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ABSTRACT 

The local Lagrangian formulation for chiral bosons recently suggested by 

Ploreanini and Jackiw is analyzed. We quantize the system and explain how the 

unconventional Poincare generators of left and right chiral bosons combine to 

form the standard generators. The left-U(l) Kac-Moody algebra and the left- 

Virasoro algebra are shown to be the same as for left Weyl fermions. We compare 

the partition functions, on the torus, of a chiral boson and a chiral fermion. The 

left moving boson is coupled to gauge fields producing the same anomalies as 

in the fermionic formulation. It is pointed out that the unconventional Lorentz 

transformations are inapplicable for the coupled system and a set of different 

transformations is presented. A coupling to gravity is proposed. We present the 

theory of chiral bosons on a group manifold, the chiral WZW model. The (1,0) 

supersymmetric abelian and non-abelian chiral bosons’are described. 

Submitted to Nucl. Phys. B 

* This work is supported in part by Dr. Chaim Weizmann Postdoctoral Fellowship and by 
the U.S. Department of Energy under contract #DE-AC03-76SF00515 (SLAC). 



1. INTRODUCTION - _ 

Chiral bosons in two dimensions recently became an important phenomena 

mainly in the context of string theories. The Hamiltonian formulation of the 

chiral bosons is understood but the Lagrangian picture is much less transparent. 

As a result the bosonization of a free chiral fermion in terms of an action was 

missing. 

An action proposed several years ago, by W.Siegell), for self-dual bosons de- 

scribed classically chiral bosons in two dimensions. The question was how to 

quantize this system or differently whether it corresponded to the Hamiltonian 

description mentioned above. This problem was addressed in two different ap- 

proaches: a BRST quantization 2-4) based on the Siegel gauge symmetryl) and 

a Dirac quantization 5, which was focused on the second class constraint of this 

action. In the first approach it was pointed out that the gauge symmetry was 

anomalous and it was suggested that it was possible to cancel the anomaly either 

by introducing a Liouville term2-3) or by taking a system of 26 chiral bosons4). 

A careful BRST quantization revealed the fact that only a pair of chiral bosons 

could be consistently quantized3). It was also shown that the proposed coupling 

of the Liouville term to gravity encountered difficulties in staying Siegel anomaly 

free while producing the correct gravitational anomaly4). Meanwhile the sec- 

ond approach was abandoned because it was not able to cope with anomalies. 

Later on the action of Siegel was generalized to the group manifold case, the so 

called chiral WZW4j6), action and the coupling to abelian and non-abelian gauge 

fields where introduced6). The (1,O) supersymmetrization of the “abelian” 7, 

and “non-abelian”‘) chiral bosons were also written down. Some application 

of the Lagrangian formulation of chiral bosons were given for the heterotic and 

4-dimensional string theoriesg). 

R.Floreanini and R. Jackiw”) proposed an apparently unrelated Lagrangian 

formulation for chiral bosons which was based on an unconventional Poincare 
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symmetry. It turned out51 that using the second approach in the path-integral 

quantization formalism 11) the Siegel action reduced to the local form of the ac- 

tion of ref. [lo].* M oreover, recently it was argued13) that the first approach is 

inapplicable for the quantization of the chiral boson system because the gauge 

generator is related to a first class constraint which is a square of a second class 

one. It is not clear to us at this stage whether this last statement is justified. 

In any event, we believe that the action of a single chiral boson can be properly 

quantized. Lastly we wish to comment on the powerful works on chiral bosoniza- 

tion that were recently published. 14). These works present the bosonization of 

ordinary and higher spin fermions propagating on Reimann surfaces of higher 

genus. Note however that the actions involved are of unchiral bosons and the 

chirality property is achieved there by a holomorphic projection performed on 

the various correlation functions. 

In this work we analyze the chiral boson theory given in the local Lagrangian 

formulation of ref. [lo], supplemented with chiral boundary conditions. In the 

following section we present the classical chiral scalarlo). The symmetries of the 

action are then discussed including an unconventional Poincare invariance, chiral 

symmetry, and modified affine Kac-Moody and Conformal transformations. In 

section 3, the chiral boson is quantized in canonical and path-integral formula- 

tions, treating it as a system with a second class constraint15). The equivalence 

between the theory of a complex chiral fermion and our chiral scalar is discussed 

in section 4. We prove that the Kac-Moody current and the energy momentum 

tensor of the two systems transform in the same representations of the corre- 

sponding affine algebras. In section 5, we explain how the theories of left and 

right chiral bosons combine to the theory of an ordinary scalar field. The Hamil- 

tonian, the momentum, the Lorentz generator, and the Kac-Moody currents of 

* Upon completing this work we received a preprint from L.D.Faddeev and R.Jackiw12) 
in which the equivalence of the two actions is proven using the first order Lagrangian 
formulation. 
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the unchiral scalar are just the sum of the corresponding operators in the two 

opposite chiral bosons, even though the Lagrangian does not share this property. 

Considering possible application to string theories, we calculate the one loop 

partition function on the torus in section 6. We present the derivation in the 

Hamiltonian approach. The chiral boson is then coupled, in section 7, to abelian 

gauge fields. Following a similar analysis for the Siegel action6) we present the 

actions and anomalies in two formulations which correspond to the “vector con- 

serving” and “left right” regularization schemes in the fermionic version. We 

point out that the unconventional Lorentz transformation are inapplicable for 

chiral bosons coupled to gauge fields and we discuss a way to overcome this diffi- 

culty. Section 8 is devoted to the coupling to two dimensional gravity. By gauging 

each of the “conformal symmetries” separately or both of them together we write 

down three actions. We show that the action with the two gauge symmetries, 

reproduce the gravitational anomaly of a chiral fermion. The quantization5) of 

the other two cases are summarized. The generalization of the previous results 

-to chiral scalars on group manifolds-the chiral WZW theory-is derived in section 

9. The analysis of the affine symmetries, the equivalent fermionic theories, and 

the coupling to non abelian gauge fields and gravity are briefly presented. In 

section 10 we combine our left moving boson with a left Weyl-Majorana fermion 

to -form the (1,0) supersymmetric multiplet. The super Kac-Moody and super- 

conformal symmetries are briefly discussed as well as the construction of (1,l) 

supersymmety theory and the supersymmetric chiral WZW. A short summary 

and some conclusions are included in the last section. In appendix A we present 

the “curved” Lorentz transformations and show that the actions for the uncou- 

pled and coupled chiral bosons are invariant under them. 
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2. CLASSICAL ACTION - - 

The Lagrangian formulation for a chiral boson recently suggested by Flore- 

anini and Jackiwl*), is given by the following non-local form: 

L = ; 
J 

dzdyx(z)+ - y)i(y) - / dsx2(s) 

where x is a local bosonic field. The system can also be described in terms of 

the non-local bosonic field 

4(x) = ; / 4& - Y)x(Y), 4%) = x(4 (2) 

with a local Lagrangian density 

L: = (qs’fj - (Is’“) = aqzqa+(b - a-(b) (3) 

-One way to interpret this action is as the action of a massless boson in a curved 

two.dimensional background with go0 = 0, go1 = 1, gl’ = -2. The classical 

equation of motion* which corresponds to (3) is a-4’ = 0. This equation has 

the general solution a-4 = g(t), h owever by requiring a-4 = 0 at the spatial 

boundaries, we set g = 0 and get the chiral solution 4 = +(z+). 

Even though the action (3) is not “manifestly” Lorentz invariant, it was 

shown in ref.[lO] ** that it is invariant under the time translation ST& = 4, the 

space translation 6~4 = -rj’, and the unconventional Lorentz transformation 

~MC$(X) = (t + x)4’(x). For th e a b ove invariances to exist we assume vanishing 

surface terms. The associated Noether charges are H = s dqb12, P = -H 

and A4 = Jdz[(z + t)(qS’“)]. Th e s s em y t is, in fact, invariant under yet an- 

other unusual “Lorentz transformations” : 6 (a-4) = z+a+ (a- 4) - x-d- (a-4) - 

* The-light-cone derivatives are given by: ~35 = --&(a, f al). 

** In ref. [lo] the formulation with x is recommended. Here we use the other one because 
the comparison to the ordinary bosonic action is more transparent. 
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3-4, ~5(ar$) = ~+a+(&$)-- z-a-(3,4) + a,$. These transformations, as 

shown in the Appendix, can be deduced as the Lorentz transformations in the 

curved metric mentioned above. They have an important role for chiral bosons 

coupled to gauge fields as will be explained in section 7. 

In addition, eqn. (3) is invariant under the global axial transformation: 4 -+ 

4 = rj + CX. The associated current has as its components J(,,)- = a-4, 

J(,,)+ = a+4 - 28-4. There is yet another conserved current, the “vector 

current”6): J(v)- = -4-4, J tV)+ = a+~$. From the vector and the axial currents 

we can write down the left and right currents J (r) = i[ Jc,) f Jc,,)] respectively. I 

They have the following expressions: 

J(I)- = 0, J(I)+ = 4’; J(,)- = -a-+, J(,.)+ = a-4 (4) 

Since upon using the equation of motion the axial current is conserved and since 

the vector current is topologically conserved, the left and right chiral current are 

therefore also conserved. Note however that only the left current is holomorphi- 

tally conserved namely d-J(l)+ = 0 ; while the right current is not antiholomor- 

phically conserved. This property is related to the invariance of the lagrangian 

(3) under S,+ = CX(Z+) an no under S,b = (w(z-). In fact, we can rewrite the d t 

right current as J(,.jl = ~3-4 and J(,)o = 0 with dr J(,.) = 0, which correspond to 

the invariance of the action under 64 = o(t). A s will be explained in the section 

5 only the left U(1) Kac-Moody current exists in the quantum theory. 

Similarly, the Lagrangian (3) is invariant under the conformal transforma- 

tions S,$ = e(z+)@, S,+ = e(t)a-r$ b u is not invariant under S,+ = E(Z-)c$‘. t 

The associated Noether currents T++ 2’11 , the ++ and 11 components of the 

energy momentum tensor, are given in a Sugawara form as : 

qq++ = 4 I2 = (J(~I+)~ +)II = (a-4)” = (J~,)I)~ (5) 

Upon using the equation of motion the energy- momentum is holomorphically 

conserved a-T(l)++ = 0 and arT(,.)rr = 0. 
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3. THE QUANTIZED THEXIRY - 

A method -for quantizing the system was introduced in ref. [lo] using a 

prescription applicable to first. order Lagrangians12). Here we briefly describe 

the canonical and path integral quantization of (3) treating it as a constrained 

system. The constraint e E z - 4’ = 0, where z is the conjugate momentum of 

4, is a second class constraint since {e(z), e(y)} = -26’(2 - y). The Hamiltonian 

density of the system takes the following form X = Xc + ~(z, d)e, where Xc = 

qp = x2 = +. Using this form for U it is easy to verify that the condition 

4 = {e,H} = 0, d oes not lead to further constraints but fixes o(z, 4). The 

passage to the quantum theory is performed by using the Dirac brackets15) for 

the definition of the commutator of any two operators F and G via: 

+‘k), G(Y)] = @ ‘(z), G(Y))* 

=@‘(~G(Y)) - / ~~l~~2{~(~), e(b)}[-$1 - &)]{e(&),G(y)}. 
(6) 

Following this definition, the operator algebra for z and 4 takes the form 

b+L 4(Y)] = & - Y), 

hw4Y)l = $4, - Y), 

br(4 T(Y)] = ;qz - Y), 

(7). 

One also finds that, foran arbitrary operator F, [e(z),F(y)] = 0 so that the 

constraint z(2) - 4’(z) = 0, is now realized at the operator level. For example 

the Hamiltonian density can now be expressed in the three forms of Xc mentioned 

above. The system is instantaneously solved by Fourier transforming, 

(8) 
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with, as usual, - 

[@,a;,] = 6(k - k’) . 
Note that only k 2 0 appears in the decomposition of 4(z), which expresses the 

chiral nature of the field. The single-particle Hilbert space is then a continuum of 

states with energy E = k, k 2 0. Hence the Hamiltonian formalism has correctly 

implemented the chirality constraint 3-4 = 0. Furthermore, this property can 

also be deduced from the Hamiltonian equation of motion 4 = i[H,qS] = 4’. 

Note that to get the chiral solution a-4 = 0 as a solution of the equation of the 

motion, we had to assume chiral boundary conditions. Here it looks at first that 

the chirality property was derived with no assumptions, but in passing from (6) 

to (7) we assumed that (z - c$‘)(z = 00) = -(z - &)(z = -oo), so together with 

choosing zero surface terms we in fact assumed chiral boundary conditions. 

For the path integral quantization of the system we use the method developed 

for Hamiltonian systems with constraints. The generating functional is given by 

z[J] = /[dd][d#e)ev[i/ d2x(d - XC - J4)] 

= /[dg]ezp[i/ d2zC - J4] 
(9) 

where a normalization by Z[O]- 1 is implied. The Lagrangian density that emerges 

in (9) is clearly in the original form of eqn. (3). The functional integral (9) is not 

specified completely until we include the boundary conditions; thus by requiring 

a-4 = 0 we are in the same situation as in the canonical quantization. 

Now by using the commutation relations (7), t i is straightforward to verify 

that the Noether charges H, P, M respectively generate the transformations 6~4, 

6~4 and 6~4 given in section 2. It can be easily shown that they satisfy the 

Poincare algebra [H, P] = 0, [M, H] = iP and [M, P] = iH. 
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4. ABELIAN BOSONIZAT~ON OF A CHIRAL FERMION 

The actions of one left-handed complex chiral fermion, i s dx$t3-$, is classi- 

cally invariant under both an affine chiral transformation S$J = ia( and the 

conformal transformation S$J = E+(x+)~+$J. Th e associated Noether currents 

have the quantum form of J+ =: $~T,LJ : and T++ = i : T/J~~+$J := z : J+J+ :. 

They obey the left U(1) Kac-Moody and Virasoro algebras respectively with the 

well known central charges k = 1 and c = 1. 

Next we examine the generators of the symmetry transformation for the chiral 

boson theory. Using the operator algebra (7) t i is easy to verify that the charges 

J(l) = r$’ and Z’(l) = c#J’~ generate the transformations &&I * and 6,+ 4, respectively. 

Moreover we can now evaluate the commutators of the chiral current and of the 

energy momentum tensor lo). The results are the following: 

[J(&L J(l)(Y)1 = [4’(X)d’(Y)] = ;s’(z - y) (10) 

[qI)(xp(I)(Y)l = [: (6’(x))” :,: (9qY))” :I 

= i{: (d’(x))” : + : (f$‘(y))” :}6’(x - y) - (&)Sm(x - y). 

(11) 
These commutation relations correspond to central charges of c = k = 1. Hence 

our bosonic theory furnishes the same irreducible representation of the Kac- 

Moody and Virasoro algebras as one free left handed chiral fermion. Since for 

k = 1 the Kac-Moody algebra has a unique representation the two theories on 

flat two-dimensional space-time are therefore equivalent17). In sections 7,8 it will 

be shown that the anomalies of the bosonized theory in coupling to gauge and 

gravitational background is the same as for the fermionic theory. 

* To get the standard form of the Kac-Moody algebra, one has to take the current ~CQ = 
-$jtl, and then the Sugawara construction is T(l) = T : 3(l).?(r) :. In what follows, we 

continue for simplicity to use j(l). 

9 



5. COMBINING LEFT AND-RIGHT GHIRAL BOSONS 

The canonical quantization procedure of the last section can be repeated for a 

right chiral boson. Let us rename the operators for the a-4 = 0 case as C#JL, r~, . . . 

and call the corresponding operators for the a+$ = 0 case C$R, TR, . . . . The La- 

grangian density for the right moving field has the form ,Cright = -&a+d~ar4~ 

Then, starting from the combined Lagrangian 

l = Cleft + Lright 

one arrives at the Hamiltonian system 

u = 7r; + 7T; 

with the operator algebra 

1 

, 

, 

l~L(x)7~Lb)1 = 24X-Y) = -[~R(Z),+R(Y)], 

[~L(X),~L(Y)] = ib'(x - Y) = -[~R(X),~R(Y)], 

and the consistent operator constraints 

%-L(X) - 4;(x) = 0 = rR(x) +&(x) . 

It is now straightforward to see that the definitions 

permit the above system to be recast as 

J/ = $2 + ;g2, 
P(44(Y)l = 0 = [+%~(Y)] 9 

[+%4(Y)] = + - Y> 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

which, is the Hamiltonian theory for a single, free, massless scalar field. 
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Let us now examine the-Poincare algebra of the combined system. The 

Hamiltonian and momentum of the combined system are 

H=HL+HR= 
/ 

dx(r; + xi) = 
J 

dx(& + &) = 
J 

dx&r2 + 4’2), 

(18) 
P=PL+PR= 

J 
dx(-r; + r;) = 

J 
dx(-& + &) = - 

s 
dx(+), 

which guarantee the commutator [H, P] = 0. S imilarly, the Lorentz generator for 

the combined system is given by: 

M = ML + MR = / dx(x+42 - X-(bz) = J dx[x(dz + 42) + tc-62 + 4x”) 

= 
J 

dx(xX - tP). 

(19) 
The algebra of the combined system is therefore identical to the Poincare algebra 

associated with ordinary free massless scalar. 

The affine currents of the combined system are also simply related to those 

of the left and right systems. 

The (f) U(1) Kac-Moody currents of the combined system are therefore given 

by the left current of the left system and the right current of the right system 

respectively. The central charges are k = 1 for the algebras in both sectors. 

Similarly, because of the Sugawara construction, T++ = T++L and If-- = T--R 

with c = 1 for the left and the right Virasoro algebras. 
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6. PARTITION FUNCTION.- - 

We would now like to compare the one loop partition function of a chiral 

fermion and that of our chiral boson. We therefore pass to a two dimensional 

space-time domain with 1 2 x 2 0. The mode expansion for 4 previously given 

by eqn. (8) now takes the form: 

4(x, t) = 4. + p(x + t) + C L[uLe2*inz+ + unc-2ninz+] 
n>O G 

(21) 

The one loop partition function which corresponds to this mode expansion16) is 

(22) 

where q = eiTr and we used H = -P. Let us first calculate the contribution to 

the trace of the oscillation modes 

(23) 
n=l 

where the factor -A is the output of the normal ordering and Q is the Dedekin 

71 function. The Hamiltonian of the zero modes is H = &p2. If we now take 

the bosonic momental*) to lie on a shifted lattice such that the eigenvalues of p 

are 27r(m + CX) and introduce the twist operator g = eipp, we get the zero mode 

partition function to be equal to the Reimann theta function O[ ($](5]0) and so 

that altogether the full partition function is given by 

This corresponds to the partition function of a Weyl fermion with the boundary 

conditions $(x+ 1, t) = -e 2Tiat,b(x, t); t,b(x+ ReT, t + ImT) = -emaniPt,b(x, t). For 
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the case of unshifted momenta, Q! = .O, we may interpret the bosonic zero modes 

as those of a compactified scalar field with a radius R = J- and winding numbers a 
which are equal to the momentum eigenvalues16). Note that in (22) we have just 

used H = -P which is a property of the Lagrangian (3). The expansion (21), on 

the other hand, was based also on the boundary conditions which we imposed. 

Obviously, on the torus we cannot impose boundary conditions, so instead we 

have to assume that there is a point with fixed x where a-4 = 0 holds at any 

time. This assumption leads to chiral solution of the equation of motion. 

7. COUPLING TO ABELIAN GAUGE FIELDS 

There are several ways to couple an abelian gauge field to a chiral boson 

corresponding to the various regularization schemes in the fermionic theory. We 

start by analyzing the bosonization in the “vector conserving” regularization 

scheme. The vector current is coupled to an abelian gauge field via 

-c(v) = co + (J(v)-A+ + J(,)+A-) = Lo + (a+qbA- - QbA+), (25) 

where the subscript (V) t d f s an s or vector conserving scheme. The vector current 

is still obviously conserved, but the divergence of the axial current 

d- J(,,)+ + d+ J(,,)- = (a-A+ - il+A-) = E~“F,,~, (26) 

is now equal to the anomaly deduced in the fermionic theory from the one loop 

diagram. 

Next we discuss the bosonization in the “left-right” scheme. As discussed in 

ref. [6] a term bilinear in the gauge fields has to be added to the J(i)+A(l)- term. 

The lagrangian then takes the form: 

&LR) = Lo + J(I)+&- + JZ[Ap4~~pI 4 , (27) 

where (LR) indicates the left right scheme. The divergence of the left current 
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which is derived from aA - “cLR) 1 (J*.) - has now the form: f (I) (WY 

(28) 
The Lagrangian (27) is therefore really the bosonized fermionic action regularized 

in the left right scheme. Obviously, a similar prescription for the (V) and (LR) 

schemes can be applied to the right chiral boson. 

We want now to address the question of the Lorentz invariance of the cou- 

pling terms in (25) and (27). If we adopt for the variation of A- and A+ the 

unconventional transformations 6A- = x+iIlA- 6A1 = Al +x+tIlAl then (27) 

is invariant but (25) is not. Moreover, for any other coupling of the gauge fields 

to other matter fields (or even for (FPv)2 ) th e unconventional Lorentz symme- 

try will be broken. Under standard Lorentz transformations the coupling term 

in (25) is invariant but fJo and the coupling in (27) are not invariant. A possible 

way out is to use the “curved” Lorentz transformations discussed in the appendix. 

It is shown in the appendix that both (25) and (27) are invariant under these 

transformations. It is important to note that since &A- and 6A+ transform in 

the standard way under the “curved” transformations, any additional terms in 

the action which involve them are required to be standard Lorentz scalars. 

8. COUPLING TO GRAVITATIONAL FIELDS 

To find the correct coupling to a gravitational field we start by gauging the 

“conformal transformations” discussed in section 2: S,rj = E(x+)# and S,cj = 

,(t)a-fj. It is straightforward to check that the action 

S[h+] = /d2x[&'+ i$'gS] (29) 

is invariant classically under the following gauge 6, and affine 6, symmetries: 

s&5 = 2(x, t)(b’, s,,iL = -i(x, t) + E(X, t)i’ - 2(x, t)iL, 
(30) 

s,-qt = ,-(t)LL$, &-ii = Lb(t) + E(t)a-iL + aA( 
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When h transforms as h’r, then the- local transformation can be interpreted61 as 

a combined coordinate transformation x1 + x1 - e1 (x, t) and a Weyl resealing 

6h ap = -&r’hap. Interchanging e1 (x, t) with e-(t) and 31 with a- leads to a 

similar interpretation for the second (affine) symmetry. However if we rewrite 

(29) as 

S[h, 41 = / d2x[U&4 + h&&W] (294 

then the local transformation 

s,qb = 2 (x, t)f$‘, 6,lh = -&c(x, t) + c(x, t)h’ - d(x, t)h, w-4 

leaves the action invariant. This is the coordinate transformation mentioned 

above where now h = h++. The Lorentz invariance of (29a) requires again, as 

for the gauge fields, to use the “curved” transformation “bar&’ discussed in the 

Appendix. In fact it looks to us that performing the coordinate transformations 

don 6,-$ also in the “curved” form will revea120) an invariance under x+ + x+ - E+ 

rather the one with x1. 

In a complete analogy we can gauge 6~ while maintaining 68 as an affine 

symmetry. This leads to the Siegel action 

Sb--, 41 = J 
d2x[a+&3-+ + h-3&3-~] (31) 

with the following transformation of h--: 

6,-h-- = -a+c(x, t) + c(x, t)&h-- - &c(x, t)h-- 

6,lh-- = dlc(x+) + c(x+)&h-- + c(x+)‘h--. 
(32) 

Note in passing that the two actions (29) and (31) are connected to each other 

by the coordinate transformationlg) x(y) -+ x(‘). Therefore the interpretation of 

the transformations (32) are similar to those of (30). 
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There is yet another possible action in which both symmetries are gauged: 

sh = ; 
J 

d2xh[2h+-d&LqS - h--lLcj5a.e~ + h++&qEQ]. (33) 

This action can be derived in fact from the standard action of a scalar in two 

dimensional curved space-time by the transformation a- -+ a- ; d+ -+ &. The 

gauge symmetries exist provided Lap = &hap transform as follows: 

6,1 L++ = -2a-EL+- + ca&++ - A++, 6,-i++ = a- (A++) 

f&FL+- = -a-&-- + &ii+-, s,-ii+- = -a,&++ + &l-L+- 
i&i-- = &(Ek-), 6,-i-- = 434+- +&-I.-h-- -EL&--. 

(34 
We expect that the classical local symmetries in eqns. (30),(32) and (34) 

have anomalies. Unlike the former case of coupling to a gauge field, here the 

anomaly would not be a tree level phenomena but rather, asusual, a quantum 

effect; To calculate the anomaly4) we treat the metric components as background 

and pass to the linearized theory hap = vap+Lap where q@ is the “flat” metric, 

namely Q+- = l,r]-- = 7j ++ = 0. It is clear that we cannot derive the anomaly 

from (31). W e choose here to take the action (33) but the same result will 

emerge from (29a). The linearized action is therefore SE = i $ d2x[2ar@-4 - 

L-La-@-++&++&~ar~] and th e corresponding effective action W[h”p] given 

by eiw[hl = J[d+]eis@l is 

W[Pp] = ; /- d2x/ d2y[i < T*T,,(x)T,,(y) > 31~“(x)LP”(y)] (35) 

where T* denotes time ordered product, T++(x) = &@,q4(x), T--(x) = 

c~-@-c$(x) and T+- = 0. Using the boundary condition discussed in section 

2 and assuming that the chiral nature of 4 will be preserved here too in the 

quantum level, then T++ = +a+@+4 = T(l)++ of equation (5) and we get that 
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the variation of the effective action has the following form: 

S,W[h++] = ---& / d2xh+++‘. (36) 

This result is equivalent to eqn. (11). H ence, the system of one chiral boson 

coupled to gravity reproduces the same gravitational anomaly as that of a left 

Weyl fermion coupled to gravity. 

The quantization of the systems can in principle be accomplished by the 

standard procedure of fixing the gauge, introducing ghost fields and applying the 

BRST prescription. Such an analysis was performed for the Siegel action213). 

From the simple relation between the two actions (29) and (31) it is obvious that 

the light cone quantization of (29) will be identical to the ordinary quantization 

of (31) mentioned above. As for (33), one can again adopt the “standard quan- 

tization”. However it is not clear if this “standard quantization” applies to our 

cases because the gauge generators are related to a first class constraints which 

are the squares of second class constraints 13) Alternatively, using the51 second . 

class constraint and following Dirac’s quantization procedure for the Siegel ac- 

tion or following the method described in ref. [12] leads again to the system 

described in eqn.(3). Therefore the action (31) d oes not describe the coupling of 

our chiral boson to gravity. The same conclusion follows from the fact that at 

the linearized level the action does not have the form of T++ coupled to a gauge 

field. The quantum picture of (29) is again given by (7 ) after interchanginglg) 

xc> + x*. Hence, this action describes a boson with 4’ = 0. The quantization 

of the action (33) following similar guide lines and some related topics will be 

discussed elsewhere20) 
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9. CHIRAL WZW AND THE COUPLING TO NON-ABELIAN GAUGE FIELDS 

The non-Abelian bosonization of Majorana (Dirac) fermions was proposed 

by Witten17). It is expressed in terms of the bosonic action, the so called WZW 

action, which has the form: 

S[U] = & J d2xTr(apuapum1) + & / d3yEiikTr(U-1diu)(u-1~~u)(u-1~ku), 
B 

(37) 
where u is a group element u c G ( G = O(N) for Majorana and G = U(N) 

for Dirac fermions). For the non-Abelian bosonization of left chiral fermions we 

propose to generalize the action (3) to the group manifold case. Therefore the 

action becomes : 

d3yEiikTr(U-'diU)(U-'~~U)(U-ldkU) 
B 

(38) 
In fact we can generalize the last action to the so called k-level chiral WZW 

namely S+k(U) = kS+(u). The equation of motion which corresponds to the 

variation of this action with respect to the variation of u can be expressed as: 

a-(u-l&u) = 0 or a,(a-uu-l) = 0, (39) 

where each form can be obtained from the other. 

The global, chiral transformations u + Au, u + uB-l; A, B c G leave 

the action (38) invariant. However, out of the two Kac-Moody invariances of the 

original WZW action u + uB(x+) and u --+ A(x-)u, only the first survives . As 

for the abelian case the second Affine invariance is lost. The Noether currents 

associated with the left right transformations of (38) are 

J(I)- = 0 J(i)+ = F 
i~ku-lalU J(+ = $XU-~ J(,)+ = +3-u-? 

(40) 
The conservation of the left and right currents follow here simply from the equa- 
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tions of motion. However, unlike the ordinary WZW action only the left current 

is holomorphically conserved a- J(l) = 0; whereas a+ J(,) # 0. Obviously this is 

a manifestation of the invariance of the action only under the left Kac Moody 

transformation 6u = -iuw(x+) discussed above. The left current transforms as 

follows &J(l) = [iw(x+), Jtq] + gw’, leading to the O(N)(U(N)) Kac-Moody 

algebra21) with central charge equal to k. 

The action s+k is invariant classically under the left conformal transforma- 

tion 6, = c(x+)u’. The energy momentum tensor has again a Sugawara form. 

Assuming that in the quantum theory this form holds, then the results of ref. 

[2l] apply to the left sector of our case as well, namely: 

27r 
T(1) = (cud + k) a c : J;,Jtj : 

’ = (q:;k)’ (41) 

where J(l) = Jc,T”, Ta are hermitian matrices representing the algebra of the 

group, Cad is the second Casimir operator in the adjoint representation and D, 

is the. dimension of the group. The classification of the non-chiral WZW actions 

which are equivalent to free fermions22) will apply for the chiral non-abelian 

bosonization as well. The connection between the symmetry generators of the 

non-chiral theory and those of the chiral system follows similar lines as for the 

abelian case of eqns. (18-20). 

The coupling of non-abelian gauge fields to a chiral WZW action, which is 

a generalization of the results of section 7, was derived in ref. [6] in the Siegel 

formulation. Here we summarize the results for the present formulation given by 

eqn.(38 ). Again there are several ways to couple gauge fields corresponding to 

the various regularization schemes in the fermionic theory. The bosonized action 

(for k = 1) related to the “vector conserving ” regularization scheme is given by 

Sv[u,A-,A+] = S+[u] + / d2xTr{[J&L + J&A+] 

- -$[(u-~A~uA-) - (A-AI)]}, 
(42) 
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where J(,) and J(,,) correspond to the chiral currents (40). Using the equation 

of motion one linds. the conservation of the vector current and the anomalous 

divergence of the axial current: 

WJ~))(V) = 0, WJ&z))(V) = ;’ ’ PvF PV. 

So we have realized the covariant conservation of the vector current. 

In coupling to a left non-abelian gauge field the action is 

S+[u] = g / d2xTr[(u-la,u + $A~)A-1. 

(43) 

(44 

This action corresponds to the fermionic description in the left-right regulariza- 

tion scheme23). The associated current divergence is 

~~(J;>LR = D-(J~)LR + D+(JL)LR = &P’a,A,. (45) 

This expression for the anomalous divergence of the left current is identical to the 

result of the loop calculation in the fermionic version regularized in the left-right 

scheme. The coupling of the chiral WZW action to gravity can be achieved easily 

by generalizing (33) namely, we alter the sigma model term to the following term: 

1 
s+h= z 

J 
d2xfiTr[h1-d-u&u-1 + h+-d-u-l&u + h++&u&u-’ 

(46) 
+ h--c3-ucXu-1] 
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10. (1,0) SUPERSYMMETRY - 

The supersymmetrization of the chiral boson theory was studied extensively 

in the context of the Siegel formulation7). Here we present the (1,0) supersym- 

metric version of (3). Naturally we add to (3) th e action of a free Weyl-Majorana 

left fermion, p. The action 

(47) 

is invariant under the following supersymmetric transformation 

The comparison with the ordinary (1,0) supersymmetry suggests that the super- 

symmetric covariant derivative D must satisfy DD = ifi&. The superfield Q, 

and the superspace action are given by 

SL = 4 
J 

d2ad<-[d-@Da], 91 = q5, D@I = p (49) 

where 1 denotes the Grassmann independent part of a superfield and s $- = 

DI. The corresponding equation of motion d-D@ = 0 leads, of course, to the 

equations d-d14 = a-p = 0. 

The action (49 ) is invariant under the global axial transformation Qi ---+ @  + A 

and the left Kac-Moody transformation 6@ = A(z+,@). The corresponding 

super current J = D@ has the spin 1 component J(l)+ = 4’ and the spin i 

component j(l) = /3. It is holomorphically conserved, d-J = 0. Similarly, the 

super conformal transformation: 6@ = E&Q + iDED@, where E is a superfield 

with i3-E = 0, leaves the action invariant .The Noether super current 7 = 

DflM,ffi (a-7 = 0) has the spin 2 component T(l) = c$‘~ + ifi@,/? and the 

spin $ component t(l) = p&~$. Note that, on shell, the fermionic part of Z’(l) 

takes the ordinary form ;@a+/?. 
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We can now construct the (1,l) theory as a combined left (1,0) action to- 

gether with a right. (0,l) action. The supersymmetic transformation is 6t+<p = 

i[c+Q+,ia] = -[+(a,+@ + ic+f3+@) = -c+(f3,+@~ + ic+f3+@&) = 6(+@~ Simi- 

larly, be.-. @  = 6(-- !D R, where we have used the decomposition @  as @  = @L + @R 

and d,+@R = a,-@~ = d+@R = a-@~ = 0 

This supersymmetrization procedure can obviously be adopted also to the 

chiral level k WZW model for a group G producing8) the following action 

1 

Swzw(U) = -ik& 
/ 

d2ad<- Tr{[II-II] + dy Tr[fi,(DfL -hi)]}. (50) 
J 
0 

Here, II E U -lDU and similarly for II-, u” = U (z(“), y, <+) and the components 

of U are U I E u , DU I E ;up with u the WZW group element of (38) and 

p denotes free Weyl-Majorana fermions in the adjoint representation of G. This 

action is in fact the sum of a WZW action given in (38) and the action of p. 

-The discussion of the affine symmetries and the combined (1,l) supersymmetric 

theory follows the same lines as those for the ordinary supersymmetric chiral 

boson given above. 

11. SUMMARY AND CONCLUSIONS 

The controversy about the Lagrangian formulation of chiral bosons can be 

settled once the system is quantized as a constrained system or as a first order 

Lagrangian. In this approach the actions of refs. [l] and [lo] are equivalent. In 

this paper we analyzed the theory of left moving bosons starting from the local 

form of the Lagrangian given in ref. [lo] supplemented with chiral boundary con- 

ditions. We explained how the unconventional Poincare generators of a left and 

a right chiral boson combine to form the standard generators. We showed that 

,. the currents related to the left-U(l) Kac-Moody algebra and the left-Virasoro 

algebra transform in the same representations as the corresponding currents in 
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the theory of a left Weyl fermion. We-compared the partition functions on the 

torus of the theories of a chiral boson and a chiral fermion. Several possible 

actions for the left moving boson coupled to gauge and gravitational fields where 

introduced. The corresponding anomalies reproduced those of the fermionic for- 

mulation. We presented the theory of chiral bosons on a group manifold, the 

chiral WZW model. We summarized the associated Kac-Moody and Virasoro 

algebras and wrote down the coupling to non-abelian gauge fields and gravity. 

The (1,0) supersymmetric abelian and non-abelian chiral bosons which are based 

on an unconventional supersymmetry charge were described. 

We intend to address in the future some related topics such as the quanti- 

zation of chiral bosons coupled to gravity, the partition function in higher genus 

Reimann surfaces and possible applications to string theories. 
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APPENDIX 

We start by writing the Lagrangian (3) in the form of a scalar field on a 

“curved background” (the Siegel form) with g-- = 2X and latter we will substi- 

tute X = -1. 

L: = $wg + a++a+qq = dqiqd+fj + xa-qs) (Al) 

where we substitute 3-4 = a+rj + 2X9-4 and a++ = a-4. The Lorentz trans- 

formations of a-4, a+$ and X which correspond to this action are: 

q-qq = “+d+(d-qq - z-a-p-c#l) - a-45, (A24 
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6X = z+a+x-- z-a-.x + 2A (A24 

Now for X = - 1 we get: 

fi6”kw)” = $(a-4 + a+#) = sp+(tJ + xqs]x=-l (A31 = z+d+(a+d - a-qs) - z-a-p+4 - a-+> + (a+($ - a-c$) 
The transformations (A2a) and (A3) that leave the action (Al) invariant are 

the “curved” Lorentz transformations mentioned in section 2. The origin of the 

unusual transformation of “~914~ is now transparent. “&v = [a+f$+M-qS]x=-r 

transforms differently than a+~$ - a-4. Next we want to show the Lorentz 

invariance of the actions describing the coupling of chiral bosons to gauge fields 

(25), (27), (42) and (44). The gauge field components A+, A- and fi“Al” = 

[A+ + XA-]A=-rshould transform as (A2a),(A2b) and (A3) respectively. With 

this transformation laws it is straightforward that the coupled actions are Lorentz 

invariant. 
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