
SLAC - PUB - 4589
March 1988
(E/I)

THOUGHTS ON SOFTWARE AND COMPUTING*

PAUL F. KUNZ
Stanford Linear Accelerator Center

Stanford University, California 94309
(PFKEB@SLACVM.BITNET)

ABSTRACT
This talk has three distinct parts. The first two parts are on vector and parallel

processing and their success, or lack thereof for HEP. The third part is an analysis
on the software situation in HEP. These topics have been chosen because of the
frequency with which they are discussed in the hallways of our laboratories and
institutions. This review looks at the field from a particular point of view: that
of an experimental physicist working with a large detector at a collider and, in
addition, only considers the offline processing aspects of the field.

I. VECTOR PROCESSING

I.1 WHAT IS VECTOR PROCESSING?

The term vector processor and the allied term array processor are somewhat
misnomers for a style of computer architecture that is based on a simple fact:
there is no way with a given technology that floating point arithmetic is going to
be as fast as a binary add. Also, there is no practical way that random memory
access time is going to be as fast as a binary add. Thus, in any computer, a
single floating point operation is going to take multiple CPU cycles. For example,
a floating point add may be divided into a number of cycles as shown in Fig. 1.
The operations performed in each cycle are as follows:

1. Fetch operands from memory and/or register files.

2. Prenormalize the mantissa with the smallest exponent.

3. Add the mantissi.

4. Postnormalize the resulting mantissa and correct the exponent if necessary.

5. Store the results in memory or register file.

Invited talk Presented at the 8th International Conference

on High Energy Physics at Vanderbilt, Nashville, TN, October i-10, 1987

*Work supported by the Department of Energy, contract DE-AC03-76SF00515.

-

With an appropriate computer architecture, this operation over a number of
operand pairs can be made faster by overlapping the steps or pipelining them.
Thus, as shown in Fig. 2, one can do three floating point adds in only seven cycles
instead of the fifteen it would take if done sequentially.

Cycle 1 Fetch
Mem.

Cycle 2 Pre-Norm.

Cycle 3 Add
Mant.

Cycle 4 Post-Norm.

Cycle 5
Store
Mem.

3-88 5988Al

Fig. 1. Example of multiple cycles of floating point add.

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

3-88

Fetch
Mem.

Pre-Norm.

Pre-Norm.

Add
Mant.

Add
Mant.

Post-Norm.

Add
Mant.

Post-Norm. Store
Mem.

I Post-Norm.
I

Store
Mem. I

‘11
5988A2

Fig. 2. Example of pipelined cycles of floating point add.

2

This pipel.ining-only works well if the data operands are in an orderly pattern,
which the FORTRAN programmer knows as a vector or an array; thus, the term
vector or array processor is used for a processor that can perform in this manner.

I.2 HEP USE OF VECTOR PROCESSING COMPUTERS

All modern supercomputers have vector processing capabilities from which a
lot of their processing speed depends. However, for the HEP experimentalist, early
attempts to use these new machines have been disappointing. An example of what
happens was given by Kenichi Miura.l

Miura worked with the FOWL Monte Carlo tracking code he obtained from
CERN. He first compiled the code, with all vectorization in the compiler turned
off, and ran it on the FACOM VP-200. With vectorization turned off, the compiler
does not generate any vector machine instructions, thus measuring the speed of
the scalar processor. A run lasted 105.9 seconds instead of 753.6 seconds on an
IBM 370/168; a speedup of about a factor of seven. Then, without changing the
code, he turned on the vectorization in the compiler and found that the code ran
slower (111.9 seconds) !

Not surprisingly, there was no speedup since this type of code does not deal
much with vectors. It seems a bit strange that the code was slower with vector-
ization turned on until one thinks about it. The only vectors in the code are the
three-vectors of the particle momentum; but the vector pipelines of the machine,
although fast, are relatively long, so there is a startup time penalty. Thus, opera-
tion of three-vectors using the vector pipeline instructions takes longer then doing
three sequential scalar operations, and the full potential of the vector machine
is not realized. This result is typical of all supercomputers, not just the FACOM
VP-200.

I.3 NEED FOR NEW METHODS TO USE VECTOR MACHINES

To realize the full potential of vector machines, so that the compiler will ef-
ficiently handle vector lengths in the hundreds, one needs to use new methods of
programming. There are two approaches to the problem. The first is the micro ap-
proach in which one re-codes the problem so that the inner do-loop will have long
vectors. The other is the macro approach in which one brings an outer do-loop
(say, over particles) into an inner do-loop.

Micro Approach to Re-coding

An example of re-coding HEP code with the micro approach comes from
the track reconstruction code of the Mark III detector.2 The innermost time-
consuming do-loops are in the basic pattern matching for finding tracks. The

3

-

technique, described below, was also applied to track finding for a Fermilab fixed
target experiment by the Florida State group.3

The first step is to generate a track dictionary by a “geometry” program which
draws circles from the beam line through the detector in the r - C$ plane and notes
which sets of drift chamber cells lie on each. This method is illustrated in Fig. 3.
Each dictionary entry is one distinct set of these cells. To keep the dictionary
small, only circles which correspond to transverse momenta of greater than 50
MeV are drawn. Because the data from the detector is unpacked cell-by-cell, it
is natural to structure the dictionary not only as a list of cells on each track, but
also inversely as a list of tracks that pass through each cell.

Drift Chamber
Layers

+A \
VI* ’
\I x Event Vertex

Track i = (I,{ ,2,2,2,2,2,~)

Track j = (l,i,2,2,3,5,6,8) 3-88
5988A3

Fig. 3. Schematic representation of dictionary generation.

4

-

Having set up these tables once, the pattern recognition is ready to begin on
events. During this phase, as each cell is unpacked and identified, the program
sets bits in a two-dimensional bit array called PATARY with one row for each layer
in the drift chamber and one column for each track in the dictionary. For each hit
cell, one bit is set for each track that might have caused the hit. These bits then
indicate which of the drift chamber layers on any given track are actually hit, as
shown in Fig. 4.

Layer

3-88

Patary: Track:

Fig. 4. PATARY table generation.

Note that, at this lowest level of reconstruction, the code is already amenable
to exploiting the vector instructions of some supercomputers. This is so because
one can take as one long vector the list of all hit cells, and operate on that vector
to fill the PATARY array.

These ideas may seem trivial, but they are critical to exploiting vectorization.
Rather than doing pattern recognition serially (track-to-track), information is de-
veloped and stored from primitive operations on all cells (as described above), then
all clusters of cells in layers (named objects), then all clusters of objects over layers
(named bundles of track candidates), and finally the isolated tracks themselves.
At each step, long vectors can be made up of objects, bundles, or tracks.

Of course, the real-life situation isn’t that simple. For example; the actual
code is more complex in order to allow for cell inefficiencies which leads to tracks
without the full complement of hit cells. Also, unlike the Florida State Group,

5

the Mark III group- never had a chance to actually run this vectorizable code on a
computer with vector capabilities. Nevertheless, they predicted that such methods
could save up to a factor of five in the track finding and fitting time. As others
have found, the code ran faster on scalar processors as well, with a measured
three-fold increase in speed over a conventional approach.

In summary, with the micro approach, one can find tremendous speed gains
for the inner do-loops by restructuring the code to deal with a large number of
items at a time. However, to find a speedup in the overall code, one must do such
restructuring for all such do-loops in the code.

Macro Approach to Re-coding
The basic strategy of the macro approach is to process many events or tracks

in one pass; that is, to bring the event or track loop to the innermost ~0-100~
instead of the outermost one. An excellent example of this approach is work done
by Kenichi Miura of Fujitsu Limited to vectorize the EGS4 shower program.4

The standard EGS4 program works from a stack initially loaded with the one
incident particle as illustrated in Fig. 5. One particle from the stack is processed at
a time. The shower subroutine decides which of the many physical processes will
be in effect, calls that subroutine, calculates it and stores the results, rearranging
the new particles on the stack so that the particle with the lowest energy is at the
top of the stack. This is equivalent to tracing the shower tree in Fig. 6 toward
the shortest path until all particles are absorbed. In this form, the program has
almost no vectorization potential.

To achieve vectorization, Miura changed the whole program flow so that in-
stead of a stack, there are queues of particles waiting to be processed by some
.physical process as shown in Fig. 7. With each step, the queue with the largest
number of particles is chosen and these particles are taken as a vector. The re-
sulting particles are put back into their appropriate queues. To make the vector
length even longer, the initial particle stack is changed to a queue of particles from
multiple events.

For a simple case of 1 GeV electrons incident on an infinite lead brick, the
vectorized version of EGS4 achieved a speed up of a factor of 8 over the scalar
version. The size of the code increased about 30% due to the extra bookkeeping
involved and, since most of the scalar variables in the physics routines had to be
changed to array variables, the size of the memory space required went from l/2
MegaByte to 6 MegaBytes.

In summary, with the macro approach, one can achieve a significant speedup
of the code at the cost of more complex control structure and significantly more
memory usage. Memory usage should not be a problem as vector processors come
with very large memories. Time will tell if the control structure will be tolerated
by our HEP users.

6

1 PHOTON

3-88

I- BHABHA

cc BREMS

I- MOLLER

-1 PAIR 1

5988A5

Fig. 5. Control flow in standard EGS.4 program.

7

5988A6

Fig. 6. An electromagnetic cascade shower.

I.4 SUMMARY ON VECTOR PROCESSING

It is clear that experimentalists will need to take new approaches in structuring
their code to make good use of vector processors. Even with this restructuring,
there remain some questions, however. For example, is the speedup one obtains
greater than the increased cost of the vector machine? A speedup of a factor of
three, say, on a machine that costs three times as much is no net gain. Then
there are other operational considerations; for example, one usually needs to learn
another operating system to use the vector machine and may also need to export
the raw data tapes to another site where a vector machine is located. Nevertheless,
we are in the early stages of experimenting with vector processors and no final
conclusions on their usefulness to the HEP community can be made yet.

-

EVENTS WITH DISCARDED PARTICLES
1

I I

L

I CHECK
GARBAGE

1 1

EVENTS WK) DISCARDED PARTICLES

t I

SELECT EVENT
WITH HIGHEST

PARTICLE COUNT
I--

I
GATHER

PARTICLES

l-7 EQGy;UE P-QUEUE
G.C.

I

PHOTON COMPT PAIR PHOTO KUT

UPDATE
EVENT STATUS

PAR&ES

I
I

3-88

5988A7

Fig. 7. Control flow in vectorized version of EGS4.

9

II. Parallel Processing

The other method of getting more performance is to try to exploit the inherent
parallelism of workload and have these parts run in parallel on separate processors.
These processors can be either tightly coupled or loosely coupled; in many cases
it doesn’t matter. They don’t even have to be complete computers as long as they
are cost-effective processors.

For experimental HEP offline processing, the main workload is event process-
ing, either raw data or Monte Carlo generation. Three methods of using parallel
processing have been and continue to be thought about.

Within an event, there are many parts of the program which are independent
of the results from all other parts. This leads to the idea of running these parts
on parallel processors, thus reducing to the total time to process an event. There
have even been ideas to make specialized processors with some of the algorithms
in hardware, to speed up the parallel parts even further. One problem with this
method is there remains large parts of the code that can not be run in parallel. Not
only does this limit the overall speed but, because the parallel parts will probably
not take an equal amount of time, there is a loss of efficiency due to idle processors.
There is also a loss of efficiency as data is moved around among the processors.

Another method of parallel processing is to move events through a pipeline
of processors, each processor doing one part of the overall job. Again, specialized
processors with algorithms in hardware are frequently mentioned. One fundamen-
tal flaw in this scheme is that not all events take the same amount of processing
time, so there will always be a “longest event” that will clog the pipeline. In addi-
tion, the time spent passing data down the pipeline can be quite serious, because
the temporary data set generated and used during the processing of an internal
program is generally much larger than either the initial raw data or the final DST
output data.

To date, the only successful way to introduce parallelism for event processing
is feed an event to one processor and let that processor work on that event alone,
while the next and subsequent events are fed to additional processors. This method
keeps each processor fully occupied except for the minimal communications time
inputting the raw data and outputting the results. This method of parallelism is
popularly called the microprocessor farm.

The method of having one event processed by one processor worlds as was
clearly demonstrated as far back as 1979 by users of the 168/E.5 It has also been
shown that this method is not sensitive to the method of coupling. It is working
equally well with tightly coupled processors such as the Elxsi computers or loosely
coupled processors such as the FPS-164.6 Trying to exploit parallelism within one
event, however, has so far been less effective because the overall execution time can

10

easily be slowed down by the nonparallel part of the program, even with tightly
coupled processors.

II.1 PARALLEL PROCESSORS IN THE SSC ERA

The question has been frequently raised of whether the parallel processing
technique will continue to be valid in the SSC era where a single detector will
require 1000-2000 VAX 11/780 equivalent processing power. The answer seems to
be affirmative and can be understood from the following simple arguments:

l A data acquisition computer with a certain I/O bandwidth recorded the data
at the detector.

l Whatever the power of the parallel processors (as long as they can run the
complete program), one will add enough of them to obtain the required total
CPU power.

l As long as rate of event processing is not greatly different from the original
data acquisition rate, then the host computer with I/O capacity at least
equal to the data acquisition computer will be sufficient to run a processor
f arm.

III. SOFTWARE ISSUES

Today, in high energy physics, software is generally a “mess.” That is to say,
most experimental groups, especially the new large detector groups, are having a
difficult time developing and managing their software. As each new large detector
comes online, the software effort becomes increasingly more difficult. This leads
to the conclusion that we will have a major problem with the software for the
Superconducting Super Collider (SSC). Although not explicitly stated, there also
seem to be many in our community that believe the reason software will be a
problem at the ssc is that “we need to develop large (20Q500K lines of FORTRAN)
complex code for the detector, with 400 physicists at 50 institutions. n ’ We first
explore whether the above reasoning is fact or fiction.

First of all, let’s look at the size and complexity of the code for a very large
detector. The size and complexity of the code should scale with some aspects of
the detector. If we can find the scaling laws, we should be able to estimate the size
of the problem for an ssc detector by extrapolation from our current detectors.

The size and complexity of the code should scale, for example, with number of
different kinds of detector elements in the detector. This is because each detector
type will need its own pattern recognition code and there will be some code that
links tracks between the detector elements. For an SSC detector, however, there
is no reason, necessarily, that there should be more different kinds of detector

11

elements than a large Tevatron or SLC detector. Therefore, this scaling law would
say that an SSC detector would not be a more difficult problem.

Another scaling law is the size and complexity of the code scales with the num-
ber of boundaries in the detector. This is because each irregular boundary takes
additional code to calculate the position of the boundaries, cross the boundary
and, in general, makes for a lot of exceptional case handling in the code. There is
no reason that an SSC detector should have more boundaries than existing large
detectors, so the software problem for an ssc detector may not be more complex
because of this scaling law.

The size and complexity of the code should scale with the track density, due
to the many alternative possibilities a pattern recognition program must try to
resolve. However, these problems are in a limited area of the detector code and
the effect is not very strong. Thus, we would not expect a great deal of size and
complexity from this effect alone.

So far, we have seen areas where an SSC detector is not necessarily very dif-
ferent from our present day detectors. However, there is still a feeling shared by
many that the large physical size of an ssc detector is going to lead to a larger
software code problem. For example, an ssc detector will have many more detec-
tor channels. But the size and complexity of the code should not scale with the
number of channels; only the size of the arrays should grow, not the size of the
code. The same could be said about the number of tracks in the detector, except
for the second order effect that with a large number of tracks one expects to have
areas of higher track density. The change in scale of the energy of the particles in
the detector should also not have a strong effect on the code. And certainly, the
.total amount of iron in the detector doesn’t affect the size and complexity of the
code.

Thus, we see that, because an SSC detector is very large compared to our
current detectors, there is no inherent reason that the code for the detector be
any larger than current detectors. The first part of the above reason to worry
about ssc detector code seems to be mostly fiction. The second part of the reason
is the people factor, which we now explore a bit further.

Over 400 physicists are expected to be collaborating on a large SSC detector.
Getting so many people working on a software project is clearly a problem. But
in our modern era, it seems that only about 10% of them actually work on the
Monte Carlo and event reconstruction code. This means a software team of about
40 software people; a much more manageable number. Of these 40, we might
expect them to split up among four to six detector types. That is, for example, the
vertex detector, central drift detector, particle Id device (if one exists), calorimetry
detector, and muon chambers. If equally divided, there would be seven to ten
software people per detector type. People in industry experienced with managing

12

large software projects tell us that this is about the right size for a software team.
In fact, today’s large detectors are usually undermanned in software development
efforts, leading to software teams which are too small.

Thus, it appears that the second part of the above reason for major software
problems with ssc detectors seems to be also mostly fiction. And yet we know
it is a fact that with each generation of large detectors, the software problem is
growing. The discrepancy between what we have concluded is fiction and the fact
that software is an increasing problem lies in correctly identifying the causes of
our software problems, which we explore in the next section.

III. 1 CAUSES OF OUR SOFTWARE PROBLEMS

I do not profess to understand all the causes to the software problem. Never-
theless, I will discuss some causes I have identified. I do not pretend to understand
their relative importance. With different large collaborations, in fact, their relative
importance may be different.

The first cause is the some physicists in a collaborations don’t take software
seriously enough. The software system is a very important part of a modern
detector and yet there is not enough effort put into the software at an early enough
stage in the detector development, constructing and commissioning. There is, in
general, little monitoring of the progress that is being made in the software effort
compared to monitoring of the progress in building the detector itself. There is
sometimes also an attitude of many of the key potential software writers that “I’m
too busy now to worry about software,” or “A software error now is not serious,
we can fix it later.n Sometimes younger, less experienced physicists are the only
‘ones writing the code at an early stage, with little guidance, monitoring, or control
by more experienced physicists. This leads to large, important parts of the coding
being rewritten after the first real data is taken.

Another cause is that some physicists in a collaboration take software too seri-
ously. By this I mean that some collaborations spend an excessive amount of time
discussing what software tools and methodologies are thought to be necessary for
the success of the software effort. Frequently, religious wars break out between pro-
ponents of competing techniques. The excessive time spent on discussing whether
to use FORTRAN or another more modern language, or the discussions on the best
operating system to use, or which code management system to use are all symp-
toms of. this problem. Frequently, when software is taken too seriously, a group
builds an overly complex and/or fancy foundation on which to build their physics
code. This is caused by allowing an abundant amount of creativity to run free in
the tools and utilities. This creativity doesn’t always seem to be aware of making
normal engineering tradeoffs. That is, frequently, worrying about what the system
should do in some 5% detail effect rather than what users need 95% of the time.

13

There are~other areas which may be the cause of the software mess. One of
them is how software development teams are organized. Ideally, one would like
to see a clear chain of command from top level manager to individual software
writers. Frequently, however, one finds a set of people from the various collabo-
rating institutions, and at various stages in their professional career. The software
manager, thus, doesn’t necessarily have the same level of control, authority, or
influence over the software team as, say, a head of an engineering department.

This structure leads to another area. One might like to see the software man-
ager provide strong leadership in order that the software efforts lead to a coher-
ent, well-engineered whole. However, one might find that the software manager
is acting only as a coordinator between development teams with different styles,
methodologies, and preferences, leading to an overall package that barely works
together. Even with an attempt of strong leadership, one still needs to realize that
these large software systems are never built from scratch. This leads to code in
different areas that could have quite different styles, internal rules, and methods.
Temporary interfaces are made between these different areas which may never
be eliminated. In practice, one may never be able to achieve a desired level of
uniformity of the code.

In general, there is little professionalism in managing the software effort, cqm-
pared to that found in the building of the hardware. All of the factors mentioned
above, plus a tendency on the part of most HEP software writers to work very
independently, contribute to this lack of professionalism.

III.2 SOME BETTER WAYS TO MANAGE SOFTWARE ISSUE

The question is, then, what do we need to do and what tools to we need to
keep our software efforts from being such a mess? I don’t pretend to know all the
answers, but will mention two possibilities below.

First, a large software effort needs a good design. Good design comes with
the proper modularity, which may not be as simple as division by detector type.
Between the modules, there should be well-designed interfaces, which usually come
in the form of COMMON blocks and/or data banks. A good design of a large project
cannot be laid down correctly from the start; a certain amount of prototyping
needs to be done. When a software team knows it is building a prototype, the
whole attitude of approaching decisions change for the better.

Second, in any large project one needs to have progress and quality controls.
Unlike hardware, it is much harder to quantify progress or quality with software.
Although difficult, it is not impossible to invent some measurement tools, with
which a software manager can judge the rate of progress. At the very least, peer
review of software modules should be done systematically to judge progress and
quality.

14

III.3 CONCLUSION OF THE SOFTWARE SITUATION

It is generally felt in our community that, with each generation of large de-
tector, software is becoming a bigger and bigger problem. If we extrapolate this
trend to the ssc era, software would be a very big problem indeed. However,
software, even for an ssc detector, should not be such a big problem. But we need
to understand the fundamental causes of our current problems, before we can find
the solutions.

REFERENCES

1. Miura, K., Proc. Computing in High Energy Physics, Amsterdam (1985).

2. Becker, J., Nucl. Instr. Meth. A235 (1985).

3. Georgiopoulos, G. et al., Nucl. Instr. Meth. AZ49 (1986).

4. Miura, Kenichi, Computer Physics Communications 45 (1987) 127.

5.. Kunz, P. et al., IEEE Trans. Nucl. Sci. 27 (1980).

6. Pohl, M., Computer Physics Communications 45 (1987) 47.

7. Report of the Task Force on Detector R&D for the Superconducting Super
Collider, SSC-SR-1021, June 1986.

15

