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grams, raising the cross section even well below the fermion threshold and giving 
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1. Introduction 

Radiative corrections allow us to probe the high-energy world with compara- 

tively low-energy experiments. Because any intermediate state allowed by symme- 

try, however heavy, can appear as a quantum fluctuation, precision experiments 

which isolate radiative corrections can probe for particles with masses much higher 

than the experimental energy scale. The most sensitive such experiments are those 

which involve flavor mixing, such as the measurement of the I(L-KS mass differ- 

ence. However, even quantities which entail no special flavor violation, such as 

the muon (g-2), can yield important information on heavy states. Now that we 

are entering the era of experiments on the properties of the weak vector bosons, 

it is interesting to think of precision experiments which might be carried out on 

these new fundamental particles. Such experiments would necessarily be done at 

energies of 100 GeV, or even much higher; still, extending the reach of the avail- 

able machine energy by measurements sensitive to the radiative corrections is an 

attractive possibility. 

_-.. - . 
-. 

~--.v. 

Two important experiments of this type which have been discussed extensively 

in the literature are the measurements of the W boson mass P-51 and the polar- 

ization asymmetry for fermion pair production at the 2’ [4-61 Both resonance. 

of these experiments are difficult, requiring large statistical samples and methods 

which cancel systematic errors below the 1% level. Yet in both cases the influ- 

ence of new heavy states is larger than one has a right to expect. Naively, one 

would predict that electroweak radiative corrections due to new particles of mass 

M would affect the masses and couplings of the weak bosons by terms of order 
[71 o/r, times a factor m2W/M2 representing the Appelquist-Carazzone decoupling. 

However, the Appelquist-Carazzone theorem does not apply to theories.with chiral 

gauge couplings or large mass splittings within gauge multiplets, and indeed one 

_-finds by explicit calculations both terms with no suppression for M2 >> m& and 

terms actually enhanced by the factor AM2/m&, with AM2 the mass-squared _- 
splitting within an PI isodoublet. The chiral nature of the weak interactions thus 
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increases the power of radiative corrections to illuminate new physics. 

In t-his--paper we would like to analyze another set of weak-interaction ex- 

periments, to be done at still higher energy. The next step for electron-positron 

colliders beyond the current generation of 2’ resonance machines will be to a linear 

collider with an energy of order 1 TeV in the center of mass. At such a machine, 

the most important single process contributing to the electron-positron annihilation 

cross section is the production of W boson pairs. It is well known that confirma- 

tion of the qualitative, tree-level properties of the W pair production cross section 
PPI already provides a stringent test of the standard model of weak interactions. 

The various diagrams contributing to this process, considered individually, grow 

faster with s than would be permitted by unitarity. The unitarity constraint on the 

tree-level amplitude is maintained only by virtue of a delicate cancellation among 

the various diagrams; this cancellation requires the precise gauge-theory form of 

the vertices coupling W pairs to the photon and the Z”.[lll This observation has 

been used to propose experimental tests of the idea that W bosons are composite 

states; indeed, models with composite W bosons produce wildly different cross 

sections from those of the standard 1121 model. 

- 

We observe here that even within the standard model, the introduction of new - 
_-.. .- _ 
-. heavy particles can cause large deviations from the tree-level cross section. New 

species with perfectly conventional electroweak couplings naturally yield different 

radiative corrections to the s- and t-channel diagrams involved in the tree-level 

unitarity cancellation. All of these corrections together must sum to zero (to 

leading order) for asymptotic s. However, the regime of greatest experimental 

interest corresponds to the case of a state with mass M too large to allow its 

pair production at the high-energy lepton collider: s 5 M2, while s >> m&. 

In this regime, there is no reason for the unitarity cancellations to .occur and, 

indeed, we find enhanced radiative corrections of order (o/7(-) + (s/m&). These 
*- _T_ 

_ -- effects can be readily identified experimentally. We call this phenomenon, in which 

heavy-particle radiative corrections postpone the asymptotic cancellation among _- 
diagrams, ‘unitarity delay’. 
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As a part of our calculation, we will give a simplified analysis of the general 

structure of radiative corrections to W pair production. The radiative corrections -. -. 

. 

- 

due to the conventional states of the standard model have of course been calcu- 

lated some-time ago by Lemoine and VeltmanF131 Philippe,[14’ and others? However, 

the structure of the corrections is quite complex, since the theory must be renor- 

malized to the standard model’s physical parameters as measured in lower-energy 

weak interactions. It was observed in ref. [6] that the renormalization program for 

weak-interaction radiative corrections at the one-loop level is greatly simplified if 

one assumes that the virtual particles do not couple directly to light leptons but 

only to the gauge bosons through their standard-model gauge interactions. This 

assumption is valid for most new particles one might wish to introduce-heavy 

quarks, heavy leptons, technicolor bosons, and all of the states of supersymmetric 

theories except the selectron and the smuon. Lynn, Peskin, and Stuart termed this 

scheme of coupling ‘oblique’. They showed that the oblique radiative corrections 

to the properties of the 2 and W can be represented quite generally by straight- 

forward and manifestly finite expressions. These expressions allow one to classify 

the various corrections and to understand which precision experiments should give 

identical and which complementary information on new physics. One of our goals 

_-.. .- _ 
-. 

in this paper is to extend this analysis to the corrections to et-e- ---) W+W-. 

Accordingly, this paper will proceed as follows. We begin in section 2 by re- 

viewing the basic kinematics of W pair production. Following the formalism of 
WI Hagiwara, Peccei, Zeppenfeld, and Hikasa, we present formulae for observable 

differential cross sections in terms of W pair form factors, which might then be 

analyzed at the one-loop level. In section 3, we present a general analysis of the 

oblique weak-interaction radiative corrections to the W form factors. We explicitly 

extract corrections which are already observable in low-energy and 20 resonance 

experiments, incorp,orating these into the effective running electroweak parameters 
a- _T_ 

i-c defined by Kennedy and [51 Lynn. What remains is a set of intrinsically new radiative 

_- 
A- See refs. [15]-[17]. A n extensive bibliography of theoretical work on the reaction e+e- + 

W+W- can be found in ref. [18]. 

4 



effects; we organize these into manifestly ultraviolet-finite combinations. Finally, 

i .-- we evaluate these new corrections for the case of heavy fermions and scalars. In _. -. 

. section 4 we study the various asymptotic limits of’the form factors and confirm the 

kinematic enhancement of the radiative corrections in the region s - M2 >> rnb. 

We also check explicitly the restoration of the unitarity cancellation for asymptotic 

s. In section 5 we discuss the physics underlying observability of the corrections, 

and present numerical examples relevant to future high-energy experiments. We 

find that a new heavy generation of fermions gives a sizable correction, an en- 

hancement of roughly 0.02 pb, constant in cos0. At 1 TeV, this represents a 5% 

enhancement of the total cross section at nonforward angles. 

a- _=_ 

- --cc 

- 
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2. General Formalism 

i ,; 
Since our analysis concerns oblique corrections due to new heavy particles, we 

. 
should expect that the most interesting effects we will uncover will be corrections 

to the form of the three-gauge-boson vertices. It is easiest to keep track of these 

corrections by studying the reaction e+e- + W+W- for vertices of the most 

general structure, and then inserting the specific expressions for the form factors 

which arise from explicit one-loop computations. The general analysis which we 

require has been carried out most efficiently by Hagiwara, Peccei, Zeppenfeld, and 

Hikasa (HPZH).lr” In this section, we will review their results and express their 

formulae in a fashion convenient for our analysis. 

- HPZH begin their analysis with a general parametrization of the WWA and 

WWZ vertices. In this paper, we will work in the Euclidean metric. With that 

convention, their general vertex takes the following form: Let f;” represent form 

factors (V = A or 2) and T; represent canonical Lorentz structures (implicitly 

carrying three vector indices). The vertex shown in fig. 1 is built from these 

ingredients as 

_-.. .- . 
- Iyqq,q,P) F fy - Ti 

i=l 

= g. (q - q)PpP + f? . (Q - ~[“‘” 

+ f3” * (P’YS’LP - P&F) + f4” - i(Pv@  + my (24 

+ f5” . $L”PP (q - i& + fG” * idJapvp 

+ fy .;(Q-Q) w@Vp(q - q)g _ 
>- _=_ m2, 

-- --c 
_- The form factors are dimensionless functions of s and mw. We will consistently 

ignore the electron mass. 

6 

- 



At the tree level, the A and 2 vertices have the same kinematic structure; both 

.-- are of the form gvTo, where . . _ 

. 
9A = e , gz = e . cs 

Se 

(se and cg denote cos 8, and sin LJ,), and 

To = Tl + 2T3 = (q - q)pF@ + 2(P”Spp - PpSp(u) . 

P-2) 

(2.3) 

Thus, at the tree level, we would write 

f;’ = fi” = 1 ) f3” = f3” = 2 ) P-4) 

- 
and set the other form factors to zero. 

Using (2.1), we can write the full amplitude arising from the s-channel diagrams 

for e+e- + W+W- [fig. 2(a)] as 

M = ie2Q (z)ypu) pa rA l pcwp m?)qm 

_.~. .- . 
- 

+ ie2 (13 - si Q) (vTpu) 1 

4 P2+m$. ryp cx@;($ 

P-5) 

where P2 = -s, u and v are electron and positron Dirac spinors, and &(Q), EP(Q) 

are polarization vectors of IF, respectively. We may consider the electron to have 

definite helicity and write 13 = -i for eL, 13 = 0 for eR. Equation (2.5) suggests 

that we combine the photon and 2 vertices according to 

Fi = Qft + (13 - so Q> 
4 

) i=1,**.,7 ) (24 

a- _=_ 

_- 

and define I’p(yp as the vertex built from these form factors according to (2.1): 

rfi@(q,ij,q = eFi-T, . P-7) 
i=l 

C 

- 
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i .-- 

Then the matrix element (2.5) can be written more concisely as 

. . _ 
. (P&. I?@. E;(Q) i?;(q) . P-8) 

The form factors F4, F6, and F7 multiply CP-violating terms; these always vanish 

explicitly in the standard model and in the CP-conserving extensions that we will 

consider here. 

- 

. It is quite straightforward to evaluate (2.8) d irectly for each initial and final 

polarization state by inserting explicit forms for the electron and positron spinors 

and the W boson polarization vectors. We sketch this development in appendix 

A. Following this analysis, we can construct the differential cross section for W 

scattering from electron and positron states of definite helicity into W states of 

definite polarization. Expressing these cross sections in units of the point cross 

section 1 R = 47ra2/3s, we find 

- 

da 
-= ~+C (R) , 
dcos6 8 

Cm = 2sin28 [I Al I2 -(AlAa +A2AT)cos8+ IA212(1 +2cos2B)] 
_-_._ . 
- 

CTL = CLT =I A3 I2 (1 + cos2 6) + (AsA: + A4Az) cos 8sin2 8 + IA412 sin4 8 

CLL =I A5 I2 sin2 8 , 

(2.9) 

where 8 is the scattering angle in the center-of-mass frame, and the subscripts T, L 

denote transverse or longitudinal polarization of the IV- and IV+. For ei+ez, the 

t-channel diagram does not contribute and so the coefficients A; are built directly 

from the F;: 

z- _F_ 

8 

C 

- 



a ,z- 

. 

A1=/LFl 
. . - 

AZ= 0  

F5 1 
A4 = +$-$. F5  

W  

(2.10) 

- 
where ,B is the W  velocity: p  = (1 - 4m&/s)i. For ejf + ei, we find the more 

complicated result 

_  

P AI=P-FI+~ 
se 

_-.. .- . 
- 

A4=-=F5+sy;D 
2mw e  

A~=~-&(;-~).ri+$-$F2+-& 

C 
>- _=_ where ,B is as above and - 

_- ID= ~(1+/3~-2pcos19) . (2.12) 
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.-- 

In practice, it is not experimentally straightforward to separate the cross sec- 

tions for W pair production into the various polarization states. The easiest way . . - 
to extract some of the information on the W polarization is to use the decay of the 

W to a charged lepton. The decay distribution obviously depends on whether the 

W is longitudinally or transversely polarized. Further, the parity violation in the 

decay amplitude allows one to distinguish the two transverse polarization states. 

The explicit formula involves only the form factors A; of eqs. (2.10) and (2.11). 

Let x be the angle between the W momentum vector and the lepton momentum 

vector as measured in the W rest frame. Then the angular distribution in x is 

given by 

- da 
d cos Od cos x ( e+e- + W+CY) 

= $~.BR(w- + e-q 

. CTT.(~ - isin’x) f 4c0s8sin~~~A2~~~ cosx 

+CLT.(~ + f sin2 x) f (2 cos 81A312 + sin2 O(A3AI; + A4A;)) - cos x 

- 

+CLL. sin2 x 
I 

7 

(2.13) 

where the upper (lower) sign refers to the cross section for eiei (eiei). The 

same formula holds for the x distributions in e+e- + W-@-v from each electron 

polarization state. This formula agrees with HPZH; it is a simple byproduct of the 

analysis leading to (2.9). W e d iscuss its derivation in appendix A. 

>- 
The tree-level differential cross sections predicted by eqs. (2.9) and (2.13) are 

_T_ 
- --- shown in fig. 3. In fig. 3( ) a , we display the differential cross section predicted for W 

_- pair production by unpolarized e+e- pairs at 6 = 1 TeV and the decomposition 

of the cross section into the contributions from the various W boson polarization 

10 
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however, the contribution from right-handed electrons is generally quite small.) In 

i ,-- fig. 3(b), we plot the x distribution at three values pf cos 19. The change in the form . . - 

. of this distribution reflects the increasing proportion of longitudinally polarized W 

bosons prsduced as one moves toward the backward direction. 

Since the A; are dimensionless scattering amplitudes, they will violate the uni- 

tarity limit if they grow asymptotically with any positive power of s. For example, 

eqs. (2.10) and (2.11) h s ow clearly that A5 will violate unitarity if the combina- 

tion of form factors in brackets has asymptotic so behavior, since this amplitude 

contains an overall factor s/mb arising from the scalar product of longitudinal 

polarization vectors. At the tree level, (2.4) and (2.6) give 

- Fl = ;F3 = 

Examining (2.10) and (2.11) we see that for right-handed electrons, 13 = 0, and 

the unitarity cancellation is immediate. For left-handed electrons, with 13 = -3, 

the residual term from the form factors is cancelled by the constant term l/4.$, 

which represents the asymptotic behavior of the t-channel diagram. 

_.~.._ . 
- 

This type of cancellation should occur order-by-order in perturbation theory. 

In section 4, we will show this explicitly for one-loop radiative corrections due to 

a heavy generation. The cancellation guarantees good asymptotic behavior up to 

logarithmic factors. However, the cancellation is guaranteed only for values of s 

which are actually asymptotic. A new heavy particle of mass M could potentially 

produce very large radiative corrections by disturbing the delicate cancellations in 

A5 at energies of order M if M >> mw. In the next section, we will explain how 

to compute the corrections to the form factors Fi which allow us to analyze that 

situation. 
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3. One-Loop Radiative Corrections 

I ,-- 

It will be useful to consider the various contributions systematically before 
. 

beginning an explicit computation of the one-loop corrections. In this paper we deal 

only with oblique corrections; this still includes a variety of corrections, as we show 

in fig. 4. In the standard model, as long as we have no subdiagrams which involve 

Higgs-Higgs or W-W scattering processes (as is the case here), the divergences of all 

one-loop diagrams are removed when we adjust three basic parameters, which may 

be taken to be g, g’ and the Higgs vacuum expectation value or, more concretely, 

a, G,, and mz. In this section, we will explain how to renormalize the various 

- 

diagrams of fig. 4 and organize them into finite corrections with direct physical 

meaning. 

We would particularly like to address the question of which part of the one-loop 

corrections to e+e- + W+W- are already constrained by measurements at low 

energy or at the 2’ and which are new to the W pair production process. To make 

this separation, we follow Kennedy and Lynn 151 * m parameterizing our amplitudes 

in terms of running electroweak parameters; ref. [5] shows in detail how these quan- 

tities summarize the information on weak interaction radiative corrections available 

- 

from low-energy experiments. From the remaining corrections, we will also extract 

a finite overall factor representing the W boson wave function renormalization. 

This will leave over other finite contributions which correct the various form fac- 

tors fzv in the three-gauge-boson vertices. These are the corrections which have 

the largest physical effect on W pair production. 

We begin our analysis by presenting our notation for the loop corrections. 

These will be given at first in terms of bare parameters (which always carry a 

subscript 0). The boson self energies will be denoted IIvv~(P2), as in.fig. 5. We 

define 
z- _T_ 

nvv - --Fe- HP,,, G p2 . 

C 
- 
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The various boson self-energies can be written as two-point functions of 

;-‘ electromagnetic currents jiM . . - and the weak isospin currents ji” according to 

. 
nAA = e?&Q 

nZA = 

nzz = 4 
a - (n33 - 2s$3~ -k S$QQ) 

4 IIWW = -*&1, 
4 

the 

W) 

- where so = sin 00 and co = cos 80 are defined by so = es/go. In general, only 

real parts of these amplitudes are relevant to the (3(a) corrections. 

Following ref. [5], we can use Dyson’s equations to account for vacuum 

the 

PO- 

- 

larization and boson self-energies by exchanging the bare coupling constants for 

renormalized, running coupling constants (subscripted with a star). This results 

in an effective Lagrangian with the same form as JCO, but with all bare quantities 

replaced by starred quantities. To include the effects of the oblique corrections we 
_-..._ . 
- are accounting here, we thus write 

1 

1 ~- 
= e(P2> 

[““QQ(‘z) - n;Q(p2)] 

1 1 
~ = - - n;Q(P2) 

SW”> 902 

(3.2) 

1 -- 
>- _T_ = 93P2> 

[l$Q(P2) - n;Q(p2)-] ; 

- -e- 

_- from these we define sz = ez/gz and cz = 1 - s,. 2 These formulae allow us to relate 

processes occurring at P2 to measurements performed at p2. We similarly define 
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running boson mass parameters to include self-energy and mixing effects: 

. . - 2 1 e2 1 - . 
M’* = s:c; 4fiG,,p, ’ 

M&p’. 
s: 4fiG,, 

with 

Gpt(P2) = G,* (P2> 
1 - 4&‘G,&2)(n~~ - n,Q)f; 

P-3) 

(3.4) 

P*(P”) = 
1 

1 - 4J2G,@33 - &I) ’ 

(All starred quantities in this paper should be evaluated at 

written otherwise.) A little algebra yields an explicit form 

(3.5) 

P2, unless explicitly 

- 
M$,(P2) = m; + 5 

* 
@3Q - n33)(p2) - (n3Q -&3)(-m;) 

+ m; - (c: - si) (nzQ(P2) - nf;,c-m;)) 

- 

(3.6) 

@“QQcp2) - ‘p,Qbrn;)) * 1 
_-..._ . 
- 

The combination of self-energies on the right-hand side of (3.6) has no uncan- 

celled ultraviolet divergences. With these definitions and light external fermions, 

the boson propagator and non-Abelian vertex contributions to the neutral-current 

interactions sum up to the fully renormalized expression [51 

M = { ez g + & (I3 - !y;(;; s:Q') } . (3.7) 
* * z* 

We use the renormalization scheme detailed in ref. [5]: 

. .rni E Mi,(P2 = -m$) = (93.00 Gey)2 

>- _T_ 
- -*- 4r/ez(O) = 137.036 P-8) 

GPL*(0) = 1.1581 x 10-5(GeV)-2 . 
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(G, differs from G,,(O) by residual vertex and box corrections.) All of the diver- 

,-- gences in our calculation will be absorbed into the three functions Mi,, ef, and . . _ 
gz or sf. Note that in this renormalization scheme, s:(-m$.) is extracted from 

the measured mz through terms including p*. Thus, s:(-rng) will be affected by 

large isospin mass splittings. 

With this renormalization, contributions from individual fermion generations 

or scalar doublets are separately gauge invariant and finite; each such contribution 

can be considered on its own footing. Accordingly, while our calculations include all 

electroweakeffects of the new heavy particles, they ignore the conventionalparticles 

of the standard model, since the standard effects are of order o, unenhanced, and 

smooth as a function of s. The standard contributions should of course be included 
- to correctly analyze precision measurements. We also neglect minor corrections - 

from the Higgs and vector boson sector; this eliminates longitudinal self-energy 

contributions and the need to rediagonalize the 2 and photon. [51 (Th e case of 

a strongly coupled Higgs sector will be presented in a separate publication. 5 
191 

Bremsstrahlung effects merely produce an overall multiplicative factor convolved 

with a hard-photon energy shift, which can be treated 1”’ straightforwardly and will 

have no qualitative influence on the effects reported here. Finally, QCD corrections 
_.~.._ . 
- should be quite small at the energies we consider, and we neglect them as well. 

In our formulae, the influence of the running of ep and sz is relatively minor, 

and the reader may reproduce the value of any differential cross section that we 

present to a few percent accuracy by fixing these running parameters at the values 

4r/e2 = 128.0 , s; = 0.223 ; (3.9) 

si will be affected by the p parameter of course. The W boson mass, unlike the 

2 mass, appears in our calculation only from the kinematics and should be set c 
>- _T_ 

- -+- directly to its physical value. In the calculations of section 5, we have used the 

_- value of m& T M$, (-m&) computed from the electroweak theory, including 

one-loop radiative corrections. This means that we change mw slightly in accord 
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with the properties of the new heavy particles; this change is small except when 

i ,L- we include heavy generations with very large isospin splitting. Even in the worst 

. case consistent with current p parameter measurements (Ip - 11 < 1% , translating 

to Am2 <. (200 GeV)2)f21’221 one would make an error of less than 2% in the 

differential cross section by taking the value mw = 82 GeV. 

Having defined the parameters of the theory, we can now put together the 

various corrections to e+e- --$ W+W-. We begin with the external leg corrections 

shown in figs. 4(a) and (b). Th ese multiply the matrix element by an overall wave 

function renormalization factor 

zw = 1+g;. 
a 

(- )I dP21-111 p=+.$ - 
W 

(3.10) 

- 

For the t-channel diagram, this is the only one-loop correction. If we recall that 

the bare tree diagram is proportional to g$, we can rewrite the overall factor so as 

to have the same gz appearing in both channels: 

g,“zw = g,2(P2) * $zw = g,2(P2) - 5 ) 
* 

(3.11) 

_-..._ . 
- 

where 

t G 1 $ gz(P2) (&(-m&) - n<Q(P2)) . 

Since a Ward identity relates vertex and leg corrections, this is a finite object, as 

may be checked explicitly. 

The easiest way to analyze the s-channel diagrams is to use the effective- 

Lagrangian insight in eq. (3.7) that the diagrams of the form 4(c) simply renor- 

malize the parameters of the zeroth-order diagrams. Folding these corrections into 

the zeroth-order amplitude, we have 

>- _T_ 

p- M = $ypu). [Q + (I? s2”‘) s -sM2 ] (To)pap-E&) E;(q) . (3.13) 
* z* 

where 5”s is the tensor (2.3). We then consider the diagrams of fig. 4(b) to multiply 
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this amplitude by the additional and divergent factor 

. . - 

zw = [ ’ (1 + &$Q(p')) . (3.14) 

Finally, we must include the true vertex corrections shown in fig. 4(d). In order to 

keep track of the electroweak currents as in (3.1), we notate these corrections as 

- WP e*g? ’ cQ+- , (3.15) - 

using 90 - 9* 2 - 2 to the required accuracy. Then the diagrams of fig. 4(d) yield an 

additional term 

_-..._ . 
- M = -$ . (qpu) ( > 

x QCrIm + [ 
(13 - s:Q> 

s2c2 * (s Jm$) ( 3+- - -yyP 
* * s:~~~~)] * E;t(q) E;(q) . 

(3.16) 

Here we can neglect the O(g2) difference between Mi, and rni, although in 

(3.13) we must retain corrections proportional to Mi, - mi. There it is useful 

to expand the denominator (s - Mi,) to first order about- (s - m$-); then the 
*- -3. 

- -“- zeroth-order term can enter the tree-level unitarity cancellation unchanged. The 

results of eqs. (3.13), (3.14), and (3.16) _- can thus be combined to form the following 

expression for the sum of the s-channel diagrams: 

17 



,z.- C 

[Q + (I3 ;2s:Q) s _srn2 ] . Td 

. . _ * Z 

+ (13 -S:Q> s M ;* -m%. T/‘ffp 
S  f s-,2, s-,2, 0 

+ [Q - 9: (CT!- + I-I&T{@) 

+ (13 - s:Q> 
S2C2 * * s _s,:91* (cf;P- - @$?I- + ~;lIt;~To”“~ 

(3.17) 

- Each line of (3.17) h as cancelling ultraviolet divergences, since CQ+-, X3+-, 

and -II!&To contain identical divergences. In the first line, we have separated out 

a piece proportional to the zeroth order s-channel amplitude; when this is added to 

the t-channel amplitude, the sum is simply the zeroth-order amplitude evaluated 

- 

with running coupling constants and multiplied by [. The remaining three lines of 

(3.17) give intrinsically new corrections. 

_.~. - . 
- 

We expect that the full one-loop-corrected amplitude should obey perturbative 

unitarity. In the combination of the t-channel amplitude with the first line of (3.17), 

the unitarity cancellation is explicit; eq. (3.11) arranges for both channels to have 

gz(P2) as the coupling and < as an overallfactor. For the remaining terms in (3.17), 

we can only check case by case that the leading, unitarity-violating s dependence 

cancels when s is large. If the loop diagrams contain a heavy species of mass M , 

we cannot expect this cancellation to occur except when s >> M2. Thus, when 

s - M2 >> m&,, we expect the last three lines of (3.17) to produce radiative 

corrections enhanced by a factor (s/m”,). These are the dominant effects arising ; 
>- -3. from our analysis. - 

-- .-e- 
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We conclude this section by converting the amplitude (3.17) into a set of form 

,-- factors which can be inserted into the formulae of section 2. If we use To = Tl+2T3 . . - 
and decompose each vertex function according to 

Cp@ E 5 T; . Et”) , 
i=l 

we can read from (3.17) 

f:’ = 1 + 9: . [cd” + I$,] 

fi” = 1 + g * [(cy - s$g)) + c;II&-J + Mg* - m22 
* - s-m; 

f3” = 2 + g: * [I$’ + 2rI<,] 

f3” = 2 + y-j * [(Ip - S~Lq) + 2C3gQ] + 2 Mz* - m22 
* s-m; 

f;” = g,2 * [c$)] 

(3.18) 

- 

(3.19) 

_-..._ . - f? = Ej . [py _ pJ$‘)] 
f i=2,5 . 

To use these form factors, we must also make two modifications in the formulae 

of section 2: first, the coupling constants e2, si should be replaced by ez, sz; 

second, the final cross sections should be multiplied by the factor ItI2 defined in 

eq. (3.12). Both of these corrections are numerically quite small, although one 

should note that, for light fermions or scalars, < contains logarithmic factors which 

are important in the correct coupling constant evolution of the three-gauge-boson 

vertex. >- _T_ 
*e- 
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4. Low and High Energy Behavior 

. 

,-- 
We areYnow in a position to evaluate the various Feynman diagrams contribut- 

ing one-loop corrections to the process e+e- + W+W- and to organize the results 

- 

explicitly into finite corrections. For heavy fermions, we consider the diagrams 

shown in figs. 6(a) and (b). Th e actual formulae for the various corrections are 

complicated and, in themselves, rather unilluminating, so we have chosen to dis- 

play these expressions only in appendix B. In this section and the next, we will 

discuss their important properties. Here, we analyze the formulae analytically in 

the limits of high and low energy. For a heavy generation of mass M we will show 

explicitly the presence of enhanced radiative corrections when s << M2 and also 

a perturbative unitarity cancellation in the radiative corrections for s >> M2. In 

section 5 we will study the formulae numerically for general values of s. 
- 

--~. - . 
- 

In our presentation of the complete results given in appendix B, we have fol- 

lowed the method of Passarino and Veltman P31 - m expressing the various diagrams 

in terms of a fixed set of standard one-loop integrals. One can then evaluate these 

integrals analytically; P41 tailored computer programs exist for this P531 In purpose. 

our analysis, we have found it convenient to make some further simplifications, in- 

eluding the explicit cancellation of ultraviolet divergences, and to write our results 

in terms of a set of finite and dimensionless reduced Passarino-Veltman functions. 

These functions are defined, and their asymptotic forms are presented, in appendix 

C. The results of this section can then be obtained by inserting the appropriate 

asymptotic formulae into the results for the form factors given in appendix B. 

4.1. Nondecoupling E$ects at Low Energy 

We consider first the case of radiative corrections for s well below the heavy 

fermion threshold. ‘As we have explained, we expect in this-region to find terms 
C 

*- -3. --i 
,-enhanced by a factor (s/m2,). Ordinarily, one might expect that loop corrections 

_- due to heavy fermions are suppressed by powers of (s/M2) because of Appelquist- 

Carazzone decoupling. However, with chiral currents or large doublet mass split- 
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tings, it is possible to evade the decoupling theorem and isolate a finite contribu- 

i ,=- tion. Clearly, degenerate scalar particles will not exhibit this effect, as we discuss -. _, 
in section 5. . 

Let us-then expand the expressions of appendix B, for s in the range m& < 

s << M2, assuming a fermion doublet with hypercharge Y and masses m, and md. 

Defining 

Am2=mi-rn$ and m2 = i(rnfj + m$) , (44 

with Am2 << m2, we find 

Fl EL 
4lrs; 

.- >I - 
F2r 0 

_.~.._ . 
- 

F:, E:’ 
1 

4lrs; 
--.~-Y..~(l+~)+~(-~.y-~.~)] 

24~; 
(4.2) 

where 13 = -$,O for e:, ei. These formulae simplify dramatically if we in- 

- 

elude a full generation in which all the doublets have the same masses, namely, 

[y] leptoa = [$I quart, and use the fact Cdozlblets Y = 0; 

F2r 0 

_. _T_ 
F3E& es 

47M; ( > e 

(4.3) ; 
-- 

F5+&+1) (-&@$)a 
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Note that only F5 depends on the mass splitting and Fl, F2 and F3 are zero for 

,-- the right-handed electron. For left-handed electrons, the process e+ei --) W;WL _. __ 

. will show leading behavior 

As(l - loop) s s . --& . -& 
mfv e e 

and the cross section for e+ei -+ WzWl becomes 

As(l - loop) 
Ag(tree) I 

- 
where As(tree) is given by (2.11); thus 

s(j& ctyc; s 
m= ( > 374 

* ---T& E (2.9 x 10-3) * -$ . 

(4.4 

(4.5) 

- 

(4.6) 

_.~. - . 
- 

This radiative correction is proportional to the number of heavy generations; aside 

from the effects of isospin mass splittings on the p parameter, it does not depend 

on the masses of the heavy generation as long as s << m2 and lepton/quark mass 

differences are small. The factor 10S3 is typical of one-loop radiative corrections, 

but the enhancement factor s/m2 W yields a 10% effect for fi = 500 GeV. This 

relative enhancement continues rising, quadratically in energy, until it is cut off 

above threshold. In essence, the unitarity delay effect can be thought of as adding 

a constant 0.02 pbarn to a tree-level cross section which is falling like l/s. The 

unitarity delay thus exists and is measurable at lower energies, but it would be 

advantageous to use as high an energy as possible. 

>- _T_ 

- --r- 
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4.2. Asymptotic Behavior at High Energy 

4 ,=- 

We -nob consider the case s >> m2 >> m&, including one heavy generation 
. 

where all fermions are of equal mass m. As already mentioned in section 2, any 

uncancelled leading so behavior in the form factors F; will violate unitarity because 

of the factor --& in As. We check this cancellation below, keeping next-to-leading 

order terms as a check on our numerical results and to provide physical insight into 

the system’s high-energy behavior. 

Referring to the appendices, the F; can be seen to tend asymptotically to 

Fl&2L.2G 
47Ts; 3 s; 

m2 I3 
~$+--~(32-161n~+41n2~-4~2 

e e )I V-7) 
F3=--$&$ [-$(l+$) [In-$-21 -2$[ln”-$-n’]] 

F5 = 0 ; 

_.~. - . 
- thus 

m2 
A5(1 - loop) S’ -5. -. 

e mfv 

- 

Notice that the leading so terms in the F; are cancelled in As, a result of unitarity 

cancellation at the one-loop level. Also cancelled are all dilogarithms. Even so, if 

m2 >> m2, then the magnitude of As(l-loop) can be as large as that of Ag(tree) in 

(2.10) and (2.11). The perturbative expansion requires careful examination at high 

a- 
energy with a sufficiently heavy fermion generation, as we shall discuss in detail in 

-3. --L 
- .--section 5. 
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5. Numerical Results and Discussion 

i ,=- 
We can-now compare the above results with numerical calculations and discuss 

. 

- 

the experimental observability of the heavy particle corrections. In assessing the 

size of these corrections, one should remember that nondecoupling effects generally 

arise from the breaking of global symmetries, in association with large dimension- 

less parameters. For heavy fermions in the standard model, these parameters 

might arise either from isospin-breaking mass differences or from the Yukawa cou- 

plings needed to generate even isospin-symmetric masses. We should assess the 

relative importance of these two contributions. For scalars, there is only one pos- 

sible source for the effect since only the isospin splitting of masses arises from a 

symmetry breaking. 

_.~. - . 
- 

Let us begin with the case of heavy, isospin-degenerate fermions. The detailed 

forms of the radiative corrections to the W form factors, valid over the full range 

of energies, are presented in appendix B. By inserting these expressions into (2.9), 

we obtain the effects of the heavy fermions on the differential cross section for W 

pair-production. In fig. 7, we plot the corrected differential cross section at cos 8 = 

0, incorporating effects of a degenerate heavy generation of fermions, for several 

different masses. (Integration over cos 8 merely shifts the whole curve upward by 

including the unenhanced forward peak.) We can see that the radiative correction 

gives a small but noticeable effect at low energies and contributes a significant 

enhancement of the cross section in a region within a factor of 2 in fi of the 

pair production threshold. The suggestion from the analytic formulae of an effect 

increasing quadratically with energy is very well confirmed here. Note the rapid 

onset of unitarity cancellations above threshold. 

- 

The physics of the correction terms is clarified by a more detailed look at the 

numerical results. Since the delayed unitarity cancellation affects mainly the cross .G 
_. _ _T_ -k 

,-section for producing pairs of longitudinal W bosons, we should expect that the 

_- enhanced radiative corrections appear mainly in that polarization state. Indeed, 

fig. 8 shows the contributions to the cross sections of fig. 7 from longitudinally 
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polarized W pairs; the enhancement of this polarization state is very large and 

,-- accounts for essentially the whole effect. The heavy fermions make at most a 2% -. __ 

. correction to the cross section due to the other polarization states. The importance 

of the longitudinal W pairs can be assessed in another way, which can be observed 

directly in experiments: in fig. 9, we plot the distribution of the lepton decay 

angle cos x in the presence of heavy fermion corrections. The enhancement near 

cos x = 0 indicates the increasing importance of longitudinally polarized W bosons. 

The dependence on cos 8 of the heavy fermion corrections shows less structure; the 

corrections are roughly independent of cos 0. However, for cos 19 > 0.5, the W 

pair production cross section is dominated by transversely polarized pairs, and the 

relative enhancement due to radiative corrections disappears. 

- Equation (4.6) displays the low energy limit of the correction term. Well below 

threshold, this contribution is independent of the heavy fermion masses. We con- 

firm this result in fig. 10 by plotting the differential cross section at cos0 = 0 for 

relatively low energies. The 3% shift indicated in the figure is just that predicted 

by (4.6), diluted by the inclusion of the other W polarization states. 

_-..._ . 
- 

Introducing an isospin-breaking mass splitting for the fermion or doublets 

breaks the standard model’s custodial SU(2) symmetry. This is known to lead 

to a large renormalization of the p parameter. In W pair production, however, 

such a mass splitting does not generate additional large contributions; rather, its 

main effect is simply to split the existing peak of the correction term into two. 

Figure 11 illustrates this behavior in the differential cross section at cos 0 = 0, for 

mu - rnd = flO0 GeV. The vertex corrections do give a small additional effect 

proportional to the mass splitting, visible in the last line of (4.3). However, this 

term contributes only to CLT of (2.9), and so it is unimportant at high energies. 

The pattern of shifts at low energy shown in fig. 12 comes simply from the shifts 

a- _T_ of m, and sz(-mi) due to the renormalization of the p parameter; we note again 

-- ---that present data limit isospin mass splittings to Am2 < (200 GeV)2.[221 

- 
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Since the corrections to the tree level cross sections we have found are so large, 

,-- we must address the question of their reliability. On the one hand, we have seen -. __ 

. that the tree-level amplitudes for W pair production are unusually small, due to a 

cancellation of amplitudes. The large size of the corrections is the result of the fact 

that they do not exhibit the cancellation. On this ground, we would not expect 

radiative corrections of still higher order to show a further enhancement. 

On the other hand, this argument cannot be complete, because the size of 

our correction term, at threshold and above, increases rapidly with the mass of 

the heavy generation. For example, the residual term (4.8) at very high energies 

is proportional to m 2. We can understand this dependence by recalling that the 

production of longitudinal W bosons at high energy is governed by the Equiva- 
- lence Theoremp7’ which states that the production amplitude is equal to that for 

production of the Goldstone scalars eaten by the W bosons in their mass genera- 

tion. Indeed, the amplitude for production of scalars through a heavy fermion loop 

precisely reproduces (4.8), with the prefactor arising from the large fermion-Higgs 

Yukawa coupling 

--...- . 
m; x2/4x = L (“f)z = 3. -. Jr (4) e mfv 

(5.1) 

- 

It has been shown by Chanowitz, Furman, and Hinchliffe I281 that quarks with 

masses above 550 GeV cannot be treated perturbatively, since their Yukawa cou- 

plings are sufficiently large to violate tree-level unitarity in four-fermion processes. 

For such heavy quarks we must expect large corrections to our calculation, propor- 

tional to addit’ional powers of the Yukawa coupling, due to virtual Higgs bosons 

coupling to the fermion loop. Thus while our calculations should be trustworthy for 

small enough quark masses (plausibly, for masses as high as 400 GeV), for higher 

masses they should’be taken only as an indication of the size of the correction to 
a- -3. 

- .- be expected. We should recall thaugh that for the main case of interest, s < m2, 

_- we predict an effect which is independent of mass and so extrapolates smoothly 

into the high-mass regime. 
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Heavy scalars exhibit much smaller effects than heavy fermions. Scalars with 

.=- no mass splitting can acquire large mass without coupling to the Higgs sector; . . -. 

. at low energies these scalars decouple and at hig’h energies they have no strong 

couplings to longitudinal W’s. The only significant corrections for scalars, then, are 

proportional to the mass-squared splittings within isodoublets. Figure 13 exhibits 

this behavior; we see that even for 200 GeV mass splittings in either direction, 

the vertex effect is small and only the p parameter effect is observable. Without a 

mass splitting, it is impossible to separate the corrected and tree-level curves. 

Let us finally discuss the size of the corrections we have found in terms of the 

expected event samples for future e+e- colliders. A design for such a collider which 

- 
is well matched to the requirements of the physics should provide data samples 

containing a few thousand events for typical annihilation processes; at 6 = 1 

TeV, such a sample would correspond to a luminosity of 3 x 1O33 cms2 set-’ over 

a running time of a year (3 x lo7 set), for a total integrated luminosity of 9 x lo4 

pb-l or 9000 R-l. The heavy fermion corrections could be sought either in the 

- 

gross form of the distribution in cos 8 or in the shape of the cos x distribution. 

The measurement of cos x requires a leptonic decay. Determining the sign of cos 8 

also requires a lepton or a tightly constrained count of charged particles. However, 

measures of the differential cross section which are symmetric about cos 0 = 0 can 

be evaluated with essentially the whole sample of W pair events. Our corrections 

predict a substantial percentage increase in the cross section except at forward 

angles, suggesting use of the ratio 

_.~.._ . 
- 

R8 = 
J 

do 
dcos8- 

I J 

da 
dcos8 

dcose- . 
dcos 8 

1 cose1<o.4 Icose1<0.8 

(5.2) 

This cancels luminosity measurement errors. At fi = 1 TeV with a ‘degenerate 
C 

_. _ -3. generation of fermions of mass 750 GeV, using our calculation as an estimate of L 

-+-the effect we find 

- 
Re = 

0.305 heavy fermions 

0.289 standard model . 
(5.3) 
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For the conditions described at the beginning of this paragraph, the numerator 

of Re corresponds to 11,200 events; these should be accepted with efficiency well 
I .-- 

above 50%. -Thus the statistical error on Re should be about l.l%, and the effect 
. 

indicated in (5.3) should b e readily observable at nearly 5 standard deviations. An 

orthogonal measure of the heavy fermion corrections is 

R, = 
s 

d cos Od cos x 
dn 

d cos 8d cos x 
d cos 8d cos x 

da 
dcos 8dcos x ’ 

Icosx1<0.6 

(5.4) 
where the denominator includes all events with semileptonic decays and both inte- 

grals are taken over ( cos 81 < 0.6. For a heavy generation of fermions of mass 750 

GeV and fi = 1 TeV, we predict 

Rx = 
0.563 heavy fermions 

0.543 standard model . 
(5.5) 

Roughly 40%1 of W pair events will involve one leptonic decay to e or p, and these 

events will be readily reconstructed. Thus, for the same conditions, we expect a 

statistical error on Rx of 1.4%. At better than 2.5 standard deviations, this can 

serve to at least independently confirm an effect discovered in the cos 8 distribution. 
- New fermions of lower mass, but still above threshold, will produce even larger 

deviations from the standard model predictions, while higher luminosity would 

lower the statistical errors. 

- 
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6. Conclusion 

,?- Add&j-a finite, gauge invariant heavy sector to the standard model gives rise 

. to large effects in e+e- -+ W+W-, which we have analyzed in terms of nonde- 

coupling and unitarity delay. Broken global symmetries and large dimensionless 

parameters are responsible for nondecoupling, while the standard model’s gauge 

cancellations are responsible for unitarity delay. Unitarity delay is most important 

in the case of longitudinal W’s with their kinematically enhanced s dependence. 

Since boson vertex corrections generate the main part of the effect, we are able 

to glean from this process important information which no fermion production 

experiment can provide; the three-boson-vertex corrections CQ+- and X3+- give 

new and independent contributions from the virtual states. Effects occurring in - 
- four-fermion processes (and most easily measured there), including isospin splitting 

effects on the p parameter and running of coupling constants and boson masses, 

are all summarized in the running electroweak parameters discussed in section 3. 

At low energy the new contributions are not yet in the asymptotic regime; they 

disturb the delicate tree-level unitarity cancellation and allow us to probe the non- 

Abelian structure of the standard model’s radiative corrections. At higher energies 

the cancellations are re-established. For sufficiently heavy fermions or sufficiently _-...- . 
- split scalars there is also a strong coupling regime; either strong coupling effects or 

our calculated results will be measurable, with a cross section shift on the order of 

0.02 picobarn. 
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APPENDIX A: C omputation of Differential Cross sections 

. 

,c- 
In thisappendix we give some details of the derivation of the general formulae 

for the e+e- + W+W- differential cross sections (2.9) and (2.13). These formu- 

lae follow straightforwardly from (2.8) by inserting explicit forms for the fermion 

spinors and the W bosons’ polarization vectors. 

To define the electron spinor matrix elements, choose the electron beam direc- 

tion as the 3 axis. Then the matrix elements for spinors of definite helicity are 

given by the simple expression: 

c7,&R,L = ~++*,O) 9 where z* = i A. (A4 

The upper sign refers to the helicity state e; + ez, the lower sign to ei + ez. The 

W polarization vectors may be specified more directly as 

with Cj+* + = 0 for transverse polarization 

(A-2) 

> 
for longitudinal polarization. 

-.... . 
- 

With these choices, it is straightforward though a bit tedious to work out the 

explicit values of (2.8) and the t-channel exchange diagram for each polarization 

state. This calculation yields the following expression for the e+e- + W+W- 

scattering amplitudes between states of definite helicity: 

M = -ie2A (A.3) - 

where for the various cases of W polarizations: 

Am = Al&++c$ +Az($. 
A 

pt$ & - 6; + 3 * + & * ?T 

ATL = Az$:c~- Aqg.cZ&.cj 
._ - 64.4) z 

--e.-. 
ALT = -43&*+ + A&c+&+ 

- 

ALL = A5& + cj , 
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where i is a unit vector in the direction of the W- momentum, EyT are the transverse 

L ,c- polarization vectors, and the factors A; are just those listed in (2.10) and (2.11). 

. Squaring this expression and summing over the transverse unit vectors E$, PT 

produces precisely the formula (2.9). To obtain .(2.13), we require only a small 

extra piece of analysis. The square of the amplitude for the decay of W- to e-y, 

evaluated in the W- rest frame, is proportional to 

e i* . 
[ 
@j _ nini _ @k,k . ej , 1 (A-5) 

- 

where C’is the polarization vector of the W- and n’ is a unit vector in the direction 

of the lepton’s momentum as viewed from this frame. We may specify the direction 

of n’ in terms of two angles-the angle x and an azimuthal angle $ about the G 

axis. We may define x to be the polar angle between n’ and 4. Although we can 

obtain interference terms between different polarizations from this formula, we find 

it simplest to average over x; then we may replace in (A.5) 

- 

rLk+cosx.tjk, . 
. nEn23 j ~0s~ x . 4’4’ + sin2 x . - 6”’ - Gi$) , a( .’ (A-6) 

v. . . .  .  

- This simplified form of (A.5) may be combined with the squares of the amplitudes 

(A.4) and summed over W- polarizations, to yield eq. (2.13) in the narrow-width, 

on-shell approximation. 
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APPENDIX B: Explicit Formulae for the W+W- Form Factors 
i ,c- 

In this”appendix we present explicit expressions for the Feynman diagrams of 
. 

fig. 6, and convert these expressions into formulae for the one-loop corrected form 

factors, eql (3.19). W e express these formulae in. terms of the one-loop integrals 

defined by Passarino and Veltmanr3’ and in terms of a set of reduced Passarino- 

Veltman functions defined in appendix C. 

B.l. HEAVY FERMIONS 

-.... . 
- 

We consider first the case of one generation of heavy fermions. To cancel 

anomalies, we must consider a full generation; our formulae will be written as 

sums over f = ui, di, V, e or doublets d = (ui, di) (Y, l), where i runs over 3 colors. 

When we sum over doublets, the subscripts u and d will denote the up and down 

components. Q will denote the electric charge of a particle and 13, Y its isospin 

and hypercharge: Q = 13 + Y. 

The vacuum polarization insertions defined in (3.1) are given in terms of the 

functions bi defined in appendix C by the following expressions: [5,291 

16n211&(P2) = 8 CQ; [-0 + b3(P2, rn;, m;)] 
f 

16r2n&(P2) = 4x(Q13)f [-$ + b3(P2, m;, m;,] 
f 

16n21133 (P2) = 2 E(I3); [2P2 (-4 + b3(P2, m;,m;)) 
f 

- m; ( A + bo(P2, m;, m;) >I 
_ _Y_ 

~- ---- 
16r21111 (P2) = C [2P2 (-$ + b3(P2,mi, m:)) -sm2 i maA 

d 

P.1) 

- 

_- 
+m$a(P2, mi, mt) + mEbl(P2, rni, mi) 1 
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Here, A is the divergence of dimensional regularization, A = n-(2-6) . I’(2 - $) N 

;.- l/P - $1 T 7 - 1 n r. An arbitrary mass parameter In m$, arising from coupling 

constant dimensions and serving to eliminate dimensionful logarithms, follows A 

and cancels out along with it. From these formulae, we can immediately assemble 

expressions for the heavy particle contributions to the running coupling constants, 

the running 2 mass, and the wave function factor <. For the running couplings, 

1 1 --- = _ 
ew2> ef(P2> &Q$33(P27+74) - b3(p2,m2f,m2f) )I 

1 1 --- = _ 
sw2> S,2(P2> 

&(Q’3)f (b3P2, 4,4) - b3(p2, m2f, m;)) 1 . 
- VW 

The factor 6 becomes 

2P2b3(P2, m:, m;) + m2,bl(P2, m2,, m;) 

+db1(P2, & m2,,} IP2& 
W (B-3) 

-.... . 
- - 4 ;(f + Y)b3(P2,m;,m;) + ;(; - Y)b3(P2,m;,m;) -t 11 . 

We require the running 2 mass in the particular form which appears in eq. (3.17); 

for a generation of fermion doublets this is 

jp&++ A-. 
167r2c2 8Q;mi - [b3(P2) - b&--&)1 

* 

+ 4(13Q)f{ [P2 + mi(l - 2s$)] * b3(P”) + 2rnisz - b3(-mi) > 

- P2 - b3(P”) - rn$. b3(-m$) + - irn? - [bo(P2) - bo(-mi)] 1 . P-4) 
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The computation of the vertex diagrams, fig. 6(b), is less straightforward. After 

,c- performing the Dirac algebra, one must gather terms together into the Lorentz -- L. 
1 . structures given in eq. (2.1), ‘g noring terms proportional to the electron mass and 

using the trick in appendix A of ref. [18] t o e iminate additional structures. After 1 

this rearrangement, the coefficients of the structures T4, T6, and 7’7 disappear 

as required. Evaluating the integrals using dimensional regularization, we find 

additional finite terms of the form 

- 

arising from fermion traces. It is essential to keep these terms in order to obtain the 

unitarity cancellation in the one loop corrections. The final result can be written 

as follows: 

- 

x3+- = k C [(13)d - H(P2,mz,mi) - (13)u - ri(P2,m:,mz)] 
doublets 

CQ+- = f c [Qd. [H(P2,mi,mi) - G(P2,mi,mi)]- 
doublets 

(B-6) 

-.... . Qu * [I?(P2, rni, mz) - &‘(P2, rni, - d,l] 7 

where H = C; H(“) * Ti and fi = H - 2Hc4) + T4 - 2Hc5) + T5, i.e. T4 and T5 reverse 

sign, and similarly with G. Finally, in terms of Passarino-Veltman integrals 
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,c- 167r2G(P2, rn:, rni) = (To - T3 - T5) . - mT m; (c2 -x3) 
. 

167r2H(P2, rn:, rn$ = 

TO ;(I - A> + Co + Cl - $4 - ~5) - --&(c6 + ~7)) 

ml+ -T2. 4. -c7 
m2R 

+T3 co - 3cl - +c3 - 5c4 + 3c5) + --+ + 3~7)) 

- 

sT5 -co + 3~1 - ( 
mtv 
--$c4 - c5) + -$c6 - c7)) ; 

P-7) 
the ci have arguments (P2, rn:, m$). 

B.2. HEAVYSCALARS 

We now consider a hypothetical heavy scalar doublet fD = (&, $d) with SU(2) x 

U(1) quantum numbers 13 = &$, Q = (Qu, Qd), masses (mu, md), and vanishing 

vacuum expectation value. We obtain vertex corrections 

_..._ . 
- cQ+- = &X 

[ ( Qu (;A - cl) . To - 2% c7 * T2 + (3~1 - CO) - T3 
> 

(P2, rni, mE) 

- ;A - cl). To - 2 m2w 
-c7 - T2 + (3~1 - CO) - T3 
“2R > 

(P2, rni, rni) 1 
x3+- = +).To-2$ c7’T2$(3Cl 

._ - 

-- 
(~A-~l).To-t2~~~ -c7 * T2 + (3~1 - CO) * T3 

m2R 
(P2,mi,m%) 1 , Qw 
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c ,c- 

. 

and two-point corrections F W O I 

QZ - (4 + 4b3 + bo)(P2,mi,mi) 

+ Q i - ($ + 4b3 + bo)(P2, rni, m i) 

r 
1 1  -HP =--.- 

39 16~~ 2  I 
Qu  * ($ + 4b3 + bo)(P2, m i, m i) 

- - Qd  - ($ + 4b3 + bo)(P2, m i, m$  1 
1 P2 2A j-J33 = --- 

167r2 4  [ 
3  + (4h + bo)(P2, mz, mz) + (4b3 + bo)(P2, m i, m i) 1 

1 1  IIll = --. - 
167~~ 2  [ P2($ + 4b3 + bo)(P2, m i, m$  

-.._ . 
- 

+ (rni - rni). [bl(P2,mi,mt) - bl(P2,mi, ma] - 
(B.9) 

For the case of a  full generat ion of superpartners, we can sum over sleptons and 

squarks. 

36  



APPENDIX C: Reduced Passarino-Veltman Functions 

,c- 

. All higher Passarino-Veltman functions may be uniquely decomposed into lin- 

ear combinations of the scalar integrals Bo and CO, for which closed form expres- 

sions are known!23’241 The decomposition algorithm has been implemented in an 

algebraic manipulation program; [261 for purposes of asymptotic analysis, however, 

we have found it convenient to define reduced Passarino-Veltman functions repre- 

senting finite, dimensionless parts of two- and three-point one-loop integrals. All of 

these functions include an arbitrary mass scale ??ZR, which cancels out of all phys- 

ical results. For the two-point functions, it is straightforward to determine the 

asymptotic forms of these functions. For the three-point functions, the asymptotic 

- analysis requires some effort, and so we have catalogued the required formulae. - 

The functions bi( P2, rn:, rni) which appear in appendix C are defined as fol- 

lows: 

-.._ . 
- 

1 

[bo, bl, h] = 
J 

dx log([xmq + (l-x)mz + x(1 - x)P2 - ic]/mi) 

0 F.1) 

* [ -1, 2, x(1 - x) ] . 

These functions are related to the corresponding Passarino-Veltman integrals P31 

bY 

&(mz, ml> = b(ml, m2> + (A - lnmi) 

Bl(m2,ml) = bl(ml,m) - ~&-l&J (C-2) 
_ . ._ - _ 

--et.-. 

& 

&(mz, ml) = bs(ml, mz) - :(A - lnmi) . 

-- 
with B3 = I321 + Br; B3 and Bo are symmetric in mf,mz. 
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Passarino and Veltman’s C functions are defined by 

co,p,pqwp q2 7 q2 7 ( P2,mT,mz,m$) s ” 

J ddk (1, k,, k,ku, k,kuk,) 
h2 (k2 + mT)[(k + q)2 + m$[(k + P)2 + m$] 

and can be written in terms of form factors; 

c/L = q&11 + qpc12 

c/w = q&c21 + qpquc22 + {q~}/.&23 + &vc24 
--- 

CWP = Q&/QpC31 + QpQvQpC32 

- 
+ mhJpc33 + GmhLupc34 

+ {~~},uvpc35 + {q&&36 , 

(C.3) 

(C.4) 

with braces summing over distinct permutations. P = q + if always. 

_ In the present case we may set rn! = rni + rn; and rni + mf; then we 

define the reduced Passarino-Veltman functions ci(P2, mT,m;) in terms of the 

denominator 

_..._ . 
- 

D = zrn! + (1 - z)mi - ~(1 - z)m& + xyP2 - ic (C.5) ’ 

as follows: 

[CO,Cl] = J dxdydzS(x + y + z - 1) log(D/mi) 

._ - 
~- ---- 

x [l, z] 

[ 1. J 
G 

c2,c3,c4,c5,c6,c7 = dxdydzS(x + y + .z-- 1) (2) - 

x [ 1, 2, 2, 2, XY, XYZ ] - 
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Note that 

c ,c- 
[C&C7j i- 

. 
9 [-3,-Q] + q[C2,.3] + (mS -m! - m’)[C3,C4] + *[C4,C5] . 

These functions are related to the corresponding Passarino-Veltman integrals by 

rn~C~l,~2 = -f (Ca f C3) 

rn$Czl = 3(c2 + c4) - C6 

rngC22 = 9(c2 + c4) - c3 - C6 

mg’C23 = + (C2 - C3) - Cg 

m$& = -3(C2 + C5) + i(C6 -t C7) 

VW 
m$c32 = -a(C2 - 3C3 + 3C4 - C5) + $(C6 - C7) 

-.... 
- 

mi’c33 = -+(C2 - C3) + ;Cg + $7 

mi-c34 = -+(C2 + C4) + C3 + $Cfj - !jC7 

C24 = -&o + ;(A - lnmi) 

C35 = $(CO + cl) - +(A - lnmi) 

c36 = $(cO - Cl) - $(A - lnm;) 

where 

Cij =Cij(-m&, -mb, P2, rnz, rn:, mz)‘ ..-. 
~- ---- 

Ci =Ci(P2, m4, mi). -- 
(C.9) 
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We reduce the integrations over three Feynman parameters to one parameter 

c ,-- integrations for numerical analysis and asymptotic expression. . . . . 

. 1 

[CO, cl] = 
J{ 

dz (1 - z) . (In A m:, - 2 - id(-A)) + II+, s)I~‘~ . K(z) . [I, z] 
0 

[c2,c3,c4,c5] = jdz ~+(z,s)~-1’2~Q(z)4~(z)+,z,z2,z3] 

0 

where we define 

(C.10) 

- A(z) = zrns + (1 - z)mi - z(1 - z)m2, (C.11) 

R(z,s) = y - (1 - z)2 (C.12) 

Q( )={ 
1 for 

Z 
-1 for -..- . - 2arctan [(1 - z)~.R(z,~)l-~‘~] 

K(z) = 

In s -ir.B(A) [ 1 z R P,S 

z > z+ 

z < z+ 
(CW 1. 

for z+<z<l 

(C.14) 

for OIz<z+ 

and z+ , a solution for R(z, s) = 0, is given by 

z+ = 
s+2(mT-rnij-m&) 

s-4m& 

(C.15) z ,~ 
_. 

_ _T_ 
- s _ trn2 - [mqs + (mf - mg)2 - 2m&(m4 + rng) + m&Ill2 . -- 

--- W 

- 
For present purposes, we may disregard the imaginary parts. 
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For large and small values of s, the functions ci take the following asymptotic 

i ,c- forms. We&- always assume that the mass difference between ml and m2 is small 

. and set Am2 = rn: - rni , m2 = $(rnT + rnz) , with Am2 < m2. Then for 

m2W << s << m2, 

1 s 1 Am2 1 s CO=-In------- 
2 m2R 12 m2 24 m2 

1 s 1s cl=-In---- 
- 6 mi 120 m2 

1 Am2 
+ -- 

1 s I 360 m2 
- 

1 Am2 
+ -- 

1 s 1 840 m2 

(33 = 
I 

1 Am2 1 s 
+ -- I 1260 m2 * 

- 

(C.16) 

- 

When s >> m2, dropping Am2/m2 and nonasymptotic terms, 
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-.._ . 
- 

1 s 3 co=-In--- 
2 . . L. rni 2 

- ? [ i[ln2 3 - 7r2] + In 3 + I] 

1 11 cl =-lnS - - 
6 rn$ 18 

- $ [ k[ln2 5 - 7r2] 

S - . 
miz 

c2=-i[ln2--5-7r2] 

S s 1 -. 

m2R 
c3=-~[ln2-f-- 

m2 
7r2] +2In- -4 

m2 

m2 
+s [ 

-2lns -41 

-In--$+3 1 

(C.17) 

S 
-*Cq=-$[ln2--$-7r2]+31n--$-7 
m?l 

+$ [-[ln2s-r2]-4ln-$-6] 

S 
- . 

m2R 

C5 = - $ln2 5 - x2] + ; ln -..I!$ - f 

m2 
+ s [-3[ln2 3 - r2] - 181 

S -1 m2 
--=-2+- m2R : S 

[-i[ln2 2 - 7r2]] 

S 1 m2 p.c7=--+- 
m2R 6 s 

-i[ln2 --f& - 7r2] + 21n --f$ - 41 . 
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FIGURE CAPTIONS 

,c- 1) The general vertex for W pairs. 
. 

2) The amplitude for e+e- + W+W-: (a) s-channel (general vertex); (b) 

t-channel. 

3) (a) Tree-level d’ff 1 erential cross section versus 8: longitudinal polarizations 

only (LL), mixed polarizations (LT), t ransverse polarizations (TT), and their 

sum. (b) Tree-level x distribution ratio. 

- 

4) One-loop oblique corrections to e+e- + W+W-: (a) corrections to the 

t-channel diagram; (b) external leg corrections to the s-channel diagram; (c) 

propagator corrections to the s-channel diagram; (d) vertex corrections to 

the s-channel diagram. 

5) Notation for vector boson self-energies. 

- 

6) Feynman diagrams renormalizing the amplitude for e+e- + W+W-: 

(a) two-point functions; (b) three-point functions. 

7) Corrections to the differential cross section for e+e- + W+W- with various 

degenerate fermion masses, at cos 8 = 0. 

. 

_..._ . 
- 8) Contribution to fig. 7 from longitudinal polarizations only, at cos8 = 0. 

9) Corrections to the x distributions at cos 0 = 0, for degenerate fermions. 

10) Corrections to the differential cross section at cos t9 = 0 at low energies, 

showing the approximate mass independence of the fermion corrections. The 

300 GeV fermions are approaching threshold. 

11) Peak structure for split fermion doublets; md = 500 GeV, cos 19 = 0. 

12) Effects of fermions with an isospin-breaking mass splitting; cos 6’ = 0. Dotted 

lines: ma = 350 GeV. Dashes: rnd = 550 GeV. Solid lines: rnd = 750 GeV. ; 
._ - -- 

~- --+-- 13) Effect of a supersymmetric generation of scalar partners; cos 8 = 0, rnd = 

500 GeV. The upward shift arises almost entirely from the shift in the -- 
p parameter. 
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