dictates its angular 

. . distribution relative to the spin direction of the Q: 
- 

dl? 
dR 

-. 2 sin2 5 - (1- cos8) . (5.25) 

-- - 

The second process we will consider is the decay of a Higgs to W and 2 boson 

pairs. For a standard neutral Higgs boson heavy enough that this decay is allowed, 

it is in fact the dominant mode. The reason for its large size should soon be clear. 

To work out the decay vertex directly, we begin from the term of the standard 

model Lagrangian 

SL = cp+(gA, - T)~V , (5.26) 
- 

insert the component form (5.6), and shift 4’ by its vacuum value (5.10). This 

_- - 
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gives the vertices shown in Fig; 32. We can then compute 

:’ 

4+x. :’ 9- 
. . . . . . . . . 

? 
: -Ix ; HO 

..B8 I c::.: 

Figure 32. Feynman rules for Eggs coupling to boson pairs. 

r(H -+ w+w-) = &.-$. (l~~)~.(gmwj~ 

The-two final factors arise from the sum over polarization states for the two W 

bosons. In each case, the largest contributions come from the (Pk’/m&) terms. 

These terms yield the leading behavior 

-- 

-- - 

l?(H + w+w-) w (5.28) 

We can see the origin of the enhancement factor by dotting the approximate form 

of the longitudinal projector (i?/mw) d irectly into the decay amplitude. This 

gives 

lmff-g 1 M N gmw.Z7 - --A(~) = A, 
W 2 fs w 

(5.29) 

- 
where I have used (5.10) to introduce the Higgs scalar self-coupling A. This ampli- 

tude for the Higgs to decay to a pair of longitudinal bosons agrees precisely with 
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the amplitude to decay to charged Goldstone scalars, which is also shown in Fig. 

32. 
_ -- 

Of course, the Equivalence Theorem gives only the leading behavior as mH/mW 

becomes large. From the direct calculation, on the other hand, we may obtain the 

complete expression for the decay width, including all powers of mW/mH. The 
- ‘result is a - 

r(H+W+W-) = Q 
16 sin2 8, 

mH.(~)2(l-4~+12~)(1-~)i, 

IJ(H + ZOZO) = 
CY 

32 sin2 8, 
mH.(~)‘(1-4~+12~)(1-~)‘. 

- (5.30) 

The width of the Higgs due to its coupling to pairs of weak bosons is graphed in 

Fig. 33. 

Finally, we turn to a first production mechanism for the Higgs boson, the 

reaction e+e- -+ H”Zo. The process is clearly an important one, because it 

produces Higgs bosons tagged by their recoil against a 2’ boson. It is therefore . . 
- very interesting to work out the rate of this process and its angular distribution. 

The- Feynman diagram contributing to the process is shown in Fig. 34(a). For 

future reference, I should remark that the fermionic part of this diagram has a -- 

very simple.form; the current matrix element between states of definite helicity is 
-- - 

%+)Y(- lfzY5)u(p) = &E$) (5.31) 

where, if 3 is the collision axis, 

E$ = (O,T&) . (5.32) 

With this information, we can write the amplitudes for production of H”Zo from 

- &hCtwo possible electron helicity states. For example, taking cc”_ and the appropri- 

ate 2’ charge, 
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M(eLeft + ZOHO) = JIFgf 
e(+ - sin2 6,) 1 

- sin8 cos8 
W W s-m; 

. -!??x * E;(k) . 
cos 0, 

(5.33) 
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Figure 33. Expected total width of the single neutral scalar boson in the minimal 
version of the Higgs sector, and the contributions to this width from the most important 
sources: H + W+W- and H --+ Z"Zo. 

Once again, the largest contribution comes from the longitudinal polarization state 

of the vector boson, and we can account this by replacing ei( k) by (kp/mz). Then -. - 

M(e,ei + Z”Ho) c-e Js 6: 4’;; ‘El ;) . ’ 
W W s-m 

b . sin 8 
W 

“,,, 8 - k, . (5.34) 
W 

This is exactly the amplitude for production of a Higgs boson pair-one scalar and 

one Goldstone-given by the diagram of Fig. 34(b). 

The full expression for the differential cross section for e+e- + H”Zo is 1501 

- 

do 3 (+ - sin2 19,)~ + (sin2 8w)2 y2 sin2 0 + Bmi/s -=- dcos 4 64 2 sin4 8, cos4 8, ‘Y’ (1 - m$./s)2 ‘- 
(5.35) 
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6.., ,/ Ho 
0. 

".d ' 

,e+ 
(b) 

Figure 34. Description of the process e+e- -+ H”Zo: (a) the Feynman diagram 
giving the transition amplitude, (b) a corresponding diagram related by the Equivalence 

Theorem. 

where - 
2P y=-= 

[s2 - 2s(mg + m2,) + (m% - mi)2]+ 

4. S 
(5.36) 

_ In Fig; 35, I plot the differential cross section at 1 TeV for a variety of Higgs boson 

masses on the same coordinates that we used in Fig. 9 to exhibit the e+e- cross - 
sections into vector boson pairs. Unfortunately, the Higgs cross sections are much 

smaller, no greater than 0.1 R in the mass range interesting for discovering the 

Higgs boson at a. high-energy collider. 

-- - 

1.0 0.5 0 -0.5 -1.0 
4-88 cos 8 6003A35 

Figure 35. Differential cross sections for e+e- + H”Zo, for various values of the - 
- Higgs boson mass, compared to the cross sections for vector boson pair-production. 
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5.3. THE REACTION e+e- TS W+W- 

_ -- Having worked through a number of simple examples, we are ready to turn to 

two more involvedapplications of the Equivalence Theorem. The first of these is the 

process I described earlier as the largest single contribution to e+e- annihilation in 

the TeV region, the process of W boson pair-production. I will analyze this reaction - 
in the following way: First, I would like to discuss in some detail the question of 

pair-production of longitudinally polarized W bosons. This polarization state is 

the most interesting from a physical point of view, and indeed we will see some 

unusual gauge-theory complications and a nontrivial application of the Equivalence 

Theorem. I will then present the cross sections to other polarization states and 
- 

discuss the use of W pair-production as a test of the gauge structure of weak 

interactions. 

- w- w+ 

- x 

Y 

e- e+ 

1.88 

w- w+ 

x 

2” 

e- e+ 

W- W+ 

i 1 

--- 
v 

e- e+ 

6OC3A36 

Figure 36. Feynman diagrams contributing to e+e- -+ iV+LV-. 

-- - 
To leading order, the amplitude for W pair-production is given by the three 

Feynman diagrams of Fig. 36. Let us begin by analyzing the contribution of 

the first of these diagrams to production of a pair of longitudinally polarized W’ 

bosons. Since this diagram simply represents the electromagnetic production of 

charged bosons, we expect that its mathematical expression contains a term 

- 
M N &e$* f . (k+ - k-)L” c*(k+) . c*(k-) + ... (5.37) 

Using the formula (3.6), we can see that this term alone contributes a cross section 
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(for each e+e- polarization state) 

_ -- 

da 3 - = 
dcos0 

g sin2 Ole(k+) - c(k-)12 , (5.38) 

- a - 

in units of R. Defining the 3 direction so that the final-state W bosons are travelling 

in opposite directions along this axis, we can write the longitudinal polarization 

vectors explicitly as 

Inserting (5.39; into (5.38), we find 

. . 
- 

not.% (;R) - (-$-)” . 

(5.39) 

(5.40) 
2-C 

-- - 

This is a disaster! The cross section increases faster than permitted by unitarity 

by a factor of (EcM/mw)4, and that due to the dynamics of only one partial wave. 

If this problem is not somehow cured, it signals the breakdown of the simple 

gauge-theory description of weak interactions at energies above 1 TeV. In fact, the 

problem is cured within the gauge theory itself, by means of delicate cancellations 

among diagrams. These cancellations are simplest to work out for the initial state 

. ea. In that case, the last diagram of Fig. 36 is absent and the first two dia- 

grams are of exactly the same kinematic form, with relative coupling constants at 
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the various vertices as indicated in Fig. 37(a). The two diagrams cancel almost 

e- 

x 

‘I 

e- 

G 
x 

co58 
-e w 

2” 
sine, 

(-stn&) 

- e sine, co56, 

ei 
(0) 

4-00 (b) 6003A37 

a - 

Figure 37. W pair-production from the initial state e,ei: (a) comparison of cou- . 

pling constants in the two nonzero diagrams, (b) a second process related by the Equiv- 

alence Theorem. 
. . 

- t 

completely; only terms involving the nonzero 2 ’ boson mass remain. The sum of 

the two diagrams, for longitudinal final W bosons, takes the explicit form Z-- 

-- - M = -ie2& L- 
S 

s yma) (zi,. z+) (‘“;;y . (5.41) 

At very high energy, this is approximately equal to 

M- -ie2& 1 2; s ( +*s) ($) * (5.42) 

This looks like the amplitude for electromagnetic and weak production of a pair 
- 

of charged scalars. Indeed, by the Equivalence Theorem, we would expect this 

amplitude to be given at high energy by that for the process of Fig. 37(b), the 
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-. 

-. -- 

pair-production of Goldstone scalars. The photon and 2’ exchange contributions 

to this latter process sum to 

M= 
-ie2&i (- sin2 6,)( 3 - sin2 8,) 

(5.43) 
s sin2 ew c0s2 0, 

-If we note that the expression in the brackets reduces to simply (l/2 cos2 6,), we 

can see that this indeed agrees precisely with (5.42). 

a - 

For the initial state eiei,- there are two further complications. First, the 

coupling of the electron-positron state to the 2’ is changed to 

e (i- sin” 0,) 

sin2 8, cos2 0, 
(5.44) 

so that the twp diagrams in Fig. 37 no longer cancel. Second, there is an additional 

contribution from the diagram in which a neutrino is exchanged in the t-channel. 

To find the value of this diagram asymptotically for longitudinal final-state IV 

bosons, let us replace the IV polarization vectors by (P/mw). Then the value of 

the third diagram in Fig. 36 becomes 

kc k” MP”“. - - = - 
mw mw mw (p--k-)2 mw - 

vL g+ CL- KM- Y-> +ig2 _ 
= 2m2,, (p- - k-)2 uL 

ig2 
= 2m2, CL &UL = -yfi (2L * $) f ($-) . 

Adding together the contributions of the three diagrams, we find 

MLL = 

(5.45) 

(5.46) 



This is just equal to 

_ -- 

-icy (2?- - Z) 
( 

(1 - sin2 0,)” 
1 + s.2 8 

W 
cos2 8 

W 

(5.47) 

- 
‘the contribution of the diagram of Fig. 37(b) for the initial state eiei. 

The main practical result of this analysis is that, while one might at first expect 

the pair-production cross section for longitudinal W bosons to be enhanced over 

the cross sections for other polarization states, delicate cancellations implicit in 

the gauge theory reduce this cross section back to the level of order 1 in units of R. 

Thus, in the standard model, transverse and longitudinal IV bosons are produced 

at comparable rates. In order to study W cross sections experimentally, we must 

then worry about all possible polarization states. This leads to a very complicated 

-- - 

expression for the standard model cross section, and further complications if-we 

allow-for possible deviations from the standard model. Hagiwara, Peccei, Zeppen- 

feld, and Hikasa [541 have shown that one can cut through a certain amount of this 

complication by defining form factors for the vertex coupling a pair of W bosons to 

the photon and the Z”, and then considering the measurement of the 5% pair cross 

section as a measurement of these form factors. Assuming CP conservation, the 

general form of the IV-W-boson vertex can be parametrized by four form factors. 

Let us define these by writing the amplitude of Fig. 38 in the form 

- 
C 

gp’( km - k+)xFl - 
(km - k+)x kc” k; 

m2, 

F 
2 

+ (gp’ kf; - gvx ICY) F3 + iPXQ(k- - k+),Fs . 

69 .- - 

(5.48) 



_ -- 

(Note that this convention differs slightly from that of Ref. 54.) The amplitude 

a - 

4-88 6003A38 

Figure 38. Amplitude used in defining the W-W-photon and W-W-2’ form fac- 

tors. - - 

. . Fr is the electric form factor; F3 gives the magnetic moment of the IV. In the - 
standard model, at leading order, 

-- - 
1 

Fl = F3 = - 
sin2 0, 

I3 s 
s-m2w 

S 
s-m; ) (5.49) 

F2 = F5 = 0 . 

Here I3 denotes weak isospin: I3 = -i for ez and vanishes for ez. 

It is not difficult to work out explicit formulae, in terms of the form factors 

defined in (5.48), for the cross sections for production of each W polarization state 

from electron and positron initial states of definite helicity. The cross sections for 

production of a pair of transverse W bosons, a mixed pair, and a pair of longitudinal 
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IV bosons are given, respectively, by 

_ -- = ;P- {$4112 sin’ t? - 4Re( AT AZ) cos 8 sin2 8 

+ 2/A212 sin2 6( 1 + 2 cos2 t9)} 
a - - 

= ;P * { 2k12(1 + cos2 0) + 4Re(AjA4) cos 6 sin2 8 (5.50) 
TL+LT 

.- _ + 21A412 sin4 0 

_ where. ,L? = (1 - 4rnk/s)i is the W velocity. For the ezeg initial state, the 

amplitudes Ai are given by 
- 

1 1 = 
. 
. A1 P Fl + - 2 sin2 8, D > 

A2 
1 1 

= 
2sin2 8, ij 

1 
2 sin2 8, 

cos 0 F5 -- - 

.1 
+ 

A4 = -$j2- 5 fiF, 1 mwl - - - 
mw sin2 8, fi D 

- 

A5 = ps P2 s 
m2w 

;Fs - f Ji + 4si;2B 
W 

+4m2F2 
W > 

+ 0’1 + 
1 m2, 1 

/I sin2 8, 
l-2- - 

s D 

(5.51) 
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with 

_ -- 
D = ;(1 + p2 - 2pcos8) . (5.52) 

The corresponding formulae for eiez are given by dropping all terms in (5.51) 

which do not explicitly involve the form factors Fi, changing the sign of the F5 
- -terms, and changing the Fi themselves to their new appropriate values (given, at - - 

~.. leading order, by eq. (5.49) with I3 = 0). 

I” 1 0 -1 

r(Y1 cos 0 6o(Iu39 

Figure 39. Cross section for e+e- --+ L5’+W- for polarized e- and unpolarized e+ 

beams, at ,/T= 300 GeV. For each e- helicity, the decomposition of the total cross 

section into the various W polarization states is shown. 

-- - The numerical values of the leading-order cross sections, for two values of A, 

are shown in Figs. 39 and 40. The solid and dotted curves show the dependence 

on e- polarization; note that, even in the backward region where the s-channel 

diagrams contribute substantially, the cross section from ei is always very small. 

For ei, the cross section is dominated by a forward peak associated with the t- 

channel neutrino exchange diagram. The peak is made up entirely from production 

of transverse W pairs. We have argued already that, at high energy, the cross 

section for production of longitudinal W pairs takes on a sin2 6’ angular distribution. - 
in the backward hemisphere, this longitudinal W production accounts for about 

25% of the total cross section. 
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Figure 40. Cross section for e+e- + W+W’- for polarized e- and unpolarized e+ 

beams, & &= 1 TeV. 

From the arguments given at the beginning of this section, it is easy to see 

that any disruption of the gauge theory structure of W boson couplings leads to 

large correction> to the standard model formulae. In the amplitude for productfon 

of a pair of longitudinal bosons, these corrections can be enhanced by a factor of 
. . 

- (s/m2,); thus, they are readily visible. As a particular, simple example of this 

effect, let us work out the consequences of including a fundamental anomalous 

magnetic moment for the W. To avoid excessive complication, let me assume the 

same anomalous moment in the photon and 2’ couplings, so that the cancellations 

a - 

-- - in the ei amplitude go through as before. Thus, I assume 

1 
Fl = - 

sin2 0, 
I3 s 

s - m2, + ‘(l-s_S_a) 
(5.53) 

F3 = ..(l+G) . 

The effect of this change is shown in Figs. 41 and 42. Figure 41 shows how 
- 

- t?he assumption of even a small (g - 2) changes both the normalization and the 

shape of the W pair-production cross section. The figure makes clear that the 

.- .- 
73 



changes arise from an enormous growth in the production of longitudinal W pairs. 

1 0 -1 

'aa cos 8 Em3*( - 

Figure 41. Effect on the cross section for e+e- ---) W+W- at &= 1 TeV, using 

unpolarized electrons) of a fundamental anomalous magnetic moment for.the IV, intro- 

duced according to the scheme of eq. (5.53). The dotted curves show the contributions 

from the longitudinal TV production alone. 
- 

-- - 

5 5 

4 4 
z z 
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-0.04 -0.04 -0.02 -0.02 0 0 0.02 0.02 0.04 0.04 

.4d (g-2) -* 

Figure 42. An experiment to measure the fundamental (g - 2) of the 1%’ boson: The 

curves show the theoretical predictions, following from (5.53), for the differential cross 

_ -section at three angles 8. The statistics reflect the events in an integrated luminosity of 

3000 R-r with one hadronic and one leptonic W boson decay, divided into four bins in 

cos 8. 

2-- 
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- 

Figure 42 converts this calculation into a (thought) experiment to measure (g - 2), 

with statistics available at the 1 TeV collider envisioned in Section 1.2. A more 

subtle correction, which occurs even within the standard model, is the introduction 

of a new, very heavy fermion .generation. Ahn, Lynn, Selipsky, and I [551 have 

shown that, because the radiative corrections due to this heavy fermion appear 

asymmetrically between the s- and t-channel diagrams, one can find contributions 

‘f 
a - 

rom the radiative corrections which are enhanced by a factor (s/m2,). This leads 

500 1000 1500 

. . E cm. (GW -, 

Figure 43. Effect of a new generation of heavy fermions on the cross section do/d cos B 
for W pair production at cos 0 = 0, shown as a function of &. 

-- - to the effect shown in Fig. 43, which should allow experiments at a high energy 

collider to obtain evidence for even those quark generations too heavy to be pair- 

produced. 

5.4. HIGGS PRODUCTION BY W FUSION 

Our second nontrivial example of the Equivalence Theorem occurs in processes 

involving internal W bosons radiated from the electron and positron At center- 

of-mass energies much higher than mw, we should expect the appearance of a W 

boson analogue of the two-photon process. In this process, shown diagrammatically 
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in Fig. 44(a), th e electron and positron emit collinear virtual W bosons. The 

_ -- 
amplitude for W emission is largest when the W bosons are relatively close to mass 

shell, so the collision amplitude in the center of the diagram is a close approximation 

to the scattering amplitude of on-shell W bosons. At very high energy (this is still 

not quite accurate at 1 TeV), we can describe the virtual W bosons as partons of 
- - the electron and t5V71 positron. 

e+ 

b) 

e+ 
4-88 6003~44 

-- - 

Figure 44. The W boson analogue of the two-photon process: (a) general structure 

of the process; (b) mechanism of Higgs boson production by W fusion. 

An important example of this process is the reaction shown in Fig. 44, a 

process identified by Jones and Petcov [581 and Cahn and Dawson WI as giving 

a large cross section for the production of a standard neutral Higgs boson. In 

this process, the amplitude which appears in the center of the diagram is the 

inverse of the Higgs decay amplitude to W bosons; we found above that this 

amplitude is dominated by the contribution from longitudinal W bosons. More 

- generally, the Equivalence Theorem tells us that the contribution to the WW 

process from collisions of longitudinal W bosons is directly proportional to the 
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scattering amplitude of Higgs Goldstone scalars. Thus, we would very much like 

to be able to measure this longitudinal W contribution to the WW process. This 
_ .- contribution will be large if there is a large amplitude for the electron and positron 

to emit a longitudinal IV. 

At first sight, though, the probability of finding a longitudinal W seems very - 
small. The Equivalence Theorem would seem to say that the coupling of a longi- 

tudinal W to the electron is proportional to the electron coupling to a Goldstone 

scalar, that is, to the electron-Higgs couplings constant 

(5.54) 

- It is clear from this estimate that we cannot find cross sections of interesting size 

unless there are large corrections to the Equivalence Theorem in this particular 

circumstance. We can shed some important light on the theorem by explaining 
. . . 

- why, in fact, there are corrections which lead to substantial longitudinal W contri- 

butions. Our discussion will follow the analysis of Chanowitz and Gaillard! 

Since we wish to explore the’corrections to the Equivalence Theorem, we should 

begin by writing the leading correction to the approximation (5.4) to the longitu- 
-- - 

dinal polarization vector. For E >> mu, 

where ip is the momentum of a W moving in the (-3) direction 

- 

P = (E,O,O,-k). 

(5.55) 

(5.56) 
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Let us assume that we can apply this formula off-shell and use it to compute the 

_ -- 

- 
Y 

P 

a - 

4-88 

6OOiA45 

Figure 45. A process involving-collinear emission of a virtual W. 

contribution to- the diagram of Fig. 45 from a longitudinal W close to mass shell. 

-Let us label the initial electron momentum, the final neutrino momentum, and the 
. . 

- t W momentum q by writing 

P = EW,W 

-- - 

P’ = (1 -q.q1,0,0,1) + pl 

q = zE(l,O,O,l) -p1. 

(5.57) _^- 

The parameter x is the longitudinal fraction of the W, viewed as a parton of the 

electron. Then the cross section for the process of Fig. 45 is 

N J d3p’ -- 
:, (2432P 

Rewriting (5.55) in terms o: - f the momentum of the initial electron, 

E;(q) z x P’L - - m2w -p 
mw 2xE2’ - 

(5.59) 
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Since 

U(P’> h(P) = 0 , m(P%L(P) = Lb - j/?iq , (5.60) 

the cross section (5.58) takes the following form for a virtual longitudinal W: 

I . .  

- .  

- da(el;X + VU) 

J 
1 

s2(1 - x) * d2pz 
(P? + mfd2 

WI2 - 

(5.61) 

The next-to-last term in this equation is the W transverse momentum distribution; 

it is steeply peaked about zero, with a width Apl w mw. Integrating over the 

peak, we find 

I da(eiX -+vY) 

1 

J 

dx g2 
7x 

-- 
2 879 

a l-x 
27r sin2 8, X 

+u(aP)X + y> * 
0 

(5.62j 

Note that the integral over the transverse momentum distribution generates a - 
factor of m$ which cancels the factor m& from the correction term in (5.59). 

The final result is a smooth distribution function, independent of the W mass, for 

finding a longitudinal W in the electron: 

.fw&)dx = 2 ( 2?is,2 8 
W 

9) . (5.63) 

This function is similar in its general character to the Weizsacker-Williams distri- 

bution of photons generated by an electron, except that the enhancement factor 

logf‘s/mz) does not appear. (The distribution function for transverse W bosons 

does have an enhancement factor log(s/m$).) 
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How did we manage to get. a substantial result for an amplitude forbidden by 

the Equivalence Theorem. 7 Look back to the proof which I gave in Section 5.1, 

and you will see that I assumed that the W boson coupled to external states which 

were not collinear with its momentum. In other words, I assumed that the W was 

at high energy with respect to all other external particles. In this example, the 

- -vertex for W emission from the electron line could be boosted to a frame where a - 

the W is moving slowly and the electron and neutrino have relatively low energy. 

In this frame, the Equivalence Theorem has no reason to apply. The final result is 

just as we might have wished: .The Equivalence Theorem can be used to analyze 

the WW scattering process in the center of Fig. 44, but it cannot be used to argue 

the suppression of longitudinal W couplings to the external electron and positron - 
lines. 

To understand the idea of W parton distributions more concretely, let us ana- 

lyze explicitly the amplitude for the process of Fig. 44(b), e+e- -+ vvH”. Letting 

p represent the-initial electron momentum, p’ the final neutrino momentum, q the 

-IV momentum, and p, $, q the corresponding quantities on the positron side, the 
. . 

-. t Feynman diagram of Fig. 44(b) leads to the following expression for the total cross 

section: 

-- - J 

2 2 

1 ’ dx 
Yz -T- J J 

d2m g2 dz d2jQ 
167r3 (pt + m&)2 J J 

!I2 
7 167r3 (?r”, + m&,)2 

0 

- (2r)6(q + Tj)2 - rns) . y . [16p - j? p’ . F] . 
- (5.64) 

The second line assumes that the momenta p’, $ are both steeply peaked forward. 
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Integrating over the two peaks, we find 

(5.65) 7r 
( > 

2 47ra .- 
miv 

sin2 rn& s2(1 - x)(1 - 5) .27r6(r- m$) . 
W - * - 

Compare this to the cross section for Ur~+l/l/L- + Ho, which can be reconstructed 

from the-formula (5.28) for the Higgs width to WL’WL-: 

a(lv,+WF + HO) = s IyH 3 W+W-) S(I?- m&) 

- 

_ We find 

2 
= &(I?- mh2) . 

-1 

3 
0 0 

* a(W,+W,- + HO). 

(5.66) 

(5.67) 

The cross section for Higgs production by W fusion at high energy is indeed well 

approximated by the convolution of two distributions (5.63) with the cross section 

_. _ for WlWL -+ Ho. 

The total cross section predicted by the peaking approximation (5.67) can be 

written more explicitly as KJL591 

a(e+e- -+ v’v-vH”) = 3a S .- 
32~ sin6 8, rn& 

. {;(l+F)log-$-(1-?)} R. (568) 

The magnitude of this total cross section is shown in Fig. 46. I should note 

that there are two approximations being made in this formula. The first is the 
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- 

.simplification of the kinematics made in eq. (5.64). This approximation is actually 

only qualitatively valid for center-of-mass energies below 1 TeV. The solid curves 

in Fig. 46 represent an exact calculation PI which integrates explicitly over the 

two W propagators. Based either on the approximation or on the exact result, we 

see that the cross section for Higgs boson production at a 1 TeV collider is very 

- large up to Higgs masses of 400-500 GeV. The figure also indicates that the cross 

section is strongly energy-dependent. 

- 

10' -. I I I 

--....... .. Ec.mF 1 TeV 

z i;;s;-~ sgrT&- 

i - 
1 o-* I I 

0 200 400 

1M mH e403A46 . . 

- 
Figure 46. Total cross section for production of a standard neutral IIiggs boson by 

W fusion. The solid curves represent an exact calculation assuming that the iinal Higgs 

is a narrow resonance. The dotted curves give the result of the peaking approximation, 

eq. (5.67.). 

The second approximation made in this analysis is that of taking the Higgs 

boson to be a narrow resonance. From Fig. 33, it is clear that this is a good 

approximation for Higgs boson masses below 600 GeV but becomes a very ques- 

tionable procedure for Higgs boson masses of 1 TeV and above. At 1 TeV, the 

width of the standard neutral Higgs is 400 GeV, and so the Higgs boson subsides 

into a broad resonance on the continuum production of W+ W- pairs. To calculate 

cross sections in this region, one should properly sum coherently all contributions 

- to e e + VVW+W-. Such a calculation has been done by Gunion and Tofighi- -+ - 

Niaki,[Gl’ and the results are shown in Fig. 47. 
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-Figure 47. Calculations of the cross section for e+e- + VULV+W-, showing the 

Higgs boson as a LV+I/V- resonance, from Ref. 61. The solid curves include a Higgs 

boson at the obvious mass; the dashed curves represent the result of a computation with 

mH=m. 

a - 

From the results of Fig. 47, it is clear that the WW process has the potential 

to probe the new interactions of W bosons associated with a high-mass, strongly 
- t interacting Higgs sector. To conclude this section, I would like to note that eSe- 

colli’ders offer one other window into strongly interacting Higgs dynamics. I have 

remarked already in Section 3.2 that technicolor theories predict new vector reso- 2-c 

nances in the region of 1 TeV. The model discussed there was of a maximal type, 

-- - with a large spectrum of technipions. Other, minimal formulations of technicolor 

have no technipions, but they still must have the vector bosons of the new strong- 

interaction sector. In this case, the vector bosons couple mainly to the Goldstone 

scalars built from the technicolor particles, that is, by the Equivalence Theorem, 

to longitudinal W bosons. The effects can be quite dramatic. The technicolor 

rho resonance can appear as a final-state interaction resonance in any reaction 

that produces W pairs in a J = 1 state, for example, e+e- + W+W-. Fig- 

ure 48 shows the differential cross section for W pair-production in the minimal 
- 

- t&hnicolor model as a function of energy, going through the position of the rho 

res0nance.l”’ Unfortunately, as Figs. 47 and 48 make clear, the detailed study of new 

- .- 
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strong interactions in the Higgs sector may require e+e- center-of-mass energies 

well above 1 TeV. 

-- - 

.- - 

I 
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Figure 48. Effect of the rho resonance of technicolor strong interactions on the dif- 

ferential cross section for e+e- + WfW- at cost9 = -0.5. The dotted and dashed 
curves show,-respectively, the contributions of the cross sections to transverse and lon-. 

gitudinal W pairs. 

. 6. Conclusion 

In these lectures, I have reviewed many aspects of the physics accessible to a 

high-energy e+e- collider. We began by considering the simplest processes which 

appear at such a machine, the pair-production of new particles. Electron-positron 

reactions already offer advantages at this simple level of experimentation, in pro- 

viding a clean environment within which to detect new states and in allowing one 

to use polarization effects as a probe of the couplings of the particles which emerge. 

We then discussed searches for new composite and resonant structures. The fact 

that the basic standard model processes of e+e- colliders, such as Bhabha scatter- 
- 

i%g, are weak and electromagnetic and thus understood in complete detail has been 

used to search for novel forms of coupling, and this will continue to be a powerful 

a - 
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technique at higher-energy machines. This fact also implies that a new gauge bo- 

son will stand out as an enormous effect, allowing detailed characterization of the 

additional force of Nature that such a boson would imply. Finally, we discussed the 

physics of the Higgs boson sector and vector boson mass generation. We saw that 

the interactions of Higgs bosons are mirrored in the behavior of W bosons at high 

- .energy, so that the detailed study of W boson physics gives a direct view into the - - 
Higgs dynamics. Taken all together, this experimental program offers the prospect 

of collecting the information we need to resolve the pressing question with which I 

began these lectures, the question of the mechanism of the spontaneous breaking 

.- of SU(2) x U(1) and the physics of the TeV scale. I look forward to the insights 

that these machines will provide. - 
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