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ABSTRACT 
Charged particle motion in a second-order magnetic optical achromat is de- 
scribed using a canonical perturbation theory. Necessary and sufficient condi- 
tions for the existence of such a device are presented. Given these conditions, 
the second-order matrix elements at the end of the achromat are found ex- 
plicitly. It is shown that all geometric matrix elements are equal to zero and 
all chromatic matrix elements are either also equal to zero or proportional 
to the corresponding chromaticity. Thus all second-order matrix elements 
vanish simultaneously when the two chromaticities are made to be equal to 
zero. 

1. INTRODUCTION 
A fascinating property of the second-order achromat invented by K. L. Brown [l] is that all the 

matrix elements describing both geometric and chromatic aberrations (with the exception of the elements 
connected to the path length of a particle trajectory) of the second-order matrix simultaneously vanish 
at the Bchromat exit provided that certain conditions are satisfied. 

The proof of such a property for a second-order achromat with respect to the geometric aberrations 
was given by K. L. Brown in Ref. 11). This paper also contains a practical recipe for constructing a 
second-order achromat. 

On the other hand, a proof pertaining to chromatic aberrations is much more difficult. The 6rst 
attempt of such a proof belongs to D. Carey [2], who showed that the recipe works. 

Here we use a canonical perturbation theory to describe the particle motion in a beam line (31. This 
approach brings us in a natural way to the formulation of the necessary and sufficient conditions for the 
existence of the second-order achromat. We show why the second-order achromat works and provide 
the reader with a simple physical explanation of the underlying reasons for its existence. By calculating 
the second-order matrix elements directly we show why they vanish when the achromatic conditions are 
fulfilled. 

This paper will proceed as follows. In Section 2 the canonical formalism [4] for a particle motion in 
a magnetic field is described. The particle motion is separated into betatron and synchrotron parts. In 
Section 3 the betatron motion is described using canonical (angle-action) variables. We obtain formulae 
for horizontal and vertical chromaticities which agree with results obtained by M. Bassetti [S]. We then 
proceed to give the solution of the Hamilton’s equations up to the second-order terms. Section 4 contains 
calculation of the second-order matrix elements. Jn particular, the chromatic matrix elements are found 
explicitly.. The necessary and sufficient conditions for a second-order achromat are derived in Section 5. 
A special case of an achromat built from identical cells is considered. 

This paper is in essence a short version of the paper [6], where more detailed calculations can be 
found. 
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2. THE HAMILTONIAN FOR THE MOTION OF A CHARGED PARTICLE 
IN A MAGNETIC FIELR _ 

In the vicinity of a planar reference curve which follows the path of a particle with the reference 
momentum PO in a guiding magnetic field, the motion of an arbitrary particle is governed by a Hamil- 
tonian [4] which we represent here with all the terms up to and including those which are cubic in 
coordinates and momenta: 

HI(z,P,,Y,P~;s) = -eA,/cPo - (I+ zh)(l + 6) + (1 + sh)(pi + $)/2(1+ a) . (1) 

Here we use the notation h = l/p, where p is local radius of curvature of the reference trajectory. The 
coordinate x is the horizontal (in the plane of the reference trajectory) deviation from the reference tra- 
jectory while y is the vertical deviation. The canonically conjugate momenta are pz and pv, respectively. 
The fractional difference of the particle momentum P from that of the reference momentum PO defines 
6: P = P,(l + 6). The distance s along the reference curve measured from an arbitrary point serves 
as an independent variable. 

The quantity A, which appears in Eq. (1) is the canonical vector potential [4] representing the guide 
field. Again retaining the terms up to and including those which are cubic in the coordinates, A, is 
given by the .following expression [7] : 

$A.,(x,y,s) = xh(l+ h+) + K&)(x2 - y2)/2 
0 (2) 

+ Kl(s)(hxS/3 - hxy2/2 - h2y4/24) + K2(4(x3 - 3xy2)/6 , 

where Kr = &$$ and Kr = &s are local (at the location s) strengths of the quadrupole and 
sextupole components of the magnetic field B,, respectively. 

The term linear in x in the Hamiltonian (1) makes the equation of motion for the x-plane inho- 
mogeneous. The particular solution of this inhomogeneous equation gives the equilibrium orbit of the 
off-momentum particle. The reference orbit is but a special case of the more general equilibrium or- 
bit for which 6 = 0. The solution of the homogeneous equation describes (in case of stable motion) 
betatron oscillations. An off-momentum particle performs betatron oscillations about its corresponding 
equilibrium orbit. 

To describe the horizontal betatron motion of the off-momentum particle one can use a canoni- 
cal transformation from x, pz, y, py to xp, pp, y, pv to eliminate linear terms in the Hamiltonian. New 
coordinates and momenta are connected to the old ones by xp = x - D(s)6, pz = pp + <(s)6. 

As shown in Ref. [8], f unctions D(s) and $ = D’(1 + 6)/(1 + hD6) can be found from a solution of 
the following second-order differential equation: 

D” = (1 + hDJ)(h - h2D - KID - &hD26 - K2D2S/2)/(1 + 6) + h(D’)2/2(1 + hD6) . (3) 

Equation (3), together with corresponding initial conditions, defines the dispersion function which de- 
scribes the equilibrium orbit for an off-momentum particle. For 6 small, a solution of Eq. (3) can be 
found as an expansion in 6 

D(s) = D,(s) + SD,(s) + - - * , (4 

where the zero-th order function D, is a solution of the equation 

D;+(K1+h2)D,=h ; (5) 

the first-order function D1 is a solution of the equation 

0;’ + (Kl + h2)D1 = (ITI + 2h2)D, - h - 2K,hD,2 - K2D;/2 - h3D,2 + h(D;)2/2 , (6) 

and so on. 



The particular zero-th order dispersion function d(s) which has the special initial conditions d(0) = 
d’(0) = 0 defines the first-order matrix elements k:(s) and R!(S) [9] which couple x and x’ to 6 [lo]. 

On the other hand, for periodic systems with period 1 it may be convenient to define a periodic 
dispersion function. Such a dispersion function is called the matched dispersion. One should distinguish 
the matched dispersion from functions D(s) with other possible initial conditions. We will denote the 
zero-th order matched dispersion ti V(S): ~(s +.I) = s(s),~‘(s + I) = V’(S). It can be found as solution 
of Eq. (5) with the following boundary conditions: q(l) = q(O), ~‘(1) = ~‘(0). 

Any zero-th order dispersion function D,(s) with arbitrary initial conditions Do(O) and D:(O) 
(including the matched dispersion) is connected to function d(s) by the following matrix expression: 

Do (4 
i I( 

R: (4 Jw) 44 Do (0) 
Db (4 = w4 GM d(4 Dk(O) 9 (7) 

1 0 0 1 I( 1 1 

where Rf are the first-order matrix elements for transition from an arbitrary point 0 to an arbitrary 
point s of the system. This feature will ‘be used below for calculation of the second-order chromatic 
matrix elements. 

3. BETATRON MOTION 
In the new variables xp,pp, y,p, the Hamiltonian has no linear terms and describes betatron motion 

of a particle with respect to its corresponding equilibrium orbit: 

H2 = (Pi + p3/2(1+ 6) + Kzxi/2 + Kvy2/2 

+ JGzD6+ - K2,D6y2/2 + (K2zx; - ~K~,x~~~)/G (8) 

+ hxp(~; + pi)/20 + 6) + hDb(p$ + p;)/2(1+ 6) + h<6ppxp/(l + 6) , 

where the following notations are used: Kz = Kl + h2, K, = -Kl, Kzz = K2 + 2hKl, K2y = K2 + hKl. 
.As in Ref. [4] we now perform a canonical transformation to the action-angle variables J,, &, JY, r&. 

The old coordinates and momenta are expressed in terms of the new ones as 

Pp = - (sin qL + a, cos &) 

and similar expressions for y,p,. The new Hamiltonian is 

where 

(9) 

(10) 

V(Jz, A, Jg,, +g; 8) = C J,“‘” J:/2[c$fn~~~(m+z + n&) + S$& sin(m& + n&,)] . (11) 
m,n,k,l 

(k, 1, m and n are all integers.) All non-zero coefficients Czfn and Sk*’ m,n are given in Table 1. The functions 
p(s) and a(s) = -$/2, used to describe the modulated betatron oscillations are the matched functions 
for the system under consideration. For a periodic system the matched P-function is also periodic as 
required by Floquet’s theorem [ll]. For a nonperiodic system the matched function is defined by the 
condition that the final values for the function and its derivative are the same as the initial values. Of 
course, it would be possible to parametrize the motion in terms of unmatched &functions. In this case, 
the following results for the second-order achromat are unchanged; however, the proofs are somewhat 



Table 1. 
Non-Zero Coefficients of the Second-Order Hamiltonian 

- _ Notations: 

H = & +-& + Cm,n,k,l Ji’2J:/2[c%fn cos(‘Wht + +) + &$ sin(m& + n&)1, A = 1 + 6. 

N Coefficient 
1 10 

CO:0 (Kd - Kz)W,/2A + hD6yz/2 - hc6a,/A 
2 CO*’ m-l -(Kz,D + K,)6&/2A + hD67,/2 
3 cl,0 

2,0 (KzzD - Kz)6P,/2A + hD6(1- a;)/2&. - h<Ga,/A 
4 s”O 2,0 hD6a& - h<6/A 
5 01 

CO,; -(Kz,D + Ky)6&/2A - hD6(1- a2,)/2& 
0 

6 so:,’ hD%l/% 
7 c3,o RI-I K~J3~/~/6fiA~/~ - h(1 - az)/dw 

81 Cff 1 K2zP~‘2/2&A3/2 + fih(l + a:)/- - h(1 - az)/d?i&E 
9 &i 

l,o -KZVP:‘~P~/~@~~’ + h&m 
10 (-32 

1,2 -KzY~‘~PxJ/~~~A~/~ - h(1 - a;) Jm/p, 
11 cy, 9 -Kz~P:‘~P~/~\/~A~/~ - W - af) d7@X/Pv 
12 s2 ha,- 

‘. 

more complicated. Finally, we choose the p-function to be independent of momentum, treating all the 
terms in the Hamiltonian dependent on 6 as perturbations. 

Due to the explicit dependence of the Hamiltonian (10) on the angles & and r&, Jz and J, are 
not constants of motion as would be the case for the unperturbed Hamiltonian. Note, however, that 
the perturbation term V is zero when averaged over all values of the angle variables. This allows us 
to evaluate the effects due to the leading order terms (e.g., changes in phase advance of the betatron 
oscillations) by doing such averaging. 

For a system of total length L we define a symbol < > for the averaging over the angle variables. 
From the equation of motion the horizontal phase advance is: 

ho(s) - ho + b(s) + A&(S) + . . . , (12) 

where tizo is an initial phase of the horizontal betatron oscillation, 

0 

is the linear (unperturbed) horizontal betatron phase, and 

A+z(s) = ~(1; 6) j ds’[(&D - K&J, + hD(l + 6)(1 + az) _ 2hca 
Pz z ] 

0 

(13) 

(14 

4 



is the horizontal tune shift due to the nonlinear terms in the Hamiltonian. Similarly for the vertical 
tune, these quantities are given, respectively. by: 

4 YO - h/o + &(s) + A&,(S) + . . . , (15) 

0 

AU4 = -2(16+ 6) j d&W + K,)P, - hD(l + 6)(l+ a:) 

Pv 
I * 

0 

(16) 

(17) 

The chromaticity e = (1/2rr)(@(L)/a6),=, G (a~/a6) = 6 o is a measure of the linear dependence of 
the tune on 6. From Eqs. (14) and (17) one finds: 

L 

& = & 
/ 

dS’[(K2+Do - &)P, + hDorz - 2hDba,] 0.8) 
0 

and 

&, = -& / d&$,Do + K&, - hDor,,] . (19) 
0 

Up to now the initial conditions for the dispersion function Do(s) which enters the above formulae has 
not been specified. Sometimes special initial conditions are appropriate. For example, .for a system 
built of several identical cells the periodic matched dispersion v is convenient. Since p-functions are also 
periodic, the integrands in Eqs. (18) and (19) become periodic as well. In this case, it is sufficient to- 
perform the integration over one period 1: 

1 
EZ = -& / ds’[(Kzzrl - Kz)Pz + hrl7, - Zh’a,] , (20) 

0 

Equations (20) and (21) were obtained by M. Bassetti [S] following a simple intuitive approach. 
It is both interesting and important to note that it follows, from Eq. (7) and from the conditions (to 

be shown) required for a system to become a second-order achromat, that the values for chromaticities 
given by Eqs. (18) and (19) are independent of the initial conditions for the dispersion function. 

Now we consider the perturbation V [Eq. (ll)] in the Hamiltonian [Eq. (lo)]. To describe the 
perturbed betatron motion of a particle we apply the canonical perturbation theory [3] and use the 
results obtained in Ref. [6]. The generating function which eliminates all the second-order terms from 
the Hamiltonian in Eq. (10) is g iven by the expression (see Appendix): 

+ St$bsinld4~ + 4: - &) + n(& + $1 - tj,)]) , 

where the perturbed ph== =e &,y = $+(s) + A+&,(S), &,, = &,(s’) + A+&s’). The new 
invariants of the motion are Iz = Jz - G4= and I, = Jz - Gdv, where a subscript in G indicates the 
partial differentiation with respect to the subscript. 



The solution of the Hamilton’s equations up to the second-order terms now is: 

x/d4 = 2(Iz + G&h 
(1 + 6) 

cOS(‘ho + $z + A& - GJ,) , 

/j(l + 6) [sin(ho + !bz + A& - GJ,) + a= cos(bo + tiz + A&. - GJ,)] , & 

and similar expressions for the vertical plane. 

4. SECOND-ORDER MATRIX ELEMENTS 

We will now apply the general results obtained in the previous section to the second order achro- 
mat as defined in Ref. [l] - a magnetic system for which all first-order terms represent the identity 
transformation and all second-order aberrations vanish at its end. 

Let a single component of the vector in the phase space (xp, x;, y, y’, AZ, 6) be expressed by X;(s). 
Then, at each point s, component Xi(s) can be represented as a power series in initial values Xk(0) by 
expanding the following expressions: 

x(s) = xp(s) + D(s)6, x’(s) = xi(s) + D’(s)6 , (25) 

. 

This gives, in general, 

Y(S) = Yp, Y’(S) = Y; - (26) 

Xi(S) = Ri(s)Xk(O) + T,~i(s)xk(o)xj(o) . (27) 

Here the summation from 1 to 6 over repeated indices (one upper and one lower) is to be understood. 
From definition (27) it follows that matrix T is symmetric in the upper indices: Ty = Tik. In order for 
the first order matrix R,k(L) to be the unity matrix for a whole achromat the tunes V, and IQ, should be 
integers and sin 27ru, = 0, cos 2?ru, = 1. Similar expressions hold for y-plane. 

There are three categories of the second-order matrix elements T,?(s): a) geometric matrix elements, 
i.e., all T,!j with i,k,j = 1,2,3,4; b) single-chromatic matrix elements, i.e., elements with k or j = fj 
and c) double-chromatic matrix elements, i.e., with k = j = 6. 

Equations in the form of Eq. (27) are obtained by expansions of Eqs. (23) and (24) for small 
G~+,GJ, and A& and of similar equations for the vertical plane. Introduce the amplitudes a, = 
d21,/(1+ 6), or = 421,/(1+ 6) and express xi(L) in terms of xi(O) by excluding oz,~z,uy,~y . 

a) Geometric matrix elements 

All the second-order geometric matrix elements are proportional to one of the derivatives GI, , GzI, GdI 
or G4,.. Therefore, if these derivatives vanish simultaneously at the point s = L, so will the second-order 
geometric matrix elements. Below we will find the conditions under which these derivatives vanish. For 
now suppose that these conditions are met. 

b) Single-chromatic matrix elemei ts 

Consider now the terms which are proportional to A&. These we expand in 6 and keep terms linear 
in 6. That gives: 

x(L) = x(O) + 2nL6[Pz(0)z’(0) + az(0)x(O)] , (28) 

x’(L) = x’(d) - 271-~z6[a,(0)x’(O) + 7z(0)x(O)] . (29) 



Comparing Eqs. (28) and (29) with Eq. (27) we find: 

= -2A&) 
L ( 

alI 4l 
-rv -ay 

Recall that for any lattice the initial values for the matched p, a and 7 are uniquely defined. When 
the conditions & = 0 and cy = 0 are met all the single-chromatic second-order matrix elements become 

I zero simultaneously. 

c) Double-chromatic matrix elements 

From Eqs. (4) and (25) it follows that the double-chromatic matrix elements are: y(L) = D1 (L), 
c6(L) = D;(L). 

The solution of Eq. (6) for the zero initial conditions D1 (0) = 0; (0) = 0 gives the following expres- 
sions for the second-order dispersion and its derivative at the exit of the achromat s = L: - 

D1(L) = m(sin$z(L) fd~‘p,C,‘)~~cos$~ - cos&(L) /ds’Pr(s’)~)sin$~) , (32) 
0 0 

D;(L) = 
d&i 

(bvh(L) - a=(L) sin&(L)] fd~P~(~)~~ms& 
0 

+ (sin b(L) + a,(L) COSTS] fds’P,Cs’)~~sint~) , 
0 

where PI(S) is the right-hand side of Eq. (6): 

(33) 

PI(S) = Kz(1 - hDo)Do - h - KzzD;/2 + h2Do + h(D;)2/2 . WI 

First consider the matched dispersion Do = r]. Then PI(S) is a periodic function and as is shown below 
for the second-order achromat, it follows that both Dl(L) and 0; (L) and, consequently, TF6(L) and 
Tfs(L) vanish. 

Next consider a dispersion function Do with arbitrary initial conditions. Then, using Eq. (7), Do can 
be represented as a sum of an q -function and a free oscillation function. Again it will be shown below 
that contribution to Dl(L) and Dl(L) due to this oscillation also vanishes. Hence, the second-order 
double-chromatic matrix elements become zeros at the end of an achromat independently of the initial 
conditions for the dispersion function. 

5. SECOND-ORDER ACHROMAT . 

We have shown that in order for the geometric matrix elements to vanish the derivatives of the 
generating function G must be equal to zero at the end of an achromat. Now we will find the conditions 
under which that is true. 

The generating function G(s) as well as its derivatives over canonical variables I%, I,, & and dV are 
sums of the terms which are linearly independent. In order for the sum to be zero for all possible values 



of these variables, each term separately must be zero. Considering a typical term of those sums the 
following conditions should be satisfied: 

- 
L 

I 
ds’Fmn(s’) exp(i[m& + n&l) = 0 , 

0 

where Fmn are the complex amplitudes obtained from Eq. (22) and Table 1. 
Equations & = 0, &, = 0 , Eq. (35) and the conditions that the tunes uz and uv for a whole achromat 

should be integers constitute the most general set of the necessary and sufficient conditions for a system 
to be a second-order achromat. 

Consider now a particular case of an achromat built out of N identical cells of length I and tunes 
per cell vi and I+ As for any second-order achromat the total tunes Nuz = integer, Nui = integer. 
Assume that values for K2, and KQ have been found such that chromaticities & and eV in Eqs. (20) and 
(21) are equal to zero. We will show that in this case Eq. (35) is satisfied, provided that the unperturbed 
tunes V: and V; both avoid the following resonance values: 

mu: + nui # integer , (36) 

wherem=1,2or3forn=O,andm=Oorlforn=2or-2. 
Indeed, let us assume first that functions F ,,,,, contain the matched dispersion function n and con- 

sequently they all are periodic functions with the period 1. Then each integral can be evaluated in the 
following way 

L 

I 
ds’Fmn(s’) exp(im& + in&) 

b 
1 

= 
1 - exp[2riN(mui + nui)] 

ds’hds’) ewhd + in&,) 1 _ expi2?ri(muC + nuC)l - 
z 

0 Y 

W)- 

The unperturbed tunes are used here since the chromaticities are equal to zero. Restrictions in Eq. (36) 
follow from here. 

Now consider the case where the dispersion function D is not periodic. As we discussed earlier it 
can be expressed as a sum of a periodic function and a free oscillation function [see Eq. (7)]. Examining 
Table 1 we find that the coefficients containing D give rise to terms already made to vanish by ‘the 
conditions in Eq. (36). 

If, a8 is usual for an optical magnetic line, ui = ui = uc, all the essential conditions in Eq. (36) 
are reduced to only one requirement 3~” # integer. In this case, condition (36) is equivalent to the 
statement that the number of cells in the second-order achromat should be more than 3 (N 1 4). In this 
particular form the conditions for the second-order achromat were originally formulated by K. Brown [l]. 

CONCLUSIONS 
.Using ‘a canonical perturbation theory we have developed a complete theory of the second-order 

achromat. The necessary and sufficient conditions for the existence of such a device are given. We have 
shown the reason why all the second-order geometric matrix elements are zeros simultaneously when these 
conditions are met. The second-order chromatic matrix elements were found explicitly. It was, shcwn 
that the double-chromatic elements are zeros and that the single chromatic elements are proportional 
to corresponding chromaticities and consequently vanish when the chromaticities were made equal to 
zero. We have also shown that for a second-order achromat all the formulae for the second-order matrix 
elements which explicitly contain the dispersion function do not depend on the initial conditions for that 
function. 
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APPENDIX I 

CANONICAL- PERTURBATION THEORY 
In this Appendix we derive the generating function (22) used to solve the Hamilton’s equations with 

an accuracy up to the second order in perturbation. The method was developed by Kolmogorov and& 
known as canonical perturbation theory [12]. 

We start with the Hamiltonian Eq. (10): 

Hs(f,,,s) = Hc@,s) +V(f,,,s) . (A-1) 

All vectors here and in what follows are two-dimensional, for example, J’ s (.I,, Jr). The nonlinear 
perturbation V (3, &a) is periodic in angles r$ and has zero average over these angles. Our goal is to find 
canonically conjugate new variables such that the new Hamiltonian is a function of the new generalized 
momenta alone plus terms of order V2. 

Consider a canonical transformation from the variables (J’, a to new variables (I’, 3) with the gen- 
erating function of the new momenta and the old coordinates 

F(f,$,s) = &f+ G(f,,,s) . (A-2) 

The new coordinates are defined by 6 = r$+ G,-, J’= I’+ GJ and the new Hamiltonian is 

H4 = H,(f+ G&,s) + V(i+ G&s) + G, , (A.31 

where a subscript indicate partial differentiation with respect to the subscript. Since for a small pertur- 
bation- V, the function G is also small, we can expand H4 

H4=H0(f,s)+fi.Gj+G&GJ/2+V(f,&s)+Vf.GJ+G, , (A.4) 

where the angular “frequencies” denoted by d$/ds = n’(l’,s) = H,,r may be functions of both the 
amplitude f and the independent variable s. 

By choosing a function G(f, ~$,a) to satisfy the equation 

n’(&).Gy+V(&&s)+G,=O (A.51 

we can eliminate from the Hamiltonian all the terms of the order of V. The new momenta I’then will 
be integrals of motion with the accuracy V2. 

Equation (A.5) for G is a first order differential equation, the solution of which can be found using 
the fact that all functions are periodic in angles. Substituting into the Fourier expansions 

V(l’, 6, s) = c ua(x s) exp(ifi; &) , G(x 6,s) = c g,z(z s) exp(ifi * &) , (A-6) 
?ii fi 

where the vector of integer coefficients r7~ = (m,, my) is introduced, we find a system of equations which 
are equivalent to Eq. (A.5): 

(iti- ii(s) + $)gfi = -ufi . (AJ) 

Hence, the function G with the initial condition G(?, &O) = 0 is [6,13] 

G=-ci ds’ufi(f, s’) exp{irFi . [d+ $(s’) - z(s)]} , (A4 
fi0 

where $(s’) = s,“’ ds”C(s”),G(s) = J,” ds’fi(s’). Th a IS, in fact, the expression (22) which was given in t ’ 
the text. 


