Degradation of NIT beam due to beam windows

G. Zaparac, E. Bloom, H. Band, R. Prepost, K. Moffeit, M. Donald Stanford Linear Accelerator Center
P.O. Box 4349
Stanford, California 94309

I. Emittance growth

The increase in emittance of the NIT beam due to multiple scattering from windows at magnet B11 and at the polarimeter detector was studied using TRANSPORT. Runs were made for both a 13.5 GeV SLC beam (TRAN NIT13 on account GEORDIE) and an 8 GeV NPI beam (TRAN NPI8). The momentum dispersion was taken to be zero for both studies. Nominal beam parameters assumed at sector 30 were $\sigma_{x}=\sigma_{y}=0.237 \mathrm{~mm}$ with $\sigma_{x \prime}=\sigma_{y \prime}=0.00481 \mathrm{mrad}$ at 13.5 GeV , and $\sigma_{x}=\sigma_{y}=0.973 \mathrm{~mm}$ with $\sigma_{x \prime}=\sigma_{y \prime}=0.0197$ mrad at 8 GeV . These values correspond to SLC and NPI emittances of 0.0011 mm -mrad and 0.0192 mm -mrad, respectively, or to invariant SLC and NPI emittances of $3 \cdot 10^{-5}$ m-rad and $3 \cdot 10^{-4} \mathrm{~m}$-rad. The effect of the windows was simulated by adding the RMS multiple scattering angle to the beam divergence in both the x and y planes at the z position of the windows.

The beam windows for the polarimeter detector were taken to be two 0.0013 cm Fe windows separated by 20 cm of He. This represents 0.00148 radiation lengths and an RMS projected multiple scattering angle of $28 \mu \mathrm{rad}$ at 13.5 GeV or $47 \mu \mathrm{rad}$ at 8 GeV . There is a pair of windows at each end of the septum magnet B11. These windows separate the NIT vacuum, the He filled beam pipe inside B11 (300 cm), and the PEP vacuum. Both pairs of windows are separated by about 10 cm of air. Each pair is estimated to represent at least 0.0028 radiation lengths with a scattering angle of $40 \mu \mathrm{rad}$ at 13.5 GeV and 61 $\mu \mathrm{rad}$ at 8 GeV .

We have also considered a scenario with only two windows downstream of B11 and with only a single window downstream of B11. For the case of two windows, the beam pipe inside B11 is at the NIT vacuum. These windows then represent 0.0024 radiation lengths and a scattering angle of $36 \mu \mathrm{rad}$ for 13.5 GeV and $61 \mu \mathrm{rad}$ for 8 GeV . We must have at least one window to separate the PEP and NIT vacuums. A single 0.0013 cm Fe window represents 0.00072 radiation lengths and a scattering angle of $18 \mu \mathrm{rad}$ at 13.5 GeV and 30 $\mu \mathrm{rad}$ at 8 GeV .

Table 1 shows the TRANSPORT results for emittances calculated in the x and y

[^0]planes immediately after B11. The three different cases of windows at B11 are shown at both energies, with and without the polarimeter windows. For the present case with four windows at B11, the emittance increases by about 20% after the polarimeter windows are introduced. The emittance decreases by a factor of three if the four windows at B11 are replaced by a single 0.0013 Fe window.

The emittance growth has also been studied by the Polarization Group using TRANSPORT. An emittance of 0.0035 mm -mrad at 14.5 GeV is assumed here; this is probably closer to the emittance of the SLC beam delivered next year. The results for three polarimeter materials are shown in Table 2. Both studies found agreement between TRANSPORT and TURTLE for the dimensions of the phase space ellipse.

Using TRANSPORT, we have attempted to match the Twiss parameters of the injected beam to the PEP acceptance at kicker magnet K2. We have the freedom to adjust three quadrupole strings in the transport line. A match is considered successful if $\beta_{x}=20 \mathrm{~m}$ and $\alpha_{x}=0$. The match succeeded for the case of no windows or for a single 0.0013 cm Fe window at B11 (Figures 1-4; the inner contour represents 2σ, the outer 3σ). We were not able to match the Twiss parameters after the detector windows were added (Figures 5-6). Any adjustment of the Twiss parameters with four windows at B11 is impossible because the size of the phase space ellipse is dominated by the multiple scattering downstream of all of the quadrupole magnets (Figures 7-8). In Figures 9-14 we show the injection of the NPI beam. The phase space of the PEP emittance for electrons during previous running (0.0075 mm -mrad) is shown in Figures 15-16.

The TPC group recommends putting PR9 and PR10 in vacuum for two reasons: 1) the emittance of the beam entering PEP is reduced by a factor of 2 to 3 in the NIT line if the detector windows are present, and by a factor of 3 to 4 in the SIT line where no detector windows are present, and, 2) any adjustment of the Twiss parameters upstream of the septum magnet is meaningless if the four profile monitor windows are not removed.

II. Spray into BPMs

A small fraction of the electrons will have a large momentum dispersion after the polarimeter windows. Any electrons off momentum by more than 6.7% are deflected outside of the beam pipe (3.8 cm radius) by the dipole magnet $B 3$ before they reach the next x -focussing quadrupole Q2 (see Figure 17). In this study it is assumed that any particles outside of the beam pipe at Q2 will not reach the BPMs because they are blocked by the magnet. This implies an energy cutoff at 12.6 GeV for a 13.5 GeV beam. To estimate the fraction of electrons with a large momentum dispersion, EGS was run to simulate 100,000 electrons impinging upon a slab of Fe with a thickness equivalent to the radiation lengths of the polarimeter windows (0.0026 cm). The fraction of electrons with energies between 12.6 and 13.4 GeV after exiting the slab is 0.0045 .

TURTLE was run with 10,000 rays and all of the magnet apertures to estimate the fraction of the beam that could strike the BPMs. Quadrupole apertures were approximated by a circular slit with a radius equal to the half gap (1 inch). Dipole magnet apertures
were represented as a slit separated by the gap between poles (1 inch, with the exception of BVA, which has a 2 inch gap). Dipole B3 is given a rectangular aperture 3 inches wide and 1 inch high. The emittance at the start of the deck was 0.004 mm-mrad.

Each BPM was bounded in z by two circular slits with the same radius as the beam pipe (Figure 17). Any electrons blocked by either of these slits could strike the BPMs. The product of the fraction of electrons that have a high dispersion (estimated by EGS) and the fraction of high dispersion electrons that are blocked by the slits (as determined by TURTLE) is taken as the fraction f of electrons that could strike the BPMs.

A momentum dispersion of 6.7% was added to the beam at the position of the detector windows. Only BPMs 1 and 3 were affected (Table 3). BPM3 is the most vulnerable, with $f=3 \cdot 10^{-4}$. In Table $4 f$ is checked for dispersions of 3.7% and 7.4%. For the purpose of this rough estimate, the answer appears reasonably insensitive.

TURTEE was used to scatter plot the ray position at BPMs 1, 2, 3, and 4 (Figures -18-21). The straight lines represent a distance of 3.8 cm from the beam axis in x (the beam pipe radius) and 5 mm from the beam axis in y. The BPM strips have been oriented at 45° in anticipation of a large dispersion; a beam with $\sigma_{x}=5.9 \mathrm{~mm}$ is 4σ from the closest edge of the strip. The effect of spray in the horizontal plane on BPM performance will be studied during injection tests.

The spray near the BPMs has also been investigated by the Polarization Group using TURTLE and EGS. In this study, 10,000 rays initiated by TURTLE were run through an EGS simulation of the detector windows before being read back into TURTLE and transported to the end of the NIT line. This study concludes that BPMs 1, 2, and 4 are not vulnerable to the increased dispersion from the windows, but that BPM 3 is vulnerable to the fraction $3 \cdot 10^{-4}$, in good agreement with the other study.

III. Summary and Conclusions

We have estimated that the windows for the polarimeter detector increase the beam emittance by about 20% if we run with all four B11 windows in place. The four B11 window increase the emittance by a factor of 3 over the scenario where the PEP and NIT/SIT vacuums are separated by a single $1 / 2$ mil stainless steel window. The increase in dispersion due to multiple scattering at the detector has been estimated by EGS and TURTLE to cause 0.03% of the beam to spread beyond the beam pipe radius near BPM 3. Additional shielding of the BPMs (besides the magnets) may be required. The need for such shielding will be reviewed after data is obtained.

The emittance at the kicker magnet is completely dominated by the multiple scattering from the four B11 windows. The TPC group recommends putting profile monitors PR9 and PR10 in vacuum before PEP HEP this June. This eliminates the four B11 windows and reduces the emittance by a factor of 3. It also allows, at least in the SIT line, the ability to adjust the Twiss parameters of the injected beam. Once PR9 and PR10 are in vacuum, the effect of the polarimeter windows is an increase of the beam emittance by a factor of 2 . We do not anticipate that this degradation will cause a problem.

In order to address the possible need to shield the BPMs, and to study the effect of emittance growth on the injection efficiency, the Polarization and TPC groups have agreed upon the following installation schedule. PEP would debug and run with the present vacuum pipe at the polarimeter detector position. The polarimeter windows would be installed on the existing flanges in a one day (or less) access and the polarization tests would proceed. If necessary the vacuum pipe could be easily reinstalled for further PEP running. PEP would at some time inject with the polarimeter windows in place to study injection efficiency and possible backgrounds.

Emittances from TRANSPORT using 0.5 mil Fe detector windows separated by 20 cm of He. Emittances are in mm-mrad and are taken at kicker magnet K2. Nominal emittances in both transverse planes are 0.0011 mm -mrad for SLC (13.5 GeV) and 0.0192 mm -mrad for NPI (8 GeV).

$$
\epsilon_{x}(\mathrm{SLC}) \quad \epsilon_{y}(\mathrm{SLC}) \quad \epsilon_{x}(\mathrm{NPI}) \quad \epsilon_{y}(\mathrm{NPI})
$$

No windows	0.0012	0.0011	0.0197	0.0200
Detector windows only	0.0051	0.0042	0.0399	0.0340
Four B11 windows	0.0099	0.0076	0.0639	0.0463
Four B11 windows and detector windows	0.0122	0.0101	0.0742	0.0556
Two windows downstream of B11	0.0058	0.0036	0.0445	0.0311
Two windows at B11 and detector windows	0.0077	0.0071	0.0558	0.0438
One 0.5 mil Fe window downstream of B11	0.0031	0.0021	0.0276	0.0232
One 0.5 mil Fe window and detector windows	0.0060	0.0051	0.0439	0.0364

Former PEP electron beam	0.0212	0.0185
at 13.5 GeV with		
$\epsilon_{x}=\epsilon_{y}=0.0075$		

TABLE 2

TRANSPORT STUDIES

Radiation Lengths and $\theta_{\text {plane }}^{r m,}$ for the different cases

Case	Radiation Lengths	$\theta_{\text {plane }}^{\mathrm{rms}}($ by formula $)$	$\theta_{\text {plane }}^{\text {rms }}($ by EGS4 $)$
A.	3.5×10^{-3}	$41.7 \mu \mathrm{rad}$	$47.0 \mu \mathrm{rad}$
B.	0.76×10^{-3}	$17.4 \mu \mathrm{rad}$	$21.4 \mu \mathrm{rad}$
C.	1.55×10^{-3}	$26.0 \mu \mathrm{rad}$	$28.5 \mu \mathrm{rad}$
D.	1.21×10^{-3}	$25.1 \mu \mathrm{rad}$	

Beam after B11 ignoring end of NIT windows

	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{x^{\prime}}(\mathrm{mr})$	$\sigma_{y}(\mathrm{~mm})$	$\sigma_{y^{\prime}}(\mathrm{mr})$	r_{21}	r_{43}	$\epsilon_{x}(\mathrm{~mm}-\mathrm{mr})$	$\epsilon_{y}(\mathrm{~mm}-\mathrm{mr})$
Nominal	0.279	0.016	0.168	0.022	0.484	-0.098	0.0039	0.0037
A. $5 \mathrm{mil} \mathrm{Al}(2)+20 \mathrm{~cm} \mathrm{Air}$	0.284	0.054	0.272	0.065	-0.027	0.720	0.015	0.012
B. $5 \mathrm{mil} \mathrm{Be}(2)+20 \mathrm{~cm} \mathrm{He}$	0.280	0.028	0.194	0.036	0.202	0.343	0.0077	0.0066
C. $0.5 \mathrm{mil} \mathrm{SS}(2)+20 \mathrm{~cm} \mathrm{He}$	0.281	0.035	0.212	0.043	0.121	0.488	0.0098	0.0080

Beam after Bll with windows before and after Bll

	$\sigma_{x}(\mathrm{~mm})$	$\sigma_{x^{\prime}}(\mathrm{mr})$	$\sigma_{y}(\mathrm{~mm})$	$\sigma_{y^{\prime}}(\mathrm{mr})$	r_{21}	r_{13}	$\epsilon_{x}(\mathrm{~mm}-\mathrm{mr})$	$\epsilon_{y}(\mathrm{~mm}-\mathrm{mr})$
Nominal	0.301	0.054	0.200	0.056	0.37	0.321	0.015	0.0106
A. $5 \mathrm{mil} \mathrm{Al}(2)+20 \mathrm{~cm}$ Air	0.304	0.074	0.293	0.083	0.155	0.688	0.0220	0.0176
C. $0.5 \mathrm{mil} \mathrm{SS}(2)+20 \mathrm{~cm} \mathrm{He}$	0.300	0.062	0.238	0.067	0.274	0.526	0.0179	0.0136
D. $2 \mathrm{mil} \mathrm{Al}(2)+20 \mathrm{~cm} \mathrm{He}$	0.301	0.060	0.230	0.065	0.294	0.492	0.0173	0.0131

TABLE 3 (see Figure 17)

BPM	N_{1}	N_{2}	N_{3}	$f=0.0045\left(N_{1}-N_{3}\right) / N_{0}$
1	4934	4934	4924	$4.5 \cdot 10^{-6}$
2	3233	3233	3233	0
3	3233	2781	2552	$3.1 \cdot 10^{-4}$
4	1279	1279	1279	0
5	551	551	551	0
6	551	551	551	0

- TABLE 4

To check the sensitivity of f (defined in TABLE 2) to $\delta p / p$, TURTLE was run with $\delta p / p=3.7 \%$ and $\delta p / p=7.4 \%$.

$\delta p / p$

f

$$
\left(N_{1}-N_{3}\right) / N_{3}
$$

3.7%
$4.8 \cdot 10^{-4}$
0.195
6.7%
$3.1 \cdot 10^{-4}$
0.211
7.4%
$2.8 \cdot 10^{-4}$
0.209

Figure 1: 13.5 GeV beam with no windows

Horizontal phase space at exit of kicker magnel K2, showing injection for colliding beams.

Figure 2: 13.5 GeV beam with no windows

Vertical phase space at exit of
kicker magnet K 2 , showing injection
for colliding beams.

Figure 3: 13.5 GeV beam with single
0.5 mil Fe window

Horizontal phase space at exit of
kicker magnet K 2 , showing injection for colljding beams.

Figure 4: 13.5 GeV beam with single

Vertical phase space at exit of

kicker magnet K2, showing injection
for colliding beams.

Figure 5: 13.5 GeV beam with detector windows

Horizontal phase space at exit of kicker magnet K2, showing injection for colliding bearns.

Figure 6: 13.5 GeV beam with detector windows and single 0.5 mil Fe window at_B11

Vertical phase space at exit of
kicker magnet K2, showing injection
for colliding bearns.

Figure 7: 13.5 GeV beam 4 Bll windows

Horizontal phase space at exit of
kicker magnet K2, showing injection
for colliding beams.

Figure 8: 13.5 GeV beam with 4 B 11 windows

Vertical phase space at exit of
kicker magnet K2, showing injection
for colliding bearns.

Figure 9: 8 GeV NPI beam with single 0.5 mil
B11 window

Horizontal phase space at exdt of kicker magnet K2, showing injection for colliding beams.

Figure 10: 8 GeV NPI beam with single 0.5 mil
B11 window

Yertical phase space at exit of

kicker magnet K 2 , showing injection
for colliding bearns.

Figure 11: 8 GeV NPI beam with detector windows
and single 0.5 mil B 11 window

Horizontal phase space at exit of kicker magnet K2, showing injection for colliding beams.

Figure 12: 8 GeV NPI beam with detector windows and single 0.5 mil B11 window

Vertical phase space at exit of

kicker magnet K2, showing injection
for colliding beams.

Figure 13: 8 GeV NPI beam with 4 B 11 windows

Horizontal phase space at exit of
kicker magnet K2, showing injection for colliding beans.

Figure 14: 8 GeV NPI beam with 4 B 11 windows

Vertical phase space at exit of
kicker magnet $K 2$, showing injection
for colliding beams.

Figure 15: 13.5 GeV beam with former PEP
emittancE of $0.0075 \mathrm{~mm}-\mathrm{mrad}$

Horizontal phase space at exit of kicker magnet K2, showing injection for colliding beams.
\qquad Figure 16: 13.5 GeV beam with former PEP

Vertical phasc space at exit of
kicker magnet $K 2$, showing injection for colliding beams.

Figure 17

$N_{1}=$ number of rays upstream of slit 1.
$N_{2}=$ number of rays between slits 1 and 2.
$N_{3}=$ number of rays downstream of slit 2.

Figure 18 Scatter Plot of x vs, y at EPM1

Figure 19
 Scatter
 plot of x vs. y at BPM z

THO_DINESSIONAL PLOT_OF_Y_YS_Y

Figure $20 \quad x v_{s}, y$ at BPMz

Figure $21 \times v_{s} y$ at BPM4

[^0]: Work supported by the Department of Energy under contract DE-AC03-76SF005l5.

