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ABSTRACT 

We prove that the existence of a slightly massive gravitino or gaugino 

in a class of Gaussian string compactifications, implies the existence of an 

entire tower of such states below Mplanck, signaling the approach to a limit 

of decompactification. 
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Introduction 

Unless a completely different mechanism is responsible for protecting the 

gauge hierarchy, we expect that in a realistic string vacuum space-time super- 

symmetry is broken at a scale near Mweak, i.e., infinitesimal in units of Mplanck. 

The purpose of this letter is to prove that, at least in the restricted class of 

(Gaussian) four-dimensional models, constructed with free world-sheet fields in 

refs. [l-g], the existence of a gravitino or gaugino of infinitesimal tree-level mass 

(M,/,/M&znck K 1) implies the existence of an entire tower of such states, with 

masses equal to (2N+l)Ms,,, (4N+l)M3i2,. . . , where N is some, not too large, 

integer. This is a signal of decompactification, meaning that one or more internal 

radii become huge or, by duality, infinitesimal in units of Mplinek, so that the 

corresponding momenta become quasicontinuous. 

The fact that the scale of tree-level supersymmetry breaking is necessarily 

linked to the size of some internal dimension is not a priori obvious. This is, for 

instance, not the case if instead of supersymmetry one considers the breaking of 

gauge symmetries [1,6]; neither is it true if instead of superstrings one consid- 

ers traditional Kaluza-Klein supergravities [7]. It is thus tempting to consider 

this phenomenon as a characteristic stringy signature at low energy. However, 

even though there is no direct experimental evidence against the existence of 

some extra dimension at say 100 TeV, such a scenario faces at least one serious 

difficulty:* couplings of order one at low energies should, by naive dimensional 

analysis, become huge at the unification scale, invalidating the semiclassical de- 

scription of the string and creating a new hierarchy problem. For this reason, it is 

more cautious to interpret our result as ruling out small tree-level supersymmetry 

breaking, at least in this restricted class of Gaussian models. 

Our interest in these issues was spurred by attempts to construct string 

solutions with supersymmetry broken by a Scherk-Schwarz mechanism [7,9]. 

* There is of course also the ,perennial cosmological constant problem, which was studied in 
a similar context in ref. [8]. 
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Similar results to .ours were derived by Dine and Seiberg [lo] and Banks and 

Dixon [ll]. Th eir arguments are not restricted to the Gaussian compactifications 

considered here, but their conclusions are weaker: they show that supersymme- 

try cannot be broken continuously by sliding the vacuum expectation value of 

a scalar field at an analytic point and in a flat direction of its potential. This 

does not, however, rule out a number of interesting possibilities: for instance, 

there could exist vacua with hierarchically suppressed supersymmetry breaking, 

which cannot be continuously connected to supersymmetric ones. Or, the scale 

of supersymmetry breaking could be proportional to some internal radii, but 

with a constant of proportionality of the order, say, of 10-16. Or else, broken 

supersymmetry could characterize only the nearly massless, but not all of the 

massive string modes. Last, but not least, it is plausible, but by no means yet 

established, that the only continuous string parameters are vacuum expectation 

values of scalar fields; it is in fact noteworthy that in many interesting supergrav- 

_ ity models [7,12] th e scale of supersymmetry breaking is not tuned by a Higgs 

field. In contrast to the proofs of refs. [lo] and [ll], our proof would, if extended 

to arbitrary string compactifications, exclude all of these possibilities, since we 

make no assumption about the mechanism producing a slightly massive gravitino 

or gaugino. 

Finally, let us note that if supersymmetry is not broken at tree level, then 

nonrenormalization theorems [13] guarantee that it will not break through ra- 

diative corrections. A possible exception could occur if the gauge group contains 

anomalous U(1) factors [14], but as we will here also show the chiral charge 

asymmetry can be bounded from below by a not too small number. This makes 

it unlikely that supersymmetry will break, if at all, at a scale near Tweak by 

such a mechanism, leaving nonperturbative effects as the final alternative. These 

difficulties in breaking space-time supersymmetry should, among other things, 

make us rethink about the necessity of having it as an approximate low energy 

symmetry in string theories. 



Fermionic Proof 

The idea of our proof is that world-sheet supersymmetry severely restricts 

the form of massless, or infinitesimally massive space-time spinors. Together 

with modular invariance, this places strong constraints on the allowed superstring 

spectra. Consider the fermionic construction [2,4,5] of four-dimensional heterotic 

string theories. In addition to the four space-time coordinates Xp and their left- 

moving superpartners +p, one has an extra 18 left-moving and 44 right-moving 

fermions xa and q*, respectively. The world-sheet supercharge is [ 151: 

TF = $‘“a,xp -I- ifabc XaXbXC 3 (1) 

with f&e the structure constants of some semisimple Lie group G. Since G has 

dimension 18, it is either SU(2)6, or SU(3) x O(5) or finally SU(2) x SU(4). 

A space-time spinor must belong to a Hilbert-space sector HA, in which the 

fermionic fields have the following boundary conditions when transported around 

the string: 

ab b 
xa-+AG x , 

VA + ARight 
ABqB 

, 

where ffR+t is an orthogonal matrix, while ffG must, in addition, belong to the 

group of automorphisms [5] of G: & E Aut(G). This last requirement is due to 

the fact that the supercurrent must be periodic. 

We may always choose some, generally complex basis j(l), . . . , jcKl for the 

fermions that diagonalizes the boundary conditions (2): 

j(i) j -eisa(') j(i) . (3) 

We denote by CL! = (1, CWG; aRight) the corresponding vector of phases, restricted 

so that -1 < o(I) 5 1. States in HA are, as usual, constructed by acting on the 
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vacuum IO), with positive-frequency oscillators, where the frequencies of the jIi) 

oscillators are equal to 

1 + c&J 
2 

+ integer . (4) 

The mass of a state is determined by the zeroth-order Virasoro gauge conditions: 

M2 = x(frequencies) - i + i + oG g oG , 
L 

= C( frequencies) - 1 + oRight i oRight . 
R 

In eq. (5a) the factor l/8 is the contribution of the two real, or one complex, 

transverse fermions +p which are periodic, since we are considering a Ramond 

sector. 

Next, we examine the phase-vector length CI!G. CrG as & ranges over Aut(G). 

This is minimized for some special automorphisms ffg with the following two 

crucial properties: 

(4 QIOG . crs = i dim G = 3, which is precisely the value necessary to make the 

left-moving vacuum in the sector HA massless, and 

(ii) N - trg = 0 (mod 2) for some small integer N (N 5 6 for the groups that 

interest us), which means that & o is some small root of the identity. 

These properties were established in ref. [5], where all the minima A: were 

classified exhaustively. Here we will restrict ourselves to inner automorphisms, 

and give an alternative elegant proof which we owe to Peter Goddard [16]. An 

inner automorphism is a group element in the adjoint representation; up to a 

conjugation it can be written as: 

AG = ,iJ.S 3 (6) 



- 

with Hl the. mutually commuting Cartan generator. The eigenvalues of this 
+-+ 

matrix are 1 for each of the, rank(G) commuting generators, and ei* * . P for 

every generator corresponding to the root vector -;i;‘. Thus, we find: 

aG.aG=~rank(G)+~($.i?-1)2 . 
+OC roots 

(7) 

Let us normalize the length of the long roots to 2. Then C+ve pi $ = h bii 

where h is the (integer) dual Coxeter number (h = n for SU(n) and h = n - 2 

for O(n) with n 2 5). Defining 

~=~T”/h, 
+ue 

and using the Freudenthal-de Vries strange formula: 

dim G j&g=- 
3h ’ 

(8) 

wc may rewrite eq. (7) as follows: 

aGsaG=idimG+h(T-$)2 . 

It follows immediately that the minimum phase-vector length is $J dim G, as 

advertized, and it is obtained for the special automorphism 

--+--+ 
jp=e”“eo.H ) (11) 

which, among inner automorphisms, is unique modulo the choice of the subset of 

positive roots. Furthermore, it is straightforward to check that A g is an N-th root 

of the identity, with N = h for simply laced group, while N = 2h for O(5); N is 

therefore a small integer. The special automorphisms, eq. (11)) have been studied 

extensively by Coxeter, and also arise in some other amusing contexts [17]. 



For our purposes, they are special because they can yield massless space-time 

gravitinos:* 

ax;10 >s , (12) 

with S = (1, LYE; aRight = 0). Using the mass formula, eq. (5), and the fact 

that near S there are no almost periodic fermions with infinitesimal-frequency 

oscillators, it is now easy to see that the only candidate for a slightly massive 

gravitino is of the form: 

ax; lo >s+6s , 
where 6s = (0 6cr~; 6aRjght) < 1, and the mass is 

6aG)2 = ;(baRipht)2 . 

(13) 

(14 

Here, the absence of a linear term is due to the fact that cyg . 6CrG = 0 since 

(Y: minimized vector length. Suppose now that this state belongs to the Hilbert 

space of a four-dimensional fermionic string model. This means that S + 6s is 

in the group B of allowed boundary conditions, and that the state (13) survives 

the generalized GSO-type projections: 

1 if 6~ = 1 
eV-F = mc 

fl if 6~ =-1 
(15) 

for all /?e:S. We are here using the notation of ref. [5]. F is the vector of fermion- 

number operators, the dot product is Lorentzian, left minus right, c F [I is the 

coefficient with which the corresponding spin-structure contributes to the one- 

loop amplitudes, and 6~ = 1 or -1 according as p is a Neveu-Schwarz or Ramond 

boundary condition. Equation (15) f o 11 ows from the fact that on the state (13), 

eiP’F acts, respectively, as the identity or as a chirality operator. 

* As a result they can be used to generate N = 2 superconformal models, as well as e-function 
identities. 
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Now H is-a group under addition of phase vectors modulo 2. Furthermore, 

2N.S = 0 mod 2, fromwhichwe conclude that S+(2N+l)6S, S+(4N+1)6S.. . , 

etc. are also in H. We therefore have an entire tower of candidate low-mass 

gravitinos 

axiv ‘S+(2N+l)w ; %To >S+(4N+1)6S * - * 9 

with mass differences equal to 2N . M3i2. These states satisfy left-right level 

matching due to the absence of a linear term in eq. (14) . We must still show 

that they survive all GSO-type projections, i.e., that the coefficients: 

C 
S + (2N + 1)6S P 1 [ ; c 

S + (4N + 1)6S 1 . . . P 
also satisfy eq. (15). To prove this one must use the duality and factorization 

conditions [2,4,5]: 

06) 

and the fact that 

even integer if 6~ = 1 

NS$= , (17) 
integer if Sfl = -1 

which helps get rid of phases. Equation (17) follows from the fact that c& + 

PG + 1, or c& + PG are the phase vectors of an automorphism, if PG is an 

automorphism (6~ = -1) or antiautomorphism (6~ = l), respectively, and that 

No; = 0 mod Z, and finally that o& minimizes vector length over the group of 

automorphisms. This then completes our proof, which goes through similarly for 

outer automorphisms. Note that the integer N governing the mass differences 

between the tower of gravitinos is at most equal to six. 
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Bosonic Proof 

It is instructive to translate this proof in the bosonic language. The proof is, 

as we will see simpler and more general, but we are unable to obtain a very tight 

bound on N. Recall that to a given state in H,q, with fermion numbers F, we 

assign a momentum-winding number vector [2]: 

This has ten left and 22 right components. Allowed momenta belong to a shifted 

lattice A + l? where the shift vector is A = (1 0 . . . 0), the entry 1 corresponding 

to the bosonized transverse T/J p. Modular invariance dictates that p2 = pi - p& 

be an odd integer, and that the lattice I’ be integer and self-dual; this means 

that elements of I have integer dot products with each other, and that any Q 

such that (q - A) h as integer dot products with I’ is an allowed momentum [2]. 

These constraints generalize the usual conditions of an even, integer, self-dual 

Lorentzian lattice [l], with the extra complications arising because one treats 

the bosonized world-sheet fermions on the same footing as the internal-space 

coordinates. 

Now the most general Lorentz-invariant supercharge is of the form [18]: 

(19) 

where the vectors r, t and b entering in the sums have nonvanishing components 

only along the nine internal bosonized left-moving coordinates. TF is a good 

weight 3/2 conformal field provided r2 = 3, t2 = 1 and b(t) . t = 0. Further con- 

ditions must be imposed in order that the anticommutator of two supercharges 

yield the energy-momentum tensor, but the solutions to these complicated equa- 

tions have not yet been completely classified. 



Consider. next. the transformation properties of TF as one moves around 

the string parametrized by 0 < Q 5 27r. Using the fact that (p(a + 27r) = 

p(a) f 27&p), where the momentum-winding number operator obeys canonical 

commutation relations with cp and the sign depends on whether cp is the left- or 

right-moving, one finds that: 

eiq.p(u+27r) lp) = e2iwP+iw2 . e~w(4 lp) . 
(20) 

Since TF must be either antiperiodic (Neveu-Schwarz) or periodic (Ramond), 

we conclude that: 

0 mod 2 (NS) 
A.p=r.p=t.p= (21) 

$ mod 2 (R) 

for all r, t entering in expression (19), and for any momentum p. It follows by 

“self-duality” that all the vectors r and t are themselves allowed momenta of the 

theory. 

Let now Ed be the Euclidean space, of dimension d 5 10, spanned by r, t and 

A, and let l?~ be the lattice of vectors in Ed which have half-integer or integer 

dot products with all r, t and A. For any given theory the elements of I’E do 

not belong in general to the lattice I of shifted momenta, but there exists some 

integer N bounded from above by: 

N<3’x2 (22) 

such that 2Nq E l? whenever q E I’,q. To see why, choose among all r, t and A 

some linearly independent basis el, . . . , ed spanning Ed. Then for any momentum 

p we have: 

2Nq - (P - A> = 2N 2 (q. er)(s-‘)r.& . (p - A)) , (23) 
I,J=l 
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where gI J = e1.e J E 2. Now q.el and (p- A).e J are half-integers or integers, while 

the components of g-’ are rationals with a common denominator that divides 

det(g). Choosing N to be twice this denominator we see that 2Nq . (p - A) is 

always integer, proving that 2Nq belongs to the self-dual lattice I’. The bound 

(22) follows from the fact that det(g) 

( el , . . . ed) which is less than 3g, since 

The next, crucial observation is 

have a momentum po lying entirely in 

Indeed recall the mass formula: 

is the square volume of the parallelepiped 

e; = 1 or 3 for all I . 

that a would-be massless gravitino must 

Ed, and hence belonging to the lattice I’E. 

M2 = $pi - k + C(frequencies) , 
L 

= 12 --pR - 1 + x(frequencies) . 
R 

(24) 

Since to create a gravitino we must act on the right with a 3Xf oscillator, pc can 

have only left nonvanishing components: pu,R = 0. On the other hand, it follows 

from the super-Virasoro algebra alone that in a Ramond sector: 

M2 = TF(O)~ 2 0 , 

where TF (0) is the zeroth moment of the supercurrent. This means that for a 

massless fermionic state po,~ must minimize vector length, subject to the con- 

straints (21) of having half-integer dot products with r, t and A. Thus it cannot 

have a component normal to all these vectors simultaneously, and must hence lie 

in Ed. 

We are now almost done. Indeed, consider a theory containing a slightly 

massive gravitino. Its momentum is necessarily of the form p = po + 6p with 

po E I’E and 6p K 1. But f rom our previous discussion we conclude that if p is 

an allowed momentum, then so are: 

PO + (2Nk + 1)6p , k= 1,2,3... , 
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giving an entire tower of spin-3/2 states with masses much less than Mplanek. A 

second consequence of our discussion is that, if there is a chiral charge-asymmetry 

it is bounded from below by i/a, and hence cannot be made arbitrarily small. 

The reason is that if p and fi stand for the momenta of two chiral, massless 

fermions, then pi = 41; = l/2 and p& = fig = 1 or 0, and from our previous 

argUInentS 2Np~ . FL E 2. But Since p. fi = pi . fin - pR . fiR is an integer, we 

conclude that so is N(~R f fi~)~. Hence the charge asymmetry ]p~ f fin], where 

the sign depends on the relative helicity, cannot be less than l/n. The induced 

one-loop Fayet-Iliopoulos D-term can thus be made arbitrarily small only if the 

string coupling constant is infinitesimal. 

Let us conclude with some remarks. Firstly, the proof of the existence of a 

tower of states below Mplanck g oes through identically if, instead of a slightly mas- 

sive gravitino, we assume the existence of a slightly massive gaugino correspond- 

ing to the U(1) [22] maximal abelian subgroup of the gauge group. Secondly, the 

- proof in the bosonic language encompasses a wider class of supercurrents [l’s], 

but the bound (22) is, for all the examples we know, overestimating N by three 

orders of magnitude. Without a complete classification of supercharges of type 

(19) we do not however know how to significantly lower this bound. Finally, we 

believe the arguments presented here can be extended with some modifications to 

generic orbifold constructions [19]; we do not have however an exhaustive proof, 

because the complete rules of the game are not yet known explicitly. 

Acknowledgements 

We acknowledge useful conversations with T. Banks, C. Kounnas, K. S. Narain 

and M. Porrati. 

12 



References 

[l] K. S. Narain, Phys. Lett. 169B (1986) 41; K. S. Narain, M. H. Sarmadi 

and E. Witten, Nucl. Phys. 279 (1987) 369. 

[ 21 H. Kawai, D. C. Lewellen and S. H. H. Tye, Phys. Rev. Lett. 57 (1986) 

1832 and Nucl. Phys. B288 (1987) 1. 

[3] W. Lerche, D. L us and A. N. Schellekens, Nucl. Phys. B287 (1987) 477. t 

[4] I. Antoniadis, C. Bachas and C. Kounnas, Nucl. Phys. B289 (1987) 87. 

[5] I. Antoniadis and C. Bachas, Nucl. Phys. B298 (1988) 586. 

[6] M. Mueller and E. Witten, Phys. Lett. 182B (1986) 28; S. Ferrara, C. Koun- 

nits and M. Porrati, CERN-TH 4800/87 ( corrected version); I. Antoniadis, 

C. Bachas and C. Kounnas, Phys. Lett. 200B (1988) 297. 

[7] J. Scherk and J. H. Schwarz, Phys. Lett. 82B (1979) 60 and Nucl. Phys. 

B153 (1979) 61. 

[8] H. Itoyama and T. Taylor, Phys. Lett. 186B (1987) 129. 

[9] R. Rohm, Nucl. Phys. B237 (1984) 553; C. Kounnas and M. Porrati, UCB- 

PTH 88/l (1988); D. Chang and A. Kumar, Northwestern preprint 87/12. 

[lo] M. Dine and N. Seiberg, IASSNS/HEP-87/50. 

[ll] T. Banks and L. Dixon, Princeton and U. C. Santa Cruz preprint (1988); 

[12] E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, Phys. Lett. 

133B (1983) 61; J. Ellis, C. Kounnas and D. V. Nanopoulos, Nucl. Phys. 

B241 (1984) 406. 

[13] E. Martinet, Phys. Lett. 171B (1986) 189; M. Dine and N. Seiberg, Phys. 

Rev. Lett. 57 (1986) 2625. 

[14] M. Dine, N. Seiberg and E. Witten, Nucl. Phys. B289 (1987) 589; J. J. At- 

ick, G. Moore and A. Sen, SLAC and IASSNS preprint (December 1987). 

13 



[15] I. Antoniadis, C. Bachas, C. Kounnas and P. Windey, Phys. Lett. 171B 

(1986) 51. 

[16] P. Goddard, p rivate communication. 

[17] H. S. M. Coxeter, Duke Math. J. 18 (1951) 765; B. Kostant, Am. J. of Math. 

81 (1959) 973; C. Itzykson, Int. J. Mod. Phys. Al (1986) 65. 

[18] H. Kawai, D. Lewellen and S. H. H. Tye, Int. J. of Mod. Phys. A3 (1988) 

279; W. Lerche, B. E. W. Nilsson and A. N. Schellekens, Nucl. Phys. B294 

(1987) 136. 

[19] L. Dixon, J. A. Harvey, C. Vafa and E. Witten, Nucl. Phys. B261 (1985) 

678 and B274 (1986) 285; K. S. Narain, M. H. Sarmadi and C. Vafa, 

Nucl. Phys. B288 (1987) 551. 

14 


