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ABSTRACT 

In the temporal gauge formulation of a gauge theory, Gauss’s Law is imposed 

as a constraint on the physical states. In the (2 + l)-dimensional Abelian the- 

ory the states satisfying the constraint are wavefunctionals of the magnetic field; 

.moreover, acting on such states, the Hamiltonian is a function of the magnetic 

field and its canonical conjugate. There is a parallel in the non-Abelian theory: 

physical states can be written as wavefunctionals of a nonlocal “magnetic coor- 

dinate,” and the Yang-Mills Hamiltonian is a function of this coordinate and its 

conjugate momentum. In the non-Abelian case the conjugate field acquires a 

divergent mass. This divergence can be absorbed in a renormalization, leaving a 

finite but massive propagator for the conjugate field. 
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I. Introduction 

The subject of this note is the pure Yang-Mills theory in two spatial dimen- 

sions. We work in the temporal gauge. In that gauge, the quantum problem 

is defined by two elements. 1 These are the Hamiltonian, which is obtained in a 

straightforward way from the Lagrangian with the time component of the gauge 
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field set to zero, and Gauss’s Law, which restricts physical states to lie in the 

gauge-invariant sector of the Hilbert space. We will select as coordinates for 

configuration space a pair of fields, one being a spatial component of the gauge 

field, the other being a nonlocal “magnetic coordinate,” which transforms only 

globally under local gauge transformations. We will see that physical states must 

lie in the subspace of wavefunctions that depend only on the magnetic coordi- 

nate. In this subspace the Hamiltonian can be written in terms of the magnetic 

coordinate and its conjugate momentum. There is a degree of symmetry between 

these conjugate variables, in that neither occurs to higher than second order, in 

any term of the Hamiltonian. Therefore, if one represents the generating func- 

tional of Euclidean Green’s functions as a simultaneous integral over coordinates 

and momenta, it is possible to pass to a Lagrangian form for the path integral 

by carrying out a Gaussian integral over either set of variables.2 We will inte- 

grate out the magnetic coordinate. In the Abelian case (where the magnetic 

coordinate is the magnetic field) the Lagrangian of the conjugates and their time 

derivatives which then appears is that of a free massless field. However, in the 

non-Abelian case this procedure leads to the appearance in the Lagrangian of 

a mass term with a divergent coefficient. This divergence can be absorbed in 

a resealing, which we exhibit explicitly. The principal conclusion, then, is that 

massless modes are absent from the non-Abelian problem. 

The plan of the balance of the note is as follows. In the next section we carry 

out the procedure defined here for the Abelian problem, in order to fix notation 

and methods, and to identify the mechanism that will generate the mass term in 

the non-Abelian case. In the third section we show explicitly how this mechanism 
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acts in the non-Abelian theory. The final section contains a few remarks on the 

procedure. 

II. The Abelian Problem 

To begin, we fix dimensions. In order to avoid a dimensionful coupling in the 

covariant derivative, we fix the dimension of the gauge potential to be inverse 

length. A length X appears in the Lagrangian, which in temporal gauge assumes 

the form: 

L = X ; /i,/i, - ; (&A2 - d2A1)~ . 

The corresponding Hamiltonian is 

& PpPp + f b2 , 

. 
_ whereb= (&AZ-d A) 2 1 is the magnetic field strength, and iPp(zZ is the func- 

tional derivative with respect to Ap(i?). The physical subspace consists of those 

states @[ApI which do not change under gauge transformation of A,. 

The physical eigenstates of this system are states of noninteracting photons, 

with one particle mode per wavevector (corresponding to the single polarization 

available to the light wave in 2 + 1 dimensions). We will recover this result by 
i I eliminating the constraint and examining the resulting Hamiltonian. 

Given any gauge configuration A,, we can write A2 in terms of b and A1 as 

0 

A2(z1,~2) = 
/ 

dy @(a + Y, ~2) + azA1(z1+ Y, ~2)) . (1) 

--0 

This shows that we can use the magnetic field strength b and the component 

--- A1 of the gauge field as independent coordinates on the configuration space [ApI. 

Any wavefunction @[API h as a unique representation as a function of b and Al. In 

these coordinates, the constraint is that @ depend on b alone: if two configurations 
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have the same magnetic field, they differ only by gauge transformation and Cp 

must assume the same value at both. Now we write the operator 

V2 = - 
J 

d2ji Pp(Z)Pp(jc3 

in terms of functional derivatives with respect to b and Al. The first derivative 

is 

By squaring this operator, and discarding terms which annihilate states that sat- 

isfy the constraint, we find that the Hamiltonian acting in the physical subspace 

is 

where 

We now determine the Hilbert space inner product in the physical subspace. 

Nominally, the overlap of two states @‘[ApI and +[Ap] is given by the integral 

/ 
&h]D[A2] Q*$ . 

If @ and $ satisfy the constraint, this is necessarily divergent by a factor of the 

volume of the group of time-independent gauge transformations; this volume is to 

be factored by asserting a Faddeev-Popov prescription. Before doing so we may 

choose .what coordinates we please on the configuration space. Choose (b, Al). 

The Jacobian determinant of the transformation from (Al, A2) to (b, Al) is field 

independent, as is the Faddeev-Popov determinant induced by the gauge-fixing 

4 



I 

- 

condition Al.= 0. The inner product of two states @[b] and t,b[b] in the physical 

subspace is 

(Wb> = / WI @*ti . (4 

The inner product, Eq. (4), and the Hamiltonian, Eq. (3), specify an uncon- 

strained quantum system, which is exactly soluble. We proceed along the line to 

be followed in the non-Abelian problem, where exact solution is impossible: we 

give the generating functional for the Euclidean Green’s functions of the field z. 

Define the operator 

7r(Z+,r) = eTH 7r (ZJ eyTH 

for r real. Then we can write the Green’s function 

. as a path integral over trajectories [z(z;, r), b(Z, T)] in phase space: 

/ 
D[r]D[b]m . ..znexp{S(7r.b)} . 

The action S(?r, b) is 

/d,jd2;{i*~-~dr.dn-Sb2} , (54 

and D [r] D [b] is normalized so that (010) = 1. W e may carry out the integral over 

the magnetic field. Defining !~(ir,z) by 

exp{-/drlE} =/D[b] exp{S} 

we find that 

(6) 

In other words, the Green’s functions of z are those of a massless free scalar. 
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We have-come a long way for a meager conclusion. However, the steps we 

have followed can be paralleled almost exactly in the non-Abelian problem. We 

pause to consider how the conclusion of a massless state might be averted in that 

case. This can be done without considering the actual Yang-Mills Hamiltonian, 

which the next section treats in detail. Instead reconsider the toy problem which 

we have just worked. Suppose that f is a function on an N-dimensional space, 

f = f(q1 . . . qn), and V (a . . . qn) is a potential in the form V = V(f). We seek 

the eigenstates of the Hamiltonian 

-a2 
&l/c &7rc 

+v 

subject to the constraint that the wavefunction depend on f alone. (Such a 

problem may or may not have a solution, but solutions exist when, for example, f 
is the radial coordinate.) Acting on a wavefunction which satisfies the constraint, 

the Hamiltonian is 

a2j a ---- 
~Qn%c af 

af af -CL + V(f) . 
aqic &ltc w2 

In- the electromagnetic problem, f is the magnetic field, qn is the vector potential, 

and a/af is in. The term proportional to fnn does not appear in that problem, 

because the field strength is linear in the potential. But let us suppose that, 

owing to some nonlinearity, the fKn term had not vanished, and that instead of 

Eq. (3) we had generated the Hamiltonian 

where cl is a real, dimensionless constant. This is not an Hermitian operator, 

but for a few breaths we may hold our nose and proceed. Again, we can obtain 

a Euclidean Lagrangian .!~(ir,r). But now instead of Eq. (6) the answer (up to 

a total time derivative) is 

That is, we have generated a mass term. 
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Can we get this same effect by an Hermitian modification to the Hamiltonian? 

In the instance that fnn does not vanish, we have to conclude that fn is not 

constant. That opens the possibility that the fn fn term gives a contribution of 

the sort 

T 
/ 

d22’d2tiT b(Z) b(C) +) ~(5) . 

This term is not Hermitian either. Neither is its sum with the quadratic non- 

Hermitian term, no matter what choice of the constants cl and c2 we make. The 

mass term seems to follow from an illegal ploy. However, the non-Abelian prob- 

lem that we study below is subtler than these ad hoc modifications. We will find 

that the nonlinearities inherent in that problem do introduce into the uncon- 

strained Hamiltonian two non-Hermitian terms, one quadratic and one quartic. 

The sum of these two terms is indeed Hermitian, and treated consistently they 

inevitably introduce a mass term into the non-Abelian analog of (6). But to see 

this, we must turn to the non-Abelian problem itself. 

III. The Non-Abelian Problem 

We turn to the quantum theory of the pure Yang-Mills field in 2 + 1 dimen- 

sions. Again we work in the temporal gauge. The gauge field and its conjugate 

are 
A&?‘) = A;(Z) ta 

, 

I where ta are traceless Hermitian matrices satisfying 

[t”, tb] = if abc tC 

’ Tr[tatb] = Pb 
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(The normalization of the trace is not conventional, but here it will prove 

convenient.) The Hamiltonian in this instance is 

H= & PpPp+; b2 , 

where 

b = &A2 - &A1 + i[A1, AZ] . 

If u(Z) is a matrix in the representation of the gauge group generated by P, then 

under gauge transformation by u(Z) 

A, + uAput - iu&,ut 

t 
. 

b + ubu 

The constraint on physical states @[ApI is that 0 be invariant when A, undergoes 

- gauge transformation.3 

It is possible to pass by gauge transformation from any configuration A, to 

another, A,, in which Ar vanishes. We use the gauge transformation 

co 

Y(Z) = Psexp ds Al(zl -s,z~) 
0 

to eliminate A 1: 

YA1 Yt-;Y al Yt=O . 

I We define a gauge-transformed magnetic coordinate 

B = Yb Yt 

(74 

(7b) 
= B”t” - 

In order to use this transformation, we limit the configuration space to fields A, 

which vanish sufficiently rapidly at infinity for Y to be defined. This condition 
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cannot alter .the dynamics, since any finite-energy configuration can be gauge 

transformed to satisfy it. At the same time, we restrict the gauge group to 

elements which leave this condition intact: i.e., those which tend to constants at 

infinity. Then we have 

21 

A2(Zl, z2) = 
J 

B(w2) ds , (84 
-CO 

A2 = Yb, Y - ;Yt a2 Y . w 

Since Y is a functional of A1 alone, we conclude that (8, Al) can be used as 

coordinates on the configuration space ( AP) . 

. 

We want to consider the nature of Gauss’s Law in (8, Al) coordinates. It is 

clear from Eq. (8) that any two configurations A, and AL with the same B are 

gauge-equivalent. [The function ~(3 which transforms one into the other will 

_ satisfy u(oo) = 11. In th ese coordinates, physical wavefunctions depend on B 
alone. In contrast to the Abelian problem, the subspace 9 = @[B] contains the 

physical subspace but is not equal to it. Under the local gauge transformation 

u(Z) the field B has a global transformation law 

B + u(m) B&o) . 

The physical states are invariant under this global transformation. The argu- 

ments concerning the Hilbert space inner product are not different from those in 

the Abelian case: 1) since states which satisfy the constraint are not normalizable 

with respect to the measure D [Al] D [A ] 2 we must assert a Faddeev-Popov pre- 

scription in order to define the inner product; 2) the measure D[B] D[Al] differs 

from D[Al] D[Az] by only a constant factor; 3) the Faddeev-Popov determinant 

induced by the condition A1 = 0 is constant. The inner product is 

(W9 = D[B] +*a . 
J 
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We proceed to determine the form of the Hamiltonian acting in the subspace 

@[B]. In this subspace, the operator 

V2 = - 
J 

d2Z P#,)PJZ) 

has the form 

/ d2Z ip”(Z) m(Z) - / d2Z d2ti7 p”“(Z, lu’> T?(Z) +i?) (9) 

where we use the notation 

P”(z3 = 
b2Bn(Z) 

d2%A;(Z)6A;(~ 

pns (2, w’) = J d2z6Bn(23 WC) . 
SA;(Z) SA;(G) 

If we were to compute V2 in (B , Al) coordinates and then drop those terms which 

annihilate states a[ B], th e result would be the same as (9). To find pn and pnS 

we need the functional derivative of B n (5’) with respect to A~(zi!). There are two 

preliminaries. The first is the functional derivative of the gauge transformation 

matrix Y. From Eq. (7a) it is obvious that 

is nonvanishing only on the line segment (zr < zr,x2 = 22). Define w(yi, y;) to 

be the parallel transportation matrix in the gauge field A, along the straight line 

path from y’ to G. On the line segment where (10) is nonvanishing, we can write 

1; 
/ 

Y(zp) = Y(xp - dpl)W(Xp - E&l, xp + +pqx, + ~~pl)Wp) (11) 
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for any 0 < c.< zr - xl. Applying the functional derivative with respect to Ap(Z) 

to Eq. (11) affects only the w factor. In this factor it suffices to consider the 

leading order in A,, since we will let E -+ O+. We find 

;;;(Y; = is,1 S(z2 - x2) 8(Zl - Xl) Y(z) t= Y@) Y(.q * (12) 

We will write Eq. (12) more compactly by defining 

A#,,) = 4422 - x2) d(a - XI) , (134 

T”(z) = Y(z) ta Yt(s) . (1 w 

Then 

;;;;A = ;A&?, Z) 7=(Z) Y(Z) (144 

1 
fsYt(zJ 
6A; (3 

= -;A,(Z$)Yt(q ‘T”(jc3 . W) 
. 

The other preliminary is familiar. For any field h( ) z in the adjoint representation 

aA$(4 / d2.ZTr[h(Z)b(Z’)] = cpa Tr t’ (a& + i[&,h]) . 05) 

Using Eq. (15) we find 

Sb(z3 
SA@) YhYt = 1 cpa Tr T”(Z) (a& + i[&,hI) . (16) 

We note that on the RHS of Eq. (16) it is 7” and A,, rather than ta and A,, 

which appear. Combining Eqs. (14)-(16) gives 

~~~~~ = Tr[-T’(Z’)tq] {&2(Z- 23 bqn cp,.,& 
u 

’ 
(17) 

- b2(3 - 2) j lnq cpa A:(4 - A&Z,,) jenq BL(z’) 

We make a few observations about this rather complicated expression. The trace 

factor in front depends only on the gauge-variant coordinate Al. Since by Eq. (8a) 
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A2 depends on B alone, the terms inside the bracket depend only on 8. The first 

two of these are a covariant derivative which arises from the variation of b in 

YbYt. The third t erm in the bracket is a commutator and arises from the 

variation of Y and Yt. Referring to Eqs. (8a) and (13a) we see that Eq. (17) can 

be rewritten in the more compact form 

~~~~~ = Tr[Ta(Z)tq] b2(Z- $) bqn cPo& 
{ CT 

. (18) 

+ a.21 
?- [f”‘qA,(Z,Z) A;(Z)] } 

It is unfortunate that this expression is not more transparent. However its various 

pieces have a perfectly comprehensible origin as we have seen. Equation (18) is 

the building block from which to construct the V2 operator. First consider the 

term in V2 that is quadratic in z. Since 

a 

the coefficient pns (Z, zu’) is independent of Al, and therefore gauge-invariant. The 

term quadratic in z then has three gauge-invariant pieces: one zeroth order in 8, 

one linear in B, and one quadratic in B. We call these B, C, and D, respectively. 

The B and C terms are 

x Tr[7”(Z)tP] [7’(Z’)tq] = Spq 

a7rs (w’) 
d2Zd2W’e,, awu d& [Ap(Z,G)jneaff;(Z)] . 

1 

The B’term is familiar from the Abelian example. It is obviously Hermitian with 

respect to the inner product. The C term is Hermitian owing to the antisymmetry 

of the structure constants. The D term, which is evaluated below, is the higher 
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order non-Hermitian term conjectured in the previous section. From Eq. (18) it 

is clear that D contains a factor 

/ 
d2Z A#, Z) A&.&Z) . 

Referring to the definition of Ap, one finds (20) to be 

(20) 

S(r,-w,)[B(q-wl) jldx+O(wl-zl) i’dx] . 
-00 -CO 

We assign a value (z + L) to lf, d x, where L is some length we will send to 

infinity at the end of our calculations. Then (20) is 

Lcqz2 - w2) 1+ 7 8(zr - WI) + z 8(wr - 21) 
[ 1 . 

Since L will tend to infinity we discard the O-terms, and assign 

J d2Z AP(Z = L6(z2 - w2) . w> 

With this identification we write the D term: 

D = -L 
J 

d2Zd2C 6(z2 - w2) f”b j”iQ b’(Z) b$.i?) T?(Z) #(ti?) . (22) 

Next consider the term in V2 that is linear in z. To compute it we iterate the 

functional derivative given by Eq. (18). Since 

vanishes when y’= Z, the functional derivative of the trace factor does not con- 

tribute. Addressing the factor inside the bracket and applying Eq. (21) we find: 

1: 
b2 B”(Z) 

d2z 6A;(Z)6A;(q 
= -2cL 6(o) B”(z) . 

(c is the usual quadratic Casimir: jaij f bij = 2cbab. The factor of two arises from 

our nonstandard normalization of t”). The corresponding term in V2, which we 
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label A, is 

A = -2+cL 6(O) 
J 

d2zBn(q dyz) . (23) 

This is the term introduced ad hoc in the previous section to generate a mass for 

the z field; it will indeed play that role here. We will see below that its divergent 

coefficient can be absorbed into the definition of X. It is amusing to note that 

this calculation establishes that Bn(,3 is an eigenfunction of the operator V2, 

albeit with a divergent eigenvalue. From Eqs. (22) and (23) it is immediate that 

At = -A + 2cL 6(O) S2(0) 6” 
J 

d2Z 

Dt = D + 2A - 2cL 6(O) b2(0) b88 
/ 

* d2Z 

The sum (A + D) is Hermitian. The remaining term in the Hamiltonian is the 

potential term 
x d2zB2 . 
5 J 

d2zb2=; 
/ 

In-this formulation all interactions have been relocated to the kinetic term. This 

completes the evaluation of t,he Hamiltonian. 

This analysis has been sufficiently protracted that we pause to summarize 

it. We found coordinates B with the property that the gauge-invariant states of 

the theory are those wavefunctions Q[B] invariant against global gauge transfor- 

mations of 8. We found D[B] to be the appropriate integration measure for the 

Hilbert space inner product. We constructed the form of the Hamiltonian acting 

on the subspace of states @[B], in terms of B and its conjugate, ?T. The result, 

H(~,B)=+(A+B+C+D)+; 
/ 

d23 B2 

- can be understood in the following way. The functional derivative of B with 

respect to A, has a constant piece (as in the Abelian theory) and a piece that is 

linear in B. This means that pns(Z, G) has th ree terms, which are zeroth, first, 
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and second order in 8; these generate B, C, and D, respectively. By iterating 

the functional derivative on B we find that p”(Z) is nonzero, and linear in B ; this 

generates A. 

We return to the track of our argument. The object is to compute e~(ir,z), 

defined by 

where 

exp [ - / dr .f?E(+,r)] = / D[B] exp{S(z, 8)) ; (24~) 

and we normalize so that 

]D[m] exp{S} = 1 . 

The c-number function h(?r, B) is chosen to insure that Eq. (5b) gives the Eu- 

_ clidean Green’s functions (5a). If 1~) and 18) are eigenstates of z and 8, we must 

have4 

~W) (4B> = (~IW-,W> 

Since H = Ht we can substitute Ht for H in the equation above. But it is 

obvious how to write Ht with all z operators to the left of all B operators. The 

consequence is that we obtain h from H with this prescription: 1) replace every 

field operator in H by its eigenvalue; 2) reverse the sign on the A term. 

For purposes of carrying out the integral (24), we make a change of variable 

to dimensionless quantities: 

L’zi 

S(0)’ = M(0) 

T’ = II 
x - 

z’ = zp 
p x 

8’ = X28 
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This simply has the effect of setting X = 1 in all expressions. At the end returning 

to the original variables restores the correct powers of X. Also, it suffices to carry 

out the integral at a fixed time slice. 

The B term in the action factors out of the integral over D[B] and for the 

moment we needn’t consider it. The type of integral with which we have to deal 

is 

J 
dq, em{ -qnEnmqm + Jnqn) 

for E a symmetric matrix with positive eigenvalues. If E is N by N, the answer 

is 

?r+ exp i Jn EiA Jm - f Lndet(E) 
> 

. (25) 

In the problem at hand, the matrix E is determined by the potential term and 

the D term: 

(The variables are dimensionless; to avoid clutter we do not write the primes.) 

Since we cannot obtain E-l or det(E) exactly, we obtain !E to second order in 

z. This will retain the mass term generated by A. Since the source has no part 

zeroth order in z, we can use the zeroth order piece of E-l in JE-lJ. The 

C term makes a contribution to J that is second order in z and so does not 

contribute to .f?E in this order. In (25) we substitute 

J”(Z) = -ii” + icL S(0) T?(Z) 

EG’(i’, 2u’) = 2blj b2 (Z- w’> . 

Lndet(E) = ( constant) + 2cL 6(O) 
J 

d2Zrn(Z’) m(i) 
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Restoring powers of X, and the contribution of B, we find that, up to an irrelevant 

additive constant, 

If in Eq. (26) we set 

then, discarding a total (Euclidean) time derivative, 

The last term above vanishes as L goes to infinity with M held fixed. The overall 

factor (l/cLb(O)) on the surviving terms can be absorbed in a wavefunction 

renormalization of z. Evidently, the conjecture of the preceding section has been 

verified: the A term generates a mass in the Euclidean Lagrangian of the z field, 

while the D term maintains the Hermiticity of the total Hamiltonian. 

If we had computed eE to all orders in z, we could evaluate the zz Green’s 

function in saddle point approximation by locating the global minimum of the 

Euclidean action. What we have done, rather, is to show that the extremum at 

r = 0 is (at least) locally stable, and, in contradistinction to the Abelian case, 

massive. 
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IV. Remarks 

We have investigated the .(2 + 1)-d imensional pure Yang-Mills theory in tem- 
poral gauge, by passing to coordinates in which Gauss’s Law is a global, not a 
local, constraint. In these coordinates the potential term of the Hamiltonian is 
quadratic, and all interactions stem from alterations to the kinetic energy term 
brought about by the geometry of the constraint. We identified the mechanism by 
which one of the interaction terms renders the theory massive. A few additional 
remarks are in order. 

1. In a constrained quantum system, the physical states lie in a subspace of 
the a priori Hilbert space. Since the Hamiltonian does not couple physical 
to nonphysical states, it can be written in a form intrinsic to the physical 
subspace. In this form, it can be used to construct a path integral repre- 
sentation of the Green’s functions, and thereby generate a Lagrangian for 

;:. 
i the system. But this Lagrangian will, in general, be radically different from 

the one that defined the system originally. 

2. Because z transforms globally under the gauge symmetry, none of the 
states, whether massless or not, which it creates from the vacuum are phys- 
ical-i.e., gauge invariant. But since in the coordinates we have chosen the 
XIT?T Green’s function is, the only propagator in the theory, one would not 
expect a massless mode in any channel if this propagator is massive. 

3. Consider the possibility that z = 0 is the global minimum of the Euclidean ! 
i action. Then by extending the calculations of eE to higher order in the 
t z field, we could compute in saddle point approximation the multipoint I 

Green’s functions of this field. That is, we could find all vertices “at tree 1 I 
level.” But we have already committed ourselves to a choice of X and to a 1 
wavefunction renormalization for ?r; do these choices render the multipoint j / 

Y vertices finite, even at tree level? This is not clear. Nor, a fortiori, is the b 
1 renormalization prescription for corrections to the saddle point approxi- 

I mation. Lastly, although the higher order corrections to the saddle point 

t 
‘. approximation are (at least formally) defined for this problem, we have not 

L 
shown any sense in which they might be suppressed. 

i 
1 
L 
t 18 
I 
I 
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E 
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