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ABSTRACT 

In this paper we analyze the optics of a high energy beam which is focused by 

its own wakefields in a plasma. We calculate the effects of lens aberrations on the 

focusing strength of the lens and on the dilution of the beam’s phase space. From 

this we derive the minimum spot size achievable using a bi-Gaussian beam and, 

after inclusion of the beam-beam pinch effect, the luminosity enhancement that 

can be gained in principle. We estimate the luminosity enhancement in the case of 

SLC beam design parameters, and discuss limitations and possible improvements 

in plasma lens performance. 
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1. INTRODUCTION 

The plasma lens has been discussed recently as a promising candidate for a lu- 

minosity enhancing final focus element !-*I The calculation of the plasma physics 

involved is somewhat intricate, but the basic physical mechanism is simply under- 

stood under certain conditions: (1) th e b earn is less dense than the plasma nb < no, 

(2) the beam length oZ is large compared to the plasma wavelength X, = da, 

and (3) the beam width uZ is small compared to the plasma wavelength. If these 

criteria are satisfied, then the plasma electrons move to approximately neutralize 

the beam charge, leaving the beam current self-pinching forces unbalanced. In this 

case the focusing wakefields reduce, to a good approximation, to the magnetic self- 

fields of the beam. This is the regime of largest-focusing wakefields inside the beam, 

and is the most interesting case for use in final focusing systems. As a most relevant 

example, the design parameters of the SLC beam near its planned final focus can 

satisfy all these criteria if the plasma density is in the range no = 1018 - 101’ cme3. 

If we assume a cylindrically symmetric bi-Gaussian beam density profile given by 

Pb = nbe-T2/2fl:e-z2/24 , (1) 

where nb = N/(27r)3/2a,c7,2, then the magnetic self-forces everywhere inside the 

beam can be easily calculated (to order re2) to be 

FT(r, 2) = K~yrnec2e-z2/2”t ?(I _ ,-T2/2d)] . (2) 

We have defined here the maximum focusing strength (in the core of the beam) 

Ko, which is calculated as 

K” = &;:nuz ’ 
where re 3 2.82 x lo-l3 cm is the classical electron radius, ,&J the p-function at 

the lens, and cn the normalized emittance of the beam. The radial force can be 
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. used to define a radial focusing strength, a function of position (r, z), 

IcT(r, 2) = FT = Koe-z2/2u~ 
rym,c2 

!!$(I _ e--T2/2d )I . (4) 

For a perfect lens, K, would of course be a constant, with no dependence on 

position in the beam. For this to be true for the plasma lens, the beam density 

must be constant, as this produces a magnetic self-force linear in r and independent 

of z!BiGaussian beams yield self-forces that are less than this ideal. In this paper 

we calculate the effects of these aberrations on the final spot size one can achieve 

with a plasma lens, and estimate the possible enhancement on the luminosity, by 

taking into consideration both the contribution from the reduction of the spot size 

due to a plasma lens and that from the additional pinching due to beam-beam 

disruption. 

We would like to employ the notation and formalism of Twiss parameters in 

our discussion, so we must take the -expression for focusing strength in cylindrical 

coordinates and convert to the equivalent effect in Cartesian coordinates. We 

first note that for cylindrically symmetric distributions we need only examine one 

transverse coordinate (z) and we have simply a, = crT and 

FZ K,=-= 
F, co.4 

x-ymc2 r cos 9ymc2 
=K, . 

Thus, K, is a function of all three coordinates (x, y,z), explicitly 

I., = Koe-z2/2d 1 

(5) 

Since the beam distributions are assumed separable in longitudinal and transverse 

coordinates, the variation in the focusing strength can be identified as arising from 

longitudinal and radial aberrations separately. The longitudinal abberations are 

statistical in nature, since the position in x is uncorrelated to its longitudinal coor- 

dinate. The radial aberrations when projected onto the Cartesian representation 
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have both a spherical aberration dependent on x (the focusing strength falls off at 

larger x), and a statistical portion which enters in through y. Inclusion of nonzero 

values of both y and z degrade the calculated focusing strength. 

2. RADIAL AND LONGITUDINAL ABERRATIONS 

We first investigate the severity of the radial aberrations and their effect on 

the -final spot size. To accomplish this, we digress for a moment to derive the 

transformations that a transverse phase-space undergoes when it traverses a thin, 

aberration prone lens. We consider a beam of initial Twiss parameters QO and ,& 

and emittance ~0. The effect that any source of additional, phase-space diluting 

divergence S0 (rms) is given by 

CY= 
[ 

(1 + $Jto + poso2 _ 1 1’2 
Eo + PoSB2 1 (7) 

I e; + poeos82 
P = PO co + pose2 

e=Jgii$. 

(8) 

(9) 

We now wish to calculate an rms divergence due to radial plasma lens aberrations. 

The model we are employing assumes that the phase space has an extra source of 

divergence 60 that is independent of x. This is not precisely the case, however. 

The rms divergence arising from an uncertainty in focusing strength AK/r (?? G 

(KZ)Y, the average focusing strength at point x) generated through the random 

variable y at any given point in x requires an average over y as follows: 

60 = y-.$z,, . (10) 

To calculate this quantity, we set z = 0 in Eq. (6)and perform the integral by 

Monte Carlo methods. A plot of the integral is shown in Fig. 1, which also shows 
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. the average focusing strength K as a function of x. Note that the average focusing 

strength falls from approximately 0.8 near the origin to one half that at x = 2g,. 

The normalized rms divergence ((x/~,)(AK/~)), rises from zero near the origin to 

approximately 0.2 over much of the bunch population. Two effects are important 

here, the first being that larger impact parameter particles obviously generate a 

linearly larger (in x) rms divergence than smaller impact parameter particles. On 

the other hand, the quantity AK/r is largest at small x, since the random variable 

y has its strongest impact there, as can be deduced from inspection of Eq. (6). If 

we sum over all x to obtain a single parameter characterizing radial aberrations 

we find that (((x/a,)(AK/~)),j, N 0.2, and that the average focusing strength 

is (QZ N 0.7Ko. 

The plasma lens transformations on a phase space are shown explicitly in Fig. 2. 

The initial phase space population (p = c = 1,a = 0) in Fig. 2(a) is transformed 

by a linear (aberration free) lens of nominal focal length fo = (KsZ)-’ = p/3 

to the population in Fig. 2(b). Th e case of a thin plasma lens of the same fo- 

cal length is shown in Fig. 2(c) for comparison, where we have only considered 

radial aberrations. Notice that the average focusing is noticeably smaller for the 

plasma lens case, and that the rms divergence increase is indeed quite uniform over 

the population, with no strong dependence on x, validating our approach to the 

Twiss parameter transformations for radial aberrations in Eqs. (7)-(g). This result 

agrees quite well with the particle-in-cell simulation using the computer code PIC4 

developed recently by Simpson.5l 

Longitudinal aberrations can be treated easily, since there is no intricate cor- 

relation with the transverse position. Unfortunately, the rms induced divergence 

angle is now linear in x, since AK/I? is independent of x, and the longitudinal 

aberrations do not fit our phase space dilution model as well as the radial aberra- 

tions. Setting x = y = 0 in Eq. (6), we can calculate analytically the reduction in 

average focusing strength from longitudinal aberrations, 
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00 

r2’2u~)2dz = .$Ko . (11) 
-00 

W e  can also calculate the rms value of AK/I? 

(A.f), = [& J(l _  ~e-z2’2u:)2e-‘2’2u~]1’2 
- 

= (m --;2)“2 II 0.33 . 

(12) 

The rms divergence increase comes from a  final integral over x, which gives 

fix = [ --& 7  x2e-z2’2u~dx] “’ = gz . (13) 
--oo 

The total divergence increase is obtained by adding the longitudinal and radial 

aberrations in squares 

2  (0.332 + 0.22) II 0.15 
2 

. (14) 

A phase space transformation for a  plasma lens that includes all aberrations is 

shown in F ig. 2(d). For th e  remainder of the discussion we take this coefficient of 

0.15 to be designated as the parameter S 2. This number  has been calculated for a  

bi-Gaussian distribution; it would be smaller for more uniform distributions. 

W ith this understanding of the divergence increase, we proceed with our Twiss 

parameter treatment of the aberrations. W ith crz = ,&CO substituted into Eq. (14), 

Eqs. (7)-(g) simplify to 

a  = so/P, ,B = /30/P, and E= COP , (15) 

where 

p = [I + ($6)2]1’2 (16) 

is defined -to be the aberration power, and the focal length f N 2fo for a  

bi-Gaussian bunch. 
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. The average focusing in the thin lens changes the phase space ellipse orientation 

further to give the final value 

‘Yf = (a0 + Polf)lP * (17) 

The total effect of the lens on the phase ellipse orientation is diluted by a factor 

of P due to the aberrations. The other beam parameters are unchanged by the 

average focusing in the lens. 

3. THE THICK LENS CORRECTION 

We now have all the optics tools to conceptually design a thin plasma lens final 

focus system. Unfortunately, the present phase-space densities in linear collider 

beams may not be large enough to provide sufficient focusing in a thin lens. The 

normalized focal length, which should be moderately small compared to unity, is 

f 2 &wn 
& = pori’ol = Nr,l (18) 

where for SLC design parameters: N = 5 x lOlo, ‘TV = 1 mm, en = 3 x 10m5 m-rad 

and I is the length of the thin lens. Thus, we can estimate 

f 1 
PO= 9.3 Z[cm] 

, for SLC. (19) 

Note that if we want to take f/P0 = 6 t o maximize the focusing efficiency, we 

calculate that I = 3.6 mm, which is not small compared to the conventional final 

focus beta &J = 7 mm. Thus, the thin lens approximation, which assumes that the 

beam size is constant inside the lens, does not hold in this case. We are in need of 

a thick lens model. 

We start by writing the equation of motion for the beam ,&function, and at- 

tempt to solve analytically whatever differential equation arises. The starting point 
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. is the first order Twiss parameter equations 

o’=KP-y , 

p’ = -2a 

(20) 

(21) 

and 

y’ = 2Kcx . (22) 

The prime indicates differentiation with respect to distance along the beamline s. 

From these, we can derive the familiar third-order linear differential equation for 

the ,&function 

p”’ + 4K/3’ + 2K’p = 0 . (23) 

For the situation at hand we take 

K = 0.7Ko = c/p (24) 

to examine the transverse slice at z = 0, where ( is a quantity proportional to the 

total phase space density of the beam which is numerically equal to 1.3 x lo3 m-’ 

for SLC parameters. 

To solve Eq. (23) we must first integrate through the S-function in I<’ at the 

start of the lens 

A/$,’ = -2Kpo . (25) 

The other two initial conditions are just continuity requirements ,8’ = /$, and 

/I =~ ,Bo. Also note that # = 2/p,* just before the lens, where ,Bz is the value at 

the waist that would be formed in the absence of the lens. 
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. Now that we have the correct initial values, we can rewrite Eq. (23), with 

Eq. (24) inserted, as a nonlinear third-order elliptical differential equation, 

The first integral of this equation is, using the derived initial conditions, 

P” + 2WWP0) + l] - 2/p,* = 0 . (27) 

This nonlinear equation may also be integrated easily by multiplying by p’, and 

applying the continuous initial conditions on p and ,B’ 

P’ 2 
0 

P - PO* 
T = PO* + m4PoIP)1 - (28) 

We can numerically integrate Eq. (28) to provide the correction to the thin 

lens theory. As an example, we take a lens which starts 5 mm from the final focus 

of an SLC beam, and has a thickness 2 of 3 mm. The plasma density is taken 

to be no = 5 x 1018 cmV3. The effective thin lens focal length for this case is 

calculated, with the thin lens placed at the midpoint of the plasma region, and 

found to be 3.34 mm. A naive calculation from the thin lens formula would yield 

f = (Kl)-l = 3.64 mm. This is in contrast to conventional thick lens behavior, 

where the focal length of the lens would rise with use of the correct thick lens 

expression, because of the nonnegligible phase advance. The focal length drops in 

a thick plasma lens because the lens gets stronger as the beam pinches. 

4. LUMINOSITY ENHANCEMENT 

There are two sources that contribute to luminosity enhancement in a final 

focus system invoking a plasma lens. The first enhancement, designated as HD~, 

is associated with the reduction of the beam spot size. The second enhancement, 

HD~, comes from the beam-beam disruption effect. We shall estimate them in the 

following. 
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. 
We wish to see what improvement can be made in ultimate spot size using a 

strong yet aberration prone lens. We note first the reduction in spot size from the 

lens position to the next waist is, using Eqs. (15)-(17), 

P*e P2 
pz = P2 + (a0 + Pom2 - 

(29) 

However, the eventual spot size would be given by ,&CO in the absence of the added 

lens, with 

PO = ml + wm2) - (30) 

The net compression factor (or the luminosity enhancement excluding beam-beam 

disruption effects) realized is thus 

+ [j/G+ Poiflz 1 + ($q2 (31) 
This expression shows clearly the limitations of an aberration prone lens such as 

the plasma lens. The compression one obtains is a strongly increasing function 

of the parameter (@o/f) in the absence of aberrations. The aberration term in 

the denominator is (P~s/f)~, h owever, and we note that the aberration effects are 

amplified by the strong compression force. For our assumed S and f < /30, the 

function given by Eq. (31) is a maximum at about PO N ,& + f. Thus, in the 

case of large compression force (PO >> f), the optimum placement of the plasma 

lens is very near the minimum spot one obtains from conventional focusing and 

Eq. (31) becomes, for large S, 

(32) 

Thus, the limitation on luminosity enhancement due to aberrations is about l/S2 N 

6.7. If one overdoes the focusing, i.e., makes ,Bo/f >> l/S, the consequences are 
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. more severe than merely saturation of the luminosity, however. The rms angle 

of the beam leaving the lens becomes very large in this case, and that poses the 

problem of damaging conventional final focusing elements, as well as lowering the 

possible luminosity boost due to beam-beam disruption. We will return to this 

point later. 

It is of interest also to calculate the position of the next waist. We obtain in a 

similar manner the distance as measured from the strong lens, 

L= 
PO [ J@E + PO/f] 

1 + ($5,” + [J@F+ Po/f]2 * 
(33) 

The luminosity enhancement that one calculates from application of Eq. (31) 

with the thick lens corrected parameters, i.e., with no = 5 x 101’/c.c., e = 3 

mm, and the principal plane at f = 3.34 mm, is about HOI N 4.1. The new waist 

is about 0.8 mm in front of the old waist, so there must be some adjustment of the 

conventional optics to get the final foci for both beams to coincide. The emittance 

has been blown up by a factor P = Jm r? 1.4, and the final beta function 

/3* = 7 mm/(4.1 - 1.4) N 1.2 mm. 

Next we estimate the contribution from beam-beam disruption effects. The 

disruption effects from the interaction of round e+e- beam have been recently 

studied in detail by Chen and Yokoya. 6l It occurs that the luminosity enhancement 

in this case is influenced by two factors: The strength of the pinch, represented by 

the disruption parameter D, 

Nw, Nregz DE-=- ; 
r4 rP*e 

and the inherent divergence of the beam, represented by the parameter A, 

(34) 
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The luminosity enhancement is found to satisfy the following empirical scaling law 

HD = 1 + D114 (&) [In(&+l)+ZBr(y)] . (36) 

The above expression reproduces all the computer simulation data shown in Fig. 3 

to an accuracy of around f 10%. The results of these simulations do not take into 

account the correlations between final focusing and longitudinal position in the 

beam due to the plasma lens. To this extent, our analysis below is approximate. 

With the design parameters of SLC, we see that with the given values of /3; 

and co, 

DO = 0.51 and A0 = 0.14 . 

Therefore, from Eq. (36), one expects to have an enhancement 

HDO N 1.4 . 

On the other hand, with the insertion of a plasma lens, we expect to have 

D = 2.1 and A = 0.83 . 

The new enhancement factor would then be 

HD~ 21 1.9 . 

Our overall enhancement on luminosity can now be estimated easily, 

HDZ HD = HD~ * - 
HDO 

~5.6 . 

(37) 

(38) 

(39) 

(40) 

(41) 

It can be seen that although we are able to push the disruption parameter 

D up by a factor of 4.1, the fact that we have substantially reduced ,8* in turn 

has made the inherent divergence of the beam more severe. The net result is that 

one does not benefit too significantly from the mutual pinching during beam-beam 

interaction. 
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5. DISCUSSION 

To conclude, we have studied in this paper the beam optics of a self-focusing 

plasma lens by taking into account the aberrations due to nonlinear focusing 

strength and the correction due to finite thickness of the plasma lens. Further- 

more, we have formulated the estimation of the luminosity enhancement, taking 

into.account both the reduction of the effective spot size due to the plasma lens, 

and the pinch effect due to beam-beam interaction. 

The design parameters of SLC were taken as an example to investigate the 

possible performance of a plasma lens. All the calculated parameters for an SLC 

plasma lens are listed in Table 1. Our conclusion is that with the parameters 

so chosen, one could expect an enhancement on luminosity by a factor of around 

5 - 6. To appreciate the performance of the plasma lens, let us consider a hy- 

pothetical strong lens which is free of aberration. The only effect that the strong 

lens introduces is the reduction of ,B*. Now since both D and A vary as l/p*, it 

can be seen from Eq. (36) that th ere is an optimum value of ,B* below which HD 

will be degraded. For the SLC parameters (except ,B*) this optimum p* occurs at 

2.24 mm, which corresponds to D = 2.7, A = 0.45, and Ho2 = 8.59. This opti- 

mum value of HD~, however, does not correspond to the best possible performance 

when the contribution from HD~ is also included. When the final lens is free of 

aberration, we have simply 

P* HOI = - 
4 

(42) * 

The variation of the combination HD~ . HD~ as a function of p* is plotted in 

Fig. 4. For the SLC parameters, the optimum is found to be ,B* = 1.05 mm, and 

HOI . Hoa = 12.7. Thus, 

HDZ HD = HD~ * - 
HDO 

219.3 . (43) 

With all other parameters fixed except /3*, the above value is the best lumi- 

nosity enhancement that one could achieve for SLC, independent of the specific 
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nature of the strong inserted lens. We thus find that the plasma lens in this case . 
has a performance which is about 60% of that of an optimized ideal, aberration 

free lens. 

To improve the performance of the plasma lens, it is necessary to reduce the 

radial and longitudinal aberrations. As was pointed out earlierj’lsince the focusing 

strength in a plasma lens is self-induced by the beam charge density, a proper 

shaping of the bunch can, in principle, mitigate the problem. One way to reduce the 

radial aberration is to install a octupole somewhere upstream from the plasma lens 

such that the transverse distribution can be more “flat-topped” than the Gaussian 

distribution. 

For a bi-Gaussian distribution, the longitudinal aberrations have been shown 

to be more severe than the radial aberrations. In order to make the longitudinal 

distribution more uniform, we can in principle debunch the beam slightly by ap- 

plying a nonlinear accelerating wave form to the beam and sending it through a 

transport line containing bend magnets with nonzero longitudinal dispersion. This 

could be done, for example, at the exit of the damping rings. 

As an aside, we note that the nonlinear wave form could in principle be derived 

from the self-wakefields of the beam in an iris loaded tube.7l We take the case of 

the beam length CT~ equal to one-half the fundamental wavelength of the wake- 

fields. The initial beam profile and associated wakefields for this case are shown 

in Fig. 5(a). We take the initial rms momentum spread as Ap/p = 0.1%. If the 

amplitude of the wakefield induced momentum spread is taken to be 1.5 Ap/p, and 

the longitudinal dispersion of the transport line is nt = -600 or, the final longitu- 

dinal distribution is flattened significantly, as shown in Fig. 5(b). Since the wave 

form for debunching is nearly sinusoidal this scheme is not dependent of wakefields, 

yet they may prove to be the handiest source of strong, short wavelength fields. 

After proposing improvements in the plasma lens, it is necessary to temper the 

discussion by noting that the parameters used in this paper describing the phase 

space density of the beam at final focus are marginal for plasma lens focusing. If the 
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actual values of these parameters in any way reduce the phase space density of the 

beam, the effectiveness of the plasma lens focusing system degrades dramatically. 

We also have not mentioned the problems of background event generation from 

beam-plasma ion collisions, or the effects of misalignment due to beam jitter. Both 

considerations may place constraints on the effective implementation of a plasma 

lens. 

Work supported by the Department of Energy, contract DE-AC03-76SF00515. 
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TABLE CAPTION 

Table 1. A Set of Plasma Lens Parameters for SLC. 



. 
Table 1 

Plasma Lens Parameters Values 

no [cmm3] 5 x 1ol8 

1 [mm1 3.0 

Beam Parameters 

N 5 x 1010 

& [GeV] 50 

EO [m-rad] 3.0 x 10-5 

E [m-rad] 4.2 x 1O-5 

uz b4 1.0 

c K31 1.3 x 103 

Beam Optics Parameters 

SO [mm]t 3.5 

f [mm1 3.3 

PO ;;I 

-0.5 

8.8 

PO* [mm1 7.0 

p* [mm1 1.2 

6 0.39 

P 1.4 

Luminosity Enhancement 

Do 0.51 

D 2.1 

Ao 0.14 

A 0.83 

HDO 1.4 

HDI 4.1 

HD~ 1.9 

HD 5.6 

t Measured from lens midpoint. 
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Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

FIGURE CAPTIONS 

The average focusing strength fi: E (I<z)Y, and the rms divergence 

increase (xAK/u,~), as a function of IC. 

(a) Initial phase space population (,6 = 1, c = 1, (Y = 0). (b) Trans- 

formation of phase space by a thin lens f = p/3, for comparison with 

plasma lens. (c) Transformation of phase space by a thin plasma lens 

f. = p/3, d’ 1 b ra ia a errations included. (d) Transformation of phase 

space by a thin lens f = p/3, all aberrations included. 

Luminosity enhancement factor as a function of D, computed with 

five different values of A (taken from Ref. 5). The A values are so 

chosen that they are equally separated on the logarithmic scale. 

The variation of HOI .. HD~ as a function of p*. 

Fig. 5. (a) L on 1 u ma wakefields and profile for beam of length gz in g’t d’ 1 

iris-loaded structure with fundamental wake wavelength X = 2a,. 

(b) Longitudinal profile after wakefield debunching. 



- 

IO . 

0.8 

0.6 

0.4 

02 . 

0 

3-88 

- /- ----- - 
‘0 -4 

0 
0 

0 
0 / I I I I 

0 05 . IO 
X-/C 

15 . 20 . 
X 5980A5 

Fig. 1 



- 

5 

- 

X’ 

0 

-5 

4-88 

+ + 
+ + 

-2 0 2 

- + + + (cl 

-2 0 2 
X 

-2 0 2 

-2 0 2 
X 598086 

Fig. 2 



30 

20 

IO 

I I I Illlll~ I I I Illll~ I I I lllll~ 

I I I1111 

lo-’ IO 0 IO’ IO 2 

12-87 5917Al D 

Fig. 3 



- 

IO 

5 

3-88 

-. - 
I I I 

4 
P * 

5980A2 

Fig. 4 



0 

-I 

I 

0 

4-88 

-I 0 I 
Z/a, 

Fig. 5 

5980A7 


