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ABSTRACT 

The correction terms to the Sokolov-Ternov radiation formula due to varia- 

tion of the magnetic field strength along the electron trajectory are calculated up 

to the second order in the power expansion of &r/B, where r is the formation 

time of radiation. It is found that the field-gradient effect reduces radiation inten- 

sity in the classical regime, and enhances it in the quantum regime. This is then 

applied to quantum beamstrahlung with Gaussian variation in e+e- bunch cur- 

rents. The correction is shown to be substantial for beam parameters suggested 

by Himel and Siegrest. 
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For future e+e- linear colliders, radiation induced by beam-beam collision is 

expected to be very strong. ’ This radiation, called beamstrahlung, would cause 

a substantial loss of energy and the degradation on energy resolution. Due to 

these concerns, the study of the subject has been intensive during recent years.2 

In the calculations done so far, the field was typically treated as locally uniform. 

The following question arises: On what scale must the field be uniform for this 

treatment to be valid? 

Recently one of us (PC) initiated the investigation3 on the corrections to the 

uniform field treatment proportional to g2/B2 and B/B in the field variation. 

However, due to the deficiency of the mathematical techniques employed, the 

result was inconclusive. Here we present an improved calculation that gives a 

definitive evaluation of quantum beamstrahlung that includes the field-gradient 

effect. 

- 

Our aim is to evaluate the average energy loss of the entire beam. To achieve 

this we want to derive the radiation intensity of one electron that sees the local 

field and its gradient arising from the oncoming positron beam. Our approach 

follows the spirit of Schwinger,4 and Baier and Katkov5 on quantum synchrotron 

radiation. It has been shown5 that, to the accuracy of l/r, the radiation intensity 

in the Coulomb gauge, 

I=+!$(+/ dtz eiW(t1-ta)M*(t2)M(tl) If) , 

can be approximated by 

I=,Jdfldtz/& [(l+u+g) (;i.~2-l)+~]eiuBr’-i1’ , (2) 

where Q! = l/137 is the fine structure constant, & and E’ the initial and final 

energies, (tl, r;) and (t2, r:) the initial and final coordinates, of the electron, 

respectively, (w, c) the four-momentumof the photon, u = w/E ’ = w/(&-w), r = 

f2 - t1;c = (6 - fi)/ 7, and fi = g/w. Let t = (tl + t2)/2, then $ dtldta = s drdt. 
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The photon angle in. the phase can be easily integrated to obtain exp{az1&r[ijl - 
. l}/(u&r161 - ;O). N ex we Taylor expand ri and ~“2 (thus G), and $1 and v’s t 

. . . 
around t, to the order r4, which gives C’r s c2 = $2 - r 29 v /2 - r42. G/24 and 
ICI = 1 - l/272 - ~~2~124 - r 4 9 . . . 

(v + 3v;. C) /1440. Now we make one more 
approximation by bringing the highest order term in ICI down from the phase: 

- 

,iu&7(j6l-l) - _ [1 _ p; (9 + 3v;. “,I e-w~+w) . 

Define x = 7&/2, and y G 2u&/3Cr3, Eq. (2) can then be rewritten as 

g=&J!$ ~d~exp{-i~y(x+$x3)} 

0 -CO 

(3) 

x{z+2(l+u+;) (x+$yx3) 

* Y 
- 23072 

($+3$)[ (l+u)x4+2(l+u+;)xe]} * (4) 

It can be seen that the dominant contribution corresponds to the region where 

x - 1, or 7 - l/67. We shall therefore define a “radiation formation length,” 

eR = l/67, which characterizes the length that an electron travels during an 

emission process. Integrating over x, we get Bessel functions of fractional order 

with argument y. For convenience we write dI/dt = dIo/dt + dIz/dt, with 

$=&r$$ [z(l+.+~)~2,3+(l+u)/~5,3(y’)dy~] 3 (5) 
0 Y 
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d12 c&g O” w2dw 
dt= 3ofi7r s u&72 

0 

{$[(l+u) (yK,l,+,,) +++u+;) 

x [- (y+ ;) K1,3+4K2,3 11 
yK1/3 - ;K2,3 )+2(1+u+3 

x [(-3y+$) Kl,3+2K2,3 III - (6) 

. . . 
In the above expression the vector products T?. > and $. v’ have been replaced 

. . . 
by B& and SB. This is because the only components that 3 and v’ contribute 

are proportional to v’ x 2 and v’ x 5, respectively. The term dIo/dt corresponds 

to the synchrotron radiation intensity in uniform fields derived by Sokolov and 

Ternov,’ and many others. 5 The term dIz/dt corresponds to the correction to 

the leading behavior arising from the local field gradient. 

Next we proceed to integrate over u in Eqs. (5) and (6). Recall that u = 

w/(& - w), thus w2dw = &3u2du/(l + u)~. For this purpose it is convenient to 

introduce the representation 

X+iCX3 

(1 :a), = & J 
X-i00 

, (7) 

where -k < X < 0, and I’s are the gamma functions. We then straightforwardly 

obtain 

dIo ama 1 
X+&O 

dt= 24&r 2ri J 
ds(3T)s+2(S2+2e+8)r(--S)r(S+2)r 

A-ic0 
(8) 

where the Lorentz invariant parameter T = lir3/& = 7B/B, (B, = m2c3/etL) is 

intoduced, and 
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db 
dt= 

il2 
sds(3T)s+2 &s3 + 6s + 28) 

X-i00 

- ;(3s3 + 10s2 + 32s + 36) I’(-s)I’(s + 2)I’(; + ;) I’(; + ;) 1 , (9) 
with the constraint -213 < X < 0. 

The asymptotic forms of the above equations can be derived by closing the 

contour to the right for T < 1, and to the left for T >> 1. Thus we find 
- 

$am2Y2 + O(Y3) , T<l , 
dIo 
dt= (10) 

&($)am2(3Y)2/3 + O(i) , r 3 i . 

The above expression for Y << 1 is the well-known formula for classical syn- 

chrotron radiation, and that for T >> 1 is the so called Sokolov-Ternov formula 

for quantum synchrotron radiation. 

The classical limit of dIp,/dt has relevant poles at s = n = 1,2,3,. . . , i.e., 

db 
dt= l~4~2hT fJ-1)“(3T)n+2n(n + i)r (F + i) r (5 + i) 

n=l 

[ 

l9 
. . 

x B2(-n3 + 6n + 28) - g(3n3 + 10n2 + 32n + 36) 1 
=~cxm2t~[-ll~+27~]T3+0(T4) , T<<l . (11) 

For the quantum limit, the relevant poles are at s = -n/S(n = 2,3,. . . , but 

excluding n = 5,7,11,13,. . . (mod. 6)). So we have 
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dI2 dt= 
X 

[ 
$(n3 - 54n + 756) - g(-3n3 + 30n2 - 288n + 972) 1 

Comparing Eqs. (11) and (12) with Eq. (lo), we see that the field-gradient 

correction does not contribute at the leading order (- Y2) in the classical limit, 

and scales as L;T4i3 in the quantum limit, which confirm qualitatively our pre- 

vious findings in Ref. 3. 

To appreciate the field-gradient effect in quantum beamstrahlung, let us con- 

sider a Gaussian variation of the field strength along the electron trajectory pro- 

vided by the oncoming beam: B(t) = Bc exp(-2t2/az), where the time of flight 

in the CM frame is t = z/2. Since T is proportional to B, it varies the same way, 

i.e., Y(t) = T oexp(-2t2/az). It can also be seen that [R = l/S7 = %,7/T(t). 

The leading behavior of the fractional energy loss of the electron, from 

Eq. (lo), is 

IO QZ-= & 
1 

’ fi a02 T2 
3% O ’ Yo << 1, 

fg w 
Z(3Top3 , Yo >> 1 . 

C 

The integration of the correction term dIz/dt is not easy, particularly when 

To >> 1, because the leading term in the series expansion of dIz/dt does not 

dominate the integration. If one insists on applying the asympotic form of dIs/dt 

in Eq. (12), one is forced to introduce a cutoff in the integration over time, which 

renders the evaluation of ~2 inconclusive. This was the situation of our previous 
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calculation. The cutoff symptom, however, can be avoided if one integrates over 

t before the s-integration in Eq. (9). 

First we notice that for a Gaussian field, I!I vanishes at t = foe. Thus 

integration by parts in t turns k/B into B2/B2, and we get 

X+iW 
I2 am 1 E%C--= 
& 1440&7 27G J 

sds(3s4 +6s3 +22s2 + 10s - 8)r(-s)r(s + 2) 
X-i00 

xr(~+~)r(f+~) /mdt$!$(3T)s+2=;j$(T)dt . (14) 
-CO -W 

The integration over time can be further developed by changing the variable 

to Y: 

ca i32 

J 
Go 2 dtgzi?;(3T)s+2 = 108-To~5%i5 02 

-W 

dY(3Y)‘-l + 0 -$& ( )I , 
the above integral gives [ Y”]p = -2. where eR0 = %,7/Y,-,. Since Res = x C 0, 

Thus we have 

(15) 

c2 = [36;fir (z) ($)‘&%i%,Y;] lii& ‘Twds(3.s4+6s3+22s2 

X-i03 

+lo~-8)r(-@++2)r(~+~)r(~+~).3s+2Es . (16) 

where -213 < X < 0. For small E, we close the contour to the right, where the 

leading pole is at s = 0, and all higher poles vanish. So 

On the other hand, ~2 for Yo < 1 can be trivially obtained as 

Yo<<l . (18) 

For intermediate values of Yo, it is difficult to find an analytic expression for ~2. 
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A numerical integration of Eq. (14) is plotted in Fig. 1 for YO from 10m2 to 104. 

We see that the effect due to the field gradient is to reduce the fractional energy 

loss for Ye < 1, and to enhance it for Yo >> 1. The transition occurs at around 

Yo = 213, which corresponds to the situation where the initial electron energy 

equals to the critical energy of synchrotron radiation. 

As an example, consider the Himel-Siegrest parameters’ for a conceptual 5+5 

TeV linear collider, where 7 = 107, number of particles per bunch N = 1.2 x lo*, 

and beam size a,* = 2.5 A, a, = 0.4 pm. The beamstrahlung parameter YO 

corresponds to twice the local field strength (i.e., IGI N I$[), and varies with 

radius. Thus the evaluation of the mean value of E~/EO for the entire beam 

involves an average over the transverse distribution, which is rather intricate. 

Instead, we assume uniform transverse density profile, and look at a typical 

electron that has an impact parameter r = a,*. In this case YO = 5094 >> 1, 

and we find Q/Q N 30%. This is indeed a substantial effect. In comparison, 

E~/EO N 45% at r = ai/2 and E~/EO N 20% at the beam edge r = 2a,*. For the 

next generation of e + - e linear ‘colliders at around 1 TeV in the center-of-mass 

energy, the effective beamstrahlung paramter Yo is expected to be of order unity. 

Therefore, the field-gradient effect would not be a concern, as can be seen from 

Fig. 1. 

- 
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FIGURE CAPTION 
. 

Fig. 1. Numerical plots of functions in Eq. (14). The solid curve is the 

integrand Q(Y), which is independent of specific variations of the field B. The 

dashed curve is the correction to the fractional energy loss, ~2, as a function of 

TO, with Gaussian variation of B assumed. 
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