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ABSTRACT 

The nucleus plays two complimentary roles in quantum 
chromodynamics: 

1. A nuclear target can be used as a control medium or 
background field to modify or probe quark and gluon 
subprocesses. Some novel examples a.re color truns- 
parency, the predicted transparency of the nucleus to 
hadrons participating in high momentum transfer ex- 
clusive reactions, and formation zone phenomena, the 
absence of hard, collinear, target-induced radiation by a 
quark or gluon interacting in a high momentum trans- 
fer inclusive reaction if its energy is large compared to a 
scale proportional to the length of the target. (Soft ra- 
diation and elastic initial state interactions in the nucleus 
still occur.) Coalescence with co-moving spectators is dis- 
cussed as a mechanism which can lead to increased open 
charm hadroproduction, but which also suppresses forward 
charmonium production (relative to lepton pairs) in heavy 
ion collisions. I also discuss some novel features of nu- 
clear diffractive amplitudes-high energy hadronic or elec- 
tromagnetic reactions which leave the entire nucleus intact 
and give nonadditive contributions to the nuclear structure 
function at low Zgj. 

2. Conversely, the nucleus can be studied as a QCD struc- 
ture. At short distances, nuclear wave functions and 
nuclear interactions necessarily involve hidden color, 
degrees of freedom orthogonal to the channels described 
by the usual nucleon or isobar degrees of freedom. 
At asymptotic momentum transfer, the deuteron form 
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factor and distribution amplitude are rigorously calculable. 
One can also derive new types of testable scaling laws for 
exclusive nuclear amplitudes in terms of the reduced am- 
plitude formalism. 

The lectures include a discussion of methods for computing wave 
functions of hadrons, including new results for QCD in one-space 
and one-time dimension using discretized light-cone quantization. 
Tests of QCD in wave function-sensitive exclusive processes are 
also reviewed. Explanations are proposed for two outstanding 
anomalies in hadron phenomenology: the large spin-spin correla- 
tion observed in large angle elastic proton-proton scattering, and 
anomalous two-body hadronic decays of the J/T). 

1. INTRODUCTION 

The least understood process in QCD is hadroniration-the mechanism 

which converts quark and gluon quanta to color-singlet integrally-charged hadrons. 

One way to study hadronization is to perturb the environment by introduc- 

ing a nuclear medium surrounding the hard-scattering, short-distance reac- 

tion. : This is obviously impractical in the theoretically simplest processes- 

e+e- or ry annihilation. However, for large momentum transfer reactions ocy 

curing in a nuclear target, such as deep inelastic lepton scattering or massive 

lepton pair production, the nuclear medium provides a nontrivial perturbation to 

jet evolution through the influence of initial and/or final state interactions. In 

the case of large momentum transfer quasi-exclusive reactions, one can use a nu- 

clear target to filter and influence the evolution and structure of the hadron wave 

functions themselves. The physics of such nuclear reactions is surprisingly inter- 

esting and subtle-involving concepts and novel effects quite orthogonal to usual 

expectations. 

The key to understanding hadronization and hadron matrix elements is the 

hadron wave function itself. A convenient description of hadron wave functions is 

given by the set of n-body momentum space amplitudes, 

&(x;,bli,A;), i = 1,2, . ..n , 

defined on the free quark and gluon Fock basis at equal “light-cone time” 

T = t ,+ Z/C in the physical “light-cone” gauge A+ E A0 + A3 = 0. (Here 

Xi = &F/p+, C xi = 1, is the light-cone momentum fraction of quark or gluon 
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i in the n-particle Fock state; Lli, with C Icli = 0, is its transverse momen- 

tum relative to the total momentum pb; and Xi is its helicity.) The quark and 

gluon structure functions Gp/~ (x, Q) and G,/H (x, Q) which control hard inclusive 

reactions and the hadron distribution amplitudes $a(~, Q) which control hard 

exclusive reactions are simply related to these wave functions: 

G,,&,Q> = xl2 IId2kli J IIdXi I?jn(Xi, kl,)l;S(Xq - X) , 
n 

and 

In the case of inclusive reactions all of the hadron Fock states generally participate; 

the necessity for higher-particle Fock states in the proton is apparent from its large 

gluon momentum fraction and the recent results from the EMC collaboration11 

suggesting that, on the average, little of the proton’s helicity is carried by the light 

quarks.2l In the case of high momentum transfer Q exclusive reactions perturbative 

QCD predicts that only the lowest particle number (valence) Fock state contibutes 

to leading order in l/Q. Th e essential gauge-invariant input is the distribution 

amplitude31 ~H(x, Q). Its dependence in log Q is controlled by evolution equations 

derivable from perturbation theory31 or the operator product expansion. 4] A more 

detailed discussion of the light-cone Fock state wave functions and their relation 

to observables is given in Ref. 5. 

The phenomenology of hadron wave functions in QCD is now just begin- 

ning. Constraints on the baryon and meson distribution amplitudes have been 

recently obtained using QCD sum rules and lattice gauge theory. The results are 

expressed in terms of gauge-invariant moments < x7 >= ~IIdz; XT 4(zi, ,z) of 

the hadron’s distribution amplitude. A “snapshot” of the proton’s uud wave func- 

tion at equal light-cone time as deduced from QCD sum rules at ,U N 1 GeV by 

Chernyak et a1.6l is shown in Fig. 1. This will be discussed further in Sec. 7. 

A new nonperturbative method “discretized light-cone quantization,” 

(DLCQ)71 has b een developed which has the potential for providing detailed 

information on all the hadron’s Fock light-cone components. The basic idea 

is to diagonalize the QCD Hamiltonian on the light-cone Fock states, using a 

computationally-convenient discrete momentum space basis. The eigenvalues M2 

of HLC provide the spectrum of the theory; the eigenvectors yield the Fock state 
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Fig. 1. The proton’s distribution amplitude 4(x1, x2, x3, p) with x1 +x2+x3 = 
1 determined at the resolution scale p N 1 GeV from QCD rules by Chernyak, 

.’ Ogloblin and Zhitnitsky (Ref. 6). 

wave functions +n(zi, lcli, Xi). SO far th e method has been successfully applied 

to gauge theories and Yukawa theory (scalar gluons) in one-space and one-time 

dimension. New results for the spectrum and wave functions for QCD[l+l] are 

presented in Sec. 8. 

The main emphasis of these lectures is the use of a nuclear target as a control 

medium or background field to modify or probe hadronization and quark and gluon 

subprocesses. I shall discuss several novel examples, including color transparency, 

the predicted diminished attenuation in the nucleus of hadrons participating in 

high momentum transfer exclusive reactions, and formation zone phenomena, the 

absence of hard collinear target-induced radiation by quarks or gluons interacting 

in a high momentum transfer inclusive reactions. 

QCD factorization for hard inclusive processes implies, to leading order in 

l/Q, that the only nuclear dependence to the total production rate enters through 

the quark and gluon structure functions of the nucleus. This implies that ini- 

tial and final state inelastic interactions inside the nucleus can be neglected in 

the high energy limit, contrary to usual intuition. This is the “formation zone” 

principle. Although inelastic initial and final state interactions can be neglected 
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for parton energies large compared to a scale set by the length of the target, - 
soft radiation and elastic interactions are still effective and can lead to smearing 

of transverse momentum of the incoming and outgoing quarks and gluons.81 The 

increased transverse momentum of the p+p- pair measured by NA-SAVE-lOgI 

thus gives a measure “1 of the quark elastic cross section inside of nuclear matter. 

The total inclusive rate for lepton pair production is unchanged to leading order 

in l/Q. Further discussion, based on work*] by Bodwin, Lepage and myself on the 

QCD target length condition is given in Sec. 5. It is remarkable that the incoming 

quark or antiquark can suffer elastic initial state interactions even though hard 

collinear ineZastic interactions do not occur. 

- 

The target length condition and formation zone physics are important for 

the general understanding of the propagation of quark and gluon jets in nuclear 

matter. The converse of this effect is that particles produced at low velocities rel- 

ative to other hadrons, including the beam spectators, will have their momentum 

strongly distorted by final state interactions. For example, the “coalescence” of 

the heavy quarks with beam spectators can cause severe distortions of the mo- 

mentum distribution of heavy hadrons produced in the beam direction, although 

the total inclusive rate for heavy quark production is unchanged to leading order 

in ~/MQ, Gunion, Soper and I”] note that this effect may account for some of 

the anomalies observed in charm hadroproduction experiments, such as the large 

cross section for charmed-strange baryon production at large XL by a 135 GeV/c 

hyperon beam measured by the WA-42 collaboration121 at the SPS, the large cross 

sections recently reported by the E-400 group at Fermilab for open charm hadron 

production by high energy neutron beams, as well as the ISR results for A, pro- 

duction in pp collisions. The coalescence effect may be modified by the nuclear 

environment which could in turn cause an XL-dependence of the production rate 

for charmed hadrons in nuclear targets. Most interesting, the inclusive production 

of quarkonium states can be strongly affected by the presence of co-movers. In 

fact, Mueller and 1’31 that due to coalescence of the c or z quark with beam specta- 

tors, one expects a depletion at low transverse momentum of J/lc, production by a 

nuclear beam relative to continuum lepton pair production. The coalescence effect 

occurs independent of whether or not a quark-gluon plasma is formed. Further 

discussion will be given in Sec. 4. 

It is helpful to review the basic time scales involved in hadronization. For 

processes involving hard interactions, it is convenient to consider two separate time 
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scales, a time of production rp, and a time for formation of the measured final - 
state hadron 7~. We define these times in the laboratory system where the target 

nucleon or nucleus isat rest. rp is the time scale over which the interaction occurs, 

while rF is the time it takes the produced partonic system to reach the normal 

configuration of the wave function of the hadron. If there is no hard interaction 

the distinction between rp and TF is lost. For processes invelving a hard collision, 

and at times after the collision less than TF, one must deal with the partonic 

system explicitly. Indeed, it is only after a time TF that it makes sense to talk of 

a particular hadron as existing. 

For a process involving a hard momentum transfer Q (or production 

of a heavy quark system), we can, following Bjorken and Mueller,141 estimate 

TP - l/AE N p/Q2 where p is the momentum of relativistic hadron H. The 

time of formation of H is determined by requiring that VlTF = rH where ~1 

is the transverse velocity of a quark constituent of H and TH is the radius of 
the hadron. Now ~1 = ,/(2/3)k~/E~ where kH is the typical momentum of 

the constituent in the rest system of H, and EH is the laboratory energy of H. 

Thus TF N (rH/kH)E H, and at high energies the formation time is typically much 

longer than the production time. For processes involving only soft collisions, the 

distinction between TP and TF is lost. 

In general, the A-dependence of the cross section for producing a rel- 

ativistic hadron H depends on three factors: (i) the interaction of the ini- 

tial projectile with upstream nucleons in the nucleus before the hard collision; 

(ii) the interaction of the partonic constituents of H with the nucleus or, if TF 

is small enough, the interaction of H itself with the nucleus; (iii) the interaction 

of the partonic constituents of H with other quarks and gluons, co-moving with 

the H-system, during times less than TF. For example, the fact that the J/+ is 

typically formed far outside of a nucleus at high energy implies that the hadronic 

cross sections deduced for the J/ll, nucleon cross section from the relatively low 

nuclear final state corrections are incorrect. 151 This is discussed in more detail in 

Sec. 2.161 

Nuclear effects predicted by perturbative QCD are even more exotic for hard 

exclusive processes. Only the valence Fock component of a hadron’s wave function 

with small transverse size of order l/Q contributes to an exclusive amplitude 

at high momentum transfer in &CD. Such a wave function component has only 

a small color dipole moment and thus has a strong interaction cross section of 
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order 1/Q2. This implies that a hadron can hard scatter on every nucleon in a 

nucleus without attenuation from initial or final state interactions! In contrast to 

inclusive hard reactions, even elastic scattering initial and final state interactions 

are negligible. Because of the formation zone effect the hadronic. state stays small 

over a distance which grows with its energy. The prediction that the rate for 

quasi-elastic hard scattering exclusive processes will be additive on the number of 
nucleons in the nucleus at large momentum transfer and hadron energy is referred 

to as “color transparency. “161 A crucial experiment is quasi-elastic lepton-proton 

scattering in the nucleus-QCD predicts a monotonic rise in the transparency 

ratio as the momentum transfer is raised until complete additivity is reached. 

The energy dependence of the formation zone effect can be isolated by studying 

final state attenuation as a function of recoil proton energy at a given momentum 

transfer Q2. 

A test of QCD color transparency has recently been carried out at BNL 

in large momentum transfer quasi-elastic pp scattering at 19,~ N a/2 in several 

nuclear targets (C, Al, Pb) by a BNL-C o umbia-Penn 1 State collaboration. 171 A 

schematic of this process is shown in Fig. 2. The attenuation of the recoil proton 

-as it traverses the nucleus and its momentum distribution dN/dp, transverse to 

the x-z scattering plane are measured. 

5837A25 
A-l 

Fig. 2. Quasi-elastic pp scattering inside a nuclear target. In conventional 
Glauber theory, this process is attenuated by the elastic and inelastic inter- 
actions of the incident proton and the final state interactions of the scattered 
and recoil protons. 

The results are rather astonishing. As shown in Fig. 3, the quasi-elastic 

cross section is strongly attenuated at low plab - 6 GeV/c consistent with conven- 
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--Fig. 3. Measurements of the transparency ratio 

T= $$A + PPV - ~)I/~$(PP + PP> 

near 90’ on Aluminum (Ref. 17). C onventional Glauber theory predicts that 
this ratio should be constant in energy. Perturbative QCD predicts a mono- 
tonic rise. 

tional Glauber initial and final state absorption. As plab is increased the attenua- 

tion decreases rapidly as predicted by perturbative &CD. This appears to support 

the color transparency prediction. However, beyond pl,,b = 10 GeV/c the rate falls 

dramatically; at Plab = 12 GeV/c, normal attenuation is observed, in contradiction 

to the expectation from perturbative QCD that the transparency effect should be- 

come even more apparent! Thus, neither conventional nuclear physics nor leading 

twist perturbative QCD can explain the data. However, we note that the spin-spin 

correlation, ANN, also has a dramatic anomaly at pi& = 11.75 GeV/c (see Fig. 4). 

de Teramond and 1’81 have attempted (see Sec. 9) to explain the origin of both 

phenomena in terms of the onset of new degrees of freedom, i.e., a resonance or 

threshold enhancement in the dibaryon system at ,/s N 5 GeV, possibly associ- 

ated with the onset of charmed hadron production. Color transparency fails at a 

resonance since the full Fock structure of the proton is involved.‘*! 
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Fig. 4. The spin-spin correlation ANN for elastic pp  scattering with beam and 
target protons polarized normal to the scattering plane (Ref. 19). ANN = 60% 
implies that it is four times more probable for the protons to scatter with spins 
parallel rather than antiparallel. 

Another very important test of these novel QCD considerations is j@ -+ J/$ 

production deep inside of a  nucleus. Again, color transparency implies negligible 

initial state attenuation of the incoming antiproton in striking contrast to conven- 

tional nuclear physics expectations. W e  discuss this interesting process2’] in more 

detail in Sec. 3. 
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The nucleus itself must be described as a QCD structure. At short dis- 

tances, nuclear wave functions and nuclear interactions necessarily involve hidden 

color, degrees of freedom orthogonal to the channels described by the usual nucleon 

or isobar degrees of freedom. In the case of the deuteron, five color-singlet Fock 

states are required just to describe its six-quark valence wave function. At asymp- 

totic momentum transfer, the deuteron form factor and distribution amplitude are 

rigorously calculable. At subasymptotic momenta, one can derive new types of 

scaling laws for exclusive nuclear amplitudes in terms of the reduced amplitude 

formalism. A brief review is given in Sets. 10 and 11. 

I also briefly discuss in Sec. 6 some novel features of nuclear diflmctive 

amplitudes-high energy hadronic or electromagnetic reactions which leave the 

entire nucleus intact. In the case of deep inelastic scattering, such leading twist 

contributions can give unusual nonadditive contributions to the nuclear structure 

function at low zgj. In the case of vector meson electroproduction at highly virtual 

photon mass, diffractive processes can give essential information on nonforward 

matrix elements of the same operator products which control deep inelastic lepton 

scattering.21l 
_- 

I also will briefly review of the status of QCD predictions for exclusive pro- 

cesses- involving large momentum transfer (see Sec. 7). There are still questions 

regarding the magnitude of the momentum transfer required for the validity of the 

leading order predictions. The experimental observation of “color transparency” 

in pp quasi-elastic scattering helps to establish the basic validity of the predictions 

in the experimentally accessible domain. It is thus even more important to under- 

stand experimental anomalies, and I discuss two important topics in Sets. 9 and 12: 

the surprisingly strong spin-spin correlations in elastic pp scattering and the un- 

usual descrepancy between the decays of the J/lc, and $’ into pseudoscalar/vector 

hadronic decays. Both phenomena can be understood as effects due to new S- 

channel thresholds. 

The application of QCD to nuclei-Nuclear C/bomodynamics-has brought 

together two formerly distinct communities of physicists. Given that the natural 

scale of QCD is 1 fermi, nuclear physics can hardly be studied as an isolated 

subject, divorced from nucleon substructure. Indeed, several traditional assump- 

tions of nuclear theory are incompatible with &CD, such as (a) standard on-shell 

form factor factorization in impulse approximation and (b) Dirac equation phe- 

nomenology for nucleon interactions in nuclei-since the NNN intermediate state 
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is severely suppressed by nucleon compositeness. 221 Conversely, the most difficult 

questions for particle theorists-the structure of the hadrons in terms of their 

quark and gluoh degrees of freedom, gluonium and other exotic spectra, coher- 

ence effects, jet hadronization and particle formation, the nature of the pomeron, 

diffractive and forward processes, etc., require experimental input at all energy 

scales, including the regime of tens of GeV or even lower. - 

2. INCLUSIVE J/+ PRODUCTION IN NUCLEI 

The production of heavy quarkonium states such as the J/1c, in collisions 

involving nuclei can test many of the fundamental features of QCD outlined in 

the introduction. The simplifying feature of such reactions is that the underlying 

production subprocess involves heavy quark pair production at small transverse 

distances rl 2 ~/MQ. Mueller and I 131 have analyzed the nuclear dependence of 

a number of processes ranging from quasi-elastic pp + J/t,b production in nuclear 
reactions to quasi-exclusive and inclusive photoproduction reactions, to fully inclu- 

sive J/lc, production in nucleus-nucleus collisions. The latter process has become 
especially interesting recently because of the suggestion 231 that the attenuation of 

J/$ production in ion-ion collisions relative to the lepton-pair background might. 

provide a signal for quark-gluon plasma formation. We will show here that such 

attenuation is a natural feature of inclusive nucleon reactions independent of the 
state of nuclear matter. We also show that the cross section a(J/+, N) for J/lc, 
scattering on nucleons cannot be directly determined from high energy photopro- 

duction reactions. 

Fig. 5. Schematic representation of charmonium photoproduction in a nuclear 
target. 

We begin with a description of quasi-elastic J/lc, photoproduction in a nu- 

cleus (see Fig. 5). (W e assume that the momentum transfer is sufficient that 
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coherent production to nucleons can be neglected.) To leading order in ~/MQ, the 

photon couples directly to theheavy quark. As discussed in the introduction, the 

production time for-the CE system (in the target rest frame) is quite short: 

- - - - 10 GeV-1 = 2fm 1 PY 
rF=od - ~~ MQ 

at P, - 100 GeV. The formation time required for the CC to separate to a transverse 

size comparable to the radius of the J/lc, is 

‘Jh 
Tformation N - - 

+fm 

Vl 3 GWP, 
- 1 fm p, (GeV) . 

Thus, even at p, - 10 GeV the J/lc, state is produced far from the nucleus. Since 

the CC system remains a small color singlet as it transverse the nucleus, we expect 

negligible initial or final state interactions, aside from EMC-type nonadditive dis- 

tributions of the structure functions. One thus predicts 

A eff = 4rA + Jl+A*> N A 
o(yN + J/$N*) - ’ 

Let us contrast this result with the conventional eikonal analysis. There 

one uses formulae of the form [v = r,Q, z) is the nuclear density] 

corresponding to the J/+ b em created at impact distance p and longitudinal co- * g 

ordinate z with respect to the center of the nucleus. This formulation assumes 

that the J/t,3 is produced as a physical particle immediately after creation of the 

cZ pair. In fact, the formation time is so long that what passes through the nu- 

cleus is not a normal J/$, and hence the effective cross section 0 extracted using 

(3.1) has little to do with J/ll, scattering on a nucleon. Thus present photopro- 

duction experiments have not determined the physical J/+-nucleon cross section. 

J/lc, photoproduction experiments from both SLAC (Er - 10 GeV) and Fermilab 

WY - 200 GeV) (E691 and E537) find A,R - Ao.g5 close to but below complete 

additivity. In the low energy SLAC experiment, the cc may separate enough to 

provide some attenuation. In the high energy Fermilab experiment the transverse 

separation of the c and c should remain small during passage through the nucleus. 
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3. COLOR TRANSPARENCY AND QUASI-EXCLUSIVE J/t) 

PRODUCTION IN PA COLLISIONS 

Novel features of &CD, including color transparency, can be studied by mea- 

suring quasi-exclusive J/1c, production by antiprotons in a nuclear target. We are 

particularly interested in the quasi-exclusive annihilation process jiA + J/ti(A- 1) 

where the nucleus is left in a ground or excited state, but extra hadrons are not 

created (see Fig. 6). The cross section involves a convolution of the jip + J/1c, sub- 

process cross section with the distribution Gp,A(y) where y = (p” +p3)/(pi +pi) is 

the boost-invariant light-cone fraction for protons in the nucleus. This distribution 

can be determined from quasi-exclusive lepton-nucleon scattering t?A + lp(A - 1). 

Fig. 6. Schematic representation of quasi-elastic charmonium production in 
PA reactions. 

In first approximation pp -+ J/$ 
--- involves QQQ + qqq annihilation into three 

charmed quarks. The transverse momentum integrations are controlled by the 

charm mass scale and thus only the Fock state of the incident antiproton which 

contains three antiquarks at small impact separation can annihilate. Since this 

state has a relatively small color dipole moment it should have a longer than 

usual mean-free path in nuclear matter, i.e., “color transparency.” Thus, unlike 

traditional expectations, QCD predicts that the pp annihilation into charmonium 

is not restricted to the front surface of the nucleus. The exact nuclear dependence 
--- 

also depends on the formation time for the physical ji to couple to the small qqq 

configuration, 7~ N 2 Ep. It may be possible to study the effect of finite formation 
P 
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time by varying the beam energy, EP, and using the Fermi-motion of the nucleon 

to stay at the J/+ resonance. 

Since the J/y5 is produced at nonrelativistic velocities in this low energy ex- 

periment, it is formed inside the nucleus. The A-dependence of the quasi-exclusive 

reaction can thus be used to determine the J/$-nucleon cross section at low en- 

ergies . For a normal hadronic reaction PA + HX, we expect A,* - A1j3, corre- 

sponding to absorption in the initial and final state. In the case of PA + J/$X we 

expect Ae~ much closer to A’ if color transparency is fully effective and a( J/$N) 

is small. 

4. COALESCENCE AND THE EFFECT OF CO-MOVERS 

What happens if two jets overlap in phase-space? Certainly independent 

fragmentation of the jets will fail because of coherent effects. In QED there are 

strong final state interactions when two charged particles are produced at low 

relative velocity. In the case of particles of opposite charge, the QED Born cross 

sections are corrected by the factor:24l 
_- 27rZl &Y/v 

Q = a0 1 - exp(-27rZl&o/v) ’ 
which increases the cross section dramatically at low relative velocity v. We expect 

similar effects in QCD when two jets can coalesce to attractive color channels 

(2122~ + CFCY, for qij color singlets). In the case of electroproduction, the low 

relative velocity enhancements provide a simple estimate of the increase of the 

ep + eX cross section at low values of W2 = (q + P)~, beyond that given by 

simple duality arguments. 

Strong final state interaction effects occur most strongly when particles 

have low relative velocity and thus minimum invariant mass. Kinematically, the 

invariant mass M2 of a set of particles i = 1. . . n with total momentum P is 

given by 

M2+Y:= n 2 
c 

mf+ kl; 
P+ 

, CT,=?,, Ck+ = P+ . 
i=l k+ a 

-? 
This is minimized for (m: E k I+ m2) 
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which corresponds to particles produced-at equal rapidity. Thus, a light quark will 

interact strongly with a heavy quark if X~/XQ N m&/mlQ. 

Gunion, Soper and 11’1 have recently proposed the coalescence mechanism 

as an explanation of the observed leading particle correlations seen in charm 

hadroproduction experiments and the anomalously large cross section121 observed 

at the SPS for C-N + A+(csu)X at large XL. [The hyperon momentum was 

135 GeV/c.] Th e correction to the rate, integrated over relative rapidity, van- 

ishes just as a single inverse power of the heavy quark mass, and thus may give 

significant corrections to charm production rates and distributions. 

According to perturbative &CD, the inclusive production of heavy quarks 

can be computed to leading order in l/m~ from the fusion processes gg -+ Qg and 

qq -+ QQ and the corresponding quark and gluon structure functions. In addition, 

especially in the case of charm, there are possibily important contributions to 

the heavy quark structure function of the proton G,,,(x, Q) and heavy quark 

hadroproduction at large XL or large XBj due to scattering from “intrinsic” heavy 

quark Fock states containing QQ pairs in the wave function (see Fig. 7). However, 

for very heavy quarks, such contributions are suppressed by relative factors of 

Fig. 7. Example of an intrinsic qqqk Fock state in the proton. 

According to QCD factorization, all effects due to final state interactions are 

unitary and thus cannot affect the total heavy quark production rate to leading 

order in l/mQ. Nevertheless, when the heavy quark is produced in the beam 

direction it can interact strongly with co-moving quarks or gluons; for example, 

the forward-moving spectator partons of the beam hadron or nucleus which have 

nearly the same velocity as the produced Q or g. Thus, the interactions with 

the co-moving spectators can strongly modify the local momentum distribution 

of the Q or g relative to the tree-graph calculation, increasing the production at 

large XL relative to lower momenta. This is illustrated for hyperon production of a 
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charmed-strange baryon in Fig8 In the Coulomb interaction model calculated by 

Gunion, Soper and myself, all of these features were observed, and the integrated 

rate was unchanged up to terms of order l/mQ. 

A+(csu) 

LhK-r+a+ 

Fig. 8. Illustration of the coalescence of a charmed quark with beam spec- 
tator quarks in the process C-N + A+(csu)X. The final state interactions 
represented by gluon exchange can lead to a strong distortion of the charmed 
hadron momentum distribution toward large XL relative to the gluon-gluon 
fusion Born approximation prediction. 

The interactions of the produced Q and & with co-moving hadrons can 

clearly have a severe effect on the production of individual heavy quark states at 

low pi. For example, the coalescence of the charm quark with beam spectators 

can increase the production rate of cij or cqq states at the expense of CC formation. 

Thus the forward production of J/lc, will be strongly depleted in central nuclear 

collisions (high transverse energy) relative to continuum lepton pair production 

because of the increased density of co-moving partons from the beam.131 As the 

transverse momentum of the J/t,b is increased the depletion is predicted to disap- 

pear. In contrast to predictions based on the existence of a quark-gluon plasma, 

this depletion occurs independent of whether the target is a light or heavy nucleus! 

We thus urge that ion beam experiments be carried out on hydrogen or light nuclei 

where a plasma is not expected to be formed. 

The Sommerfeld factor also can be used to estimate the behavior of ex- 

clusive amplitudes near threshold. For example, the production of meson pairs 

in two-photon annihilation can be modeled25l by calculating the differential cross 

section’in QCD tree graph approximation and then multiplying by the QCD ver- 

sion of the Sommerfeld factor appropriate to the relative velocity of the respective 

quark pair. 
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5. FORMATION ZONE PHENOMENA IN DEEP 

INELASTIC SCATTERING 

One of the remarkable consequences of QCD factorization for inclusive re- 

actions at large pr is the absence of inelastic initial or final state interactions of 

the high energy particles in a nuclear target. Since structure functions measured 

in deep inelastic lepton scattering are essentially additive (up to the EMC de- 

viations), factorization implies that the qtj + p+p- subprocesses in Drell-Yan 

reactions occurs with equal probability on each nucleon throughout the nucleus. 

At first sight this seems surprising since one expects energy loss from inelastic 

initial state interactions. 

Fig. 9. Induced radiation from the propagation of an antiquark through a 
nuclear target in massive lepton production. Such inelastic interactions are 
coherently suppressed at parton energies large compared to a scale propor- 
tional to the length of the target. 

In fact, inelastic reactions such as hard gluon bremsstrahlung induced in the 

nucleus which could potentially decrease the incident parton energy (illustrated in 

Fig. 9) are suppressed by coherence if the quark energy (in the laboratory frame) 

is large compared to the target length: 

E, > /.L~ LA . 

Here p2 is the difference of mass squared between the incident quark and the 

quark-gluon pair produced in the initial or final state collision. This phenomenon 

has its origin in studies of QED processes by Landau and Pomeranchuk. The QCD 

analysis is given by Bodwin, Lepage and myself.‘] The result can be derived by 

showing that the hard inelastic radiation emitted from differing scattering cen- 

ters destructively interferes provided the target length condition is maintained. 

17 



The destuctive interference occurs when the momentum transfer p2/Eq due to 

the induced radiation is smaller than the inverse of the separation between two 

scattering centers in the nucleus. Soft radiation and elastic collisions, however, are 

still allowed, so one predicts collision broadening of the initial parton transverse 

momentum. Recent measurements of the Drell-Yan process wA + p+p-X by the 

NA-10 group 261 at the CERN-SPS confirm that the cross section for muon pairs at 

large transverse momentum is increased in a tungsten target relative to a deuteron 

target (see Fig. 10). S ince the total cross section for lepton-pair production scales 

linearly with A ( as1 e ‘d f rom relatively small EMC-effect corrections), there must 

be a corresponding decrease of the ratio of the differential cross section at low 

values of the di-lepton transverse momentum. This is also apparent in the data. 
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Fig. 10. The ratio o(7rr-W ---) p+p-X)/a(7r-D + p+p-X) as a function of 
the pair transverse momentum (Ref. 26). 

These results have striking implications for the interaction of the recoil 

quark jet in deep inelastic electron-nucleus scattering. For the quark (and gluons) 

satisfying the length condition, there should be no extra radiation induced as the 

parton traverses the nucleus. However, low energy gluons, emitted in the deep 

inelastic electron-quark collision, can suffer radiative losses, leading to cascading 
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of soft particles in the nucleus. It is clearly very important to study this phenomena 

as a function of recoil quark energy and nuclear size. It should be emphasized that 

the absence of inelastic initial or final state collisions for high energy partons does 

not preclude collision broadening due to elastic initial or final state interactions. 

The elastic corrections are unitary to leading order in l/Q and do not affect the 

normalization of the deep inelastic cross section. Thus one predicts that the mean 

square transverse momentum of the recoil quark and its leading particles will 

increase as A’j3. 

The transverse momentum of the recoil quark reflects the intrinsic trans- 

verse momentum of the nucleon wave function. The EMC effect2’l implies that 

quarks in a nucleus have smaller average longitudinal momentum than in a 

nucleon.28l Independent of the specific physical mechanism underlying the EMC 

effect,28l the quarks in a nucleus would also be expected to have smaller transverse 

momentum. This effect can counteract to a certain extent the collision broadening 

of the outgoing jet. 

Unlike the struck quark the remnant of the target system does not evolve 

Gth the probe momentum Q. However, the quantum numbers of the spectator 

system is 3 in color, so nonperturbative hadronization must occur. Since the 

transverse momentum of the leading particles in the spectator jet is not affected 

by the QCD radiative corrections, it more closely reflects the intrinsic transverse 

momentum of the hadron state. 

It is also interesting to study the behavior of the transverse momentum 

of the quark and spectator jets as a function of XBj. For XBj - 1, the S-quark 

Fock state dominates the reaction. If the valence state has a smaller transverse 

size31 than that of the nucleon, averaged over all of its Fock components, then one 

expects an increase of (J$) in that regime. Evidence for a significant increase of 

(‘c$) in the projectile fragmentation region at large quark momentum fractions 

has been reported by the SFM group2gl at the ISR for pp + di-jet +X reactions. 

6. DIFFRACTION CHANNELS AND 

NUCLEAR STRUCTURE FUNCTION NONADDITIVITY 

One unusual source of nonadditivity in nuclear structure functions (EMC 

effect) are electroproduction events at large Q2 and low x which nevertheless leave 

the nucleus completely intact & < (~/MNLA), w h ere LA is the target length. In the 
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case of QED, analogous processes such as -y*A + p+p-X yield nuclear-coherent 

contributions which -scale as A,R = Z2/A [see Fig. 11(a)]. Such Bethe-Heitler 

processes contribute to the Bjorken-scaling, leading-twist cross section.3ol In QCD 

we expect311 the nuclear dependence to be less than additive A,ff - A213 for the 

analogous gluon exchange contributions [see Fig. 11(b)] because of their diffractive 

coupling to the nucleus. One can identify nuclear-coherent event contributions by 

observing a rapidity gap between the produced particles and the recoiling target. 

An interesting question is how the gluon momentum fraction sum rule for the total 

nucleus is modified by the diffractive contributions. 

P+ Coherent 
QED 

Leading 
Twist 

lb) 

Coherent 
QCD 

Leodi ng 
Twist 

5741A4 

Fig. 11. Leading twist contributions to deep inelastic lepton-nucleus scattering 
that leave the target intact: (a) QED example, (b) QCD example. 
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7. EXCLUSIVE PROCESSES IN QCD 

There has been significant progress in the theoretical development of QCD 

in the past few years. This includes the extension of factorization and evolution 

equations to the domain of exclusive hadronic and nuclear amplitudes. In high 

momentum transfer inclusive reactions, the underlying quark and gluon scattering 

processes lead directly to jet production in the final state. To leading order in 

1/Q2, the cross sections and jet hadronization can be understood at the prob- 

abilistic level. In contrast, in exclusive electroproduction processes, one studies 

quark and gluon scattering and their reformation into hadrons at the amplitude 

level. Exclusive reactions thus depend in detail on the composition of the hadron 

wave functions themselves. Moreover, QCD sum rule techniques have made tanta- 

lizing predictions for the required hadron wave functions, results which are being 

confirmed by lattice gauge theory computations. 

There is now an extensive literature, both experimental and theoretical, 

describing the features of large momentum transfer exclusive reactions. The QCD 

predictions are based on a factorization theorem 3~1 which separates the nonper- 

turbative physics of the hadron bound states from the hard scattering amplitude 

which controls the scattering of the constituent quarks and gluons from the initial 

to final directions. This factorization is illustrated for the proton form factor in 

Fig. 12. The application to the deuteron form factor is presented in Sec. 10. 

Electroproduction of exclusive channels provides one of the most valu- 

able testing grounds of this QCD formalism, since the incoming photon pro- 

vides a probe of variable space-like mass directly coupling to the hard-scattering 

amplitude. 

It has been known since 1970 that a theory with underlying scale- 

invariant quark-quark interactions leads to dimensional counting rules32l for large 

momentum transfer exclusive processes, e.g., F(Q2) N (Q2)l-” where n is the 

minimum number of quark fields in the hadron. QCD is such a theory; the factor- 

ization formula leads to nucleon form factors of the form:33l 

WQ2) = 

l+O(a(Q))+O ; . ( )I 
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Fig. 12. (a) F ac t orization of the nucleon form factor at large Q2 in &CD. (b) 
The leading order diagrams for the hard scattering amplitude TH. The dots 
indicate insertions which enter the renormalization of the coupling constant. 
(c) The leading order d ia g rams which determine the Q2 dependence of the 
distribution amplitude +4(x, Q) defined in Sec. 1. 

The first factor, in agreement with the quark counting rule, is due to the hard 

scattering of the three valence quarks from the initial to final nucleon direction. 

Higher Fock states lead to form factor contributions of successively higher order in 

1/Q2. The logarithmic corrections derive from an evolution equation3,33l for the 

nucleon distribution amplitude. The m  are the computed anomalous dimensions, 

reflecting the short distance scaling of three-quark composite operators. The re- 

sults hold for any baryon to baryon vector or axial vector transition amplitude 

that conserves the baryon helicity. Helicity nonconserving form factors should fall 

as an additional power of 1/Q2. M  easurements of the transition form factor to the 

J = 3j2 N(1520) nucleon resonance are consistent with J, = &l/2 dominance, 

as predicted by the helicity conservation rule. 341 A review of the data on spin ef- 

fects in electron nucleon scattering in the resonance region is given in .Ref. 35. It 
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is important to explicitly verify that F2(Q2)/Fr (Q2) decreases at large Q2. The 

angular distribution decay of the J/t) + pp is consistent with the QCD prediction 

x,+x,=0. 

The normalization constants unm in the QCD prediction for GM can be eval- 

uated from moments of the nucleon’s distribution amplitude $(zi, Q). There are 

extensive ongoing theoretical efforts computing constraints on this nonperturba- 

tive input directly from &CD. The pioneering QCD sum rule analysis of Chernyak 

and Zhitnitskii36] provides constraints on the first few moments of 4(x, Q). Using 

as a basis the polynomials which are eigenstates of the nucleon evolution equation, 

one gets a model representation of the nucleon distribution amplitude, as well as 

its evolution with the momentum transfer scale. A pictorial representation of the 

most recent results for the proton’s distribution amplitude is given in Fig. 1. 

The QCD sum rule analysis predicts a surprising feature: strong flavor 

asymmetry in the nucleon’s momentum distribution. The computed moments of 

the distribution amplitude imply that 65% of the proton’s momentum in its 3- 

quark valence state is carried by the u-quark which has the same helicity as the 

-parent hadron. A recent comprehensive reanalysis by King and Sachrajda37] has 

how confirmed the Chernyak and Zhitnitskii form in its essential details. 

Dziembowski and Mankiewicz38] have recently shown that the asymmet- 

ric form of the CZ distribution amplitude can effectively be derived from a 

rotationally-invariant center-of-mass wave function transformed to the light cone 

using a Melosh-type boost of the quark spinors. The transverse size of the va- 

lence wave function is found to be significantly smaller than the mean radius of 

the proton-averaged over all Fock states as argued in Ref. 3. Dziembowski et al. 

also show that the perturbative QCD contribution to the form factors dominates 

over the soft contribution (obtained by convoluting the nonperturbative wave func- 

tions) at a scale Q/N M 1 GeV, where N is the number of valence constituents (see 

Fig. 13). (This type of criterion was also derived in Ref. 39.) The analysis of Jacob 

and Kisslinger40] gives similar estimates for the soft contribution to the pion form 

factor, as shown in Fig. 14. Earlier claims 411 that a simple overlap of soft hadron 

wave functions could fit the form factor data were erroneous since they were based 

on wave functions which violate rotational symmetry in the center-of-mass. 

A detailed phenomenological analysis of the nucleon form factors for 

different shapes of the distribution amplitudes has been given by Ji, Sill 
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Fig. 13. Comparison of perturbative QCD predictions and data for the proton 
form factor. The calculation, based on the CZ QCD sum rule distribution 
amplitude, is from Ref. 42. The prediction depends on the use of the running 
coupling constant as a function of the exchanged gluon momentum. The data 
are from Ref. 43. 

and Lombard-Nelsen.42] Their results show that the CZ wave function is consis- 

tent with the sign and magnitude of the proton form factor at large Q2 as recently 

measured by the American University/SLAG collaboration43] (see Fig. 15). 

The normalization of the proton form factor at large Q2 is a nontrivial 

test of the distribution amplitude shape, for example, if the proton wave function 

has a nonrelativistic shape peaked at xi N l/3 then one obtains the wrong sign 

for the nucleon form factor. Furthermore, symmetrical distribution amplitudes 

predict a very small magnitude for Q4GP,(Q2) at large Q2. Gari and Stefanis44] 

have developed a model for the nucleon form factors which incorporates the CZ 

distribution amplitude predictions at high Q2 together with VMD constraints at 

low Q2. Their analysis predicts sizeable values for the neutron electric form factor 

at intermediate values of Q2. 

Farrar45] has recently emphasized that the normalization of the nucleon 

form factor predictions depends strongly on the parameterization of the distribu- 

tion amplitude at the endpoints. Chernyak et a1.6] have studied this effect in some 

detail and claim that their QCD sum rule predictions are not significantly changed 

when higher moments of the distribution amplitude are included. Their results for 

the neutron form factor, however, disagree with the Gari-Stefanis parameteriza- 

tion. 
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Fig. 14. Model for the “soft” contribution to the pion form factor. The 
_- Isgur-Llewellyn-Smith prediction (Ref. 41) is based on a wave function with 

Gaussian falloff in transverse momentum but power-law falloff at the endpoints 
. in x-. The Jacob-Kisslinger prediction (Ref. 40) is based on a rotationally sym- 

metric form in the center-of-mass frame. The perturbative QCD contribution 
calculated with CZ (Ref. 36) distribution amplitudes is consistent with the 
normalization and shape of the data for Q2 > 1 GeV2. 

Measurements of the two-photon exclusive processes 77 + 7r+7r- and 

K+li- are in excellent agreement with the perturbative QCD predictions. The 

factorization of the amplitude is illustrated in Fig. 16. The predictions are based on 

analyses valid to all orders in perturbation theory and do not suffer from the com- 

plications of endpoint singularities or pinch contributions. The data46l (see Fig. 17) 

extend out to invariant mass squared 10 GeV2, a region well beyond any significant 

contribution from soft contributions. 

Nevertheless, the self-consistency of the perturbative QCD analysis for some 

exclusive channels can be questioned,“] particularly for baryon reactions at mod- 

erate momentum transfer: 

1. The perturbative analysis of the baryon form factor and large angle hadron- 

hadron scattering depends on the suppression of the endpoint regions xi N 1 

and pinch singularity contributions. This suppression occurs automatically 
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Fig. 15. Predictions for the normalization and sign of the proton form factor at 
high Q2 using perturbative QCD factorization and QCD sum rule predictions 
for the proton distribution amplitude (Ref. 42). The predictions use forms 

-- given by Chernyak and Zhitnitsky, King and Sachrajda (Ref. 37) and Gari 
_ and.Stefanis (Ref. 44). 

in QCD due to Sudakov form factors, as has been shown by Mueller47l based 

on the all-orders analysis of the vertex function by Sen.481 Since these analy- 

ses require an all-orders resummation of the vertex corrections, they cannot 

be derived by standard renormalization group analysis. In this sense the 

baryon form factor and large angle hadron-hadron scattering results are con- 

sidered less rigorous than the results from analysis of the meson form factor 

and the 77 production of meson pairs. 491 

2. The magnitude of the proton form factor is sensitive to the x N 1 dependence 

of the proton distribution amplitude, where nonperturbative effects could be 

important. The CZ asymmetric distribution amplitude, in fact, emphasizes 

contributions from the large x region. Since nonleading corrections are ex- 

pected when the quark propagator scale Q2(1 - x) is small, relatively large 

Q2 is required to clearly test the perturbative QCD predictions. A simi- 

lar criterion occurs in the analysis of corrections to QCD evolution in deep 

inelastic lepton scattering. Dziembowski and Mankiewicz381 find that one 

can simultaneously fit low energy phenomena (the nucleon magnetic mo- 
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Fig. 16. Application of 
production of meson pairs. 

perturbative QCD factorization to two-photon 

4-87 

Fig. 17. Measurements from PEP experiments of exclusive two-photon re- 
actions compared with the perturbative QCD predictions of Ref. 49. The 
predictions are absolutely normalized and nearly independent of the shape of 
the meson distribution amplitudes since the amplitudes can be related. to those 
appearing in the meson form factor. 
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ments), the measured high momentum transfer hadron form factors, and the 

CZ distribution amplitudes with a self-consistent ansatz for the quark wave 

functions: Thus, for the first time one has a rather complete model for the 
relativistic S-quark structure of the nucleon. 

8. DISCRETIZED LIGHT-CONE QUANTIZATION , 

A central goal of QCD analysis is not only to obtain a complete descrip- 

tion of the hadronic spectrum but also to evaluate their current matrix elements. 

Thus, a key problem in the application of QCD to hadron and nuclear physics is 
how to determine the wave function of a relativistic multiparticle composite sys- 

tem. This is obviously a formidable task. Although composite systems in QCD 

can be represented formally in terms of the covariant Bethe-Salpeter formalism, 

calculations beyond ladder approximation appear intractable, and the ladder ap- 

proximation itself is usually inadequate. For example, in order to derive the Dirac 

equation for the electron in a static Coulomb field from the Bethe-Salpeter equa- 

tion for muonium with mp/me + 00, one requires an infinite number of irreducible 
crossed-graph kernel contributions to the QED potential. Similarily, the matrix 

elements of currents and the wave function normalization also require, at least 

formally, the consideration of an infinite sum of irreducible kernels. The relative- 

time dependence of the Bethe-Salpeter amplitudes for states with three or more 

constituent fields adds even more complexities. 

A more intuitive procedure would be to extend the SchrGdinger wave func- 

tion description of bound states to the relativistic domain by developing a rela- 

tivistic many-body Fock expansion for the hadronic state. Formally this can be 

done by quantizing QCD at equal time, and calculating matrix elements from the 

time-ordered expansion of the S-matrix. However, the calculation of each covariant 

Feynman diagram with n-vertices requires the calculation of n! frame-dependent 

time-ordered amplitudes. Even worse, the calculation of the normalization of a 

bound state wave function (or the matrix element of a charge or current operator) 

requires the computation of contributions from all amplitudes involving particle 

production from the vacuum. (Note that even after normal-ordering, the inter- 

action Hamiltonian density for QED, Hz = e : $7,,~,bAp :, contains contributions 

btdtet iqrhich create particles from the perturbative vacuum.) For this reason, it 

is not possible to represent a relativistic field-theoretic bound system limited to a 

fixed number of constituents at a given time in a standard Hamiltonian framework 
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since the interactions create new quanta from the vacuum. 5ol Lorentz invariance 

is also difficult to incorporate in an equal time formalism. 

Fortunately, there is a natural and consistent covariant framework, orig- 

inally due to Dirac,‘ll (quantization on the “light front”) for describing bound 

states in gauge theory analogous to the Fock state in nonrelativistic physics. This 

framework is the light-cone quantization formalism in which 

14 = IQ!?) +,“, + I!R9> g-ijg + - - - 

Each wave function component T,!J~ describes a state of fixed number of quark 

and gluon quanta evaluated in the interaction picture at equal light-cone “time” 

r = t + z/c. As discussed in the Introduction, given the {&}, virtually any 

hadronic property can be computed, including anomalous moments, form factors, 

structure functions for inclusive processes, distribution amplitudes for exclusive 
processes, etc. As shown by Drell and Yan, spacelike form factors are given by 

a simple overlap of the light-cone wave functions, summed over Fock states.52l 

At high momentum transfer only the valence Fock-state enters, to leading order 
-ii l/Q. 
‘_ 

As noted above, in an equal time formalism one must allow for fluctuations 

in which three or four particles appear with zero total three-momentum. In the 

light-cone formalism such fluctuations cannot appear since the total Ic+ is con- 
served and each particle has to have positive L +. Accordingly, the perturbative 

vacuum is an eigenstate of the total Hamiltonian on the light-cone. Light-cone 

quantization and equal r wave functions, rather than equal t wave functions, thus 

provide a sensible Fock state expansion. It also turns out to be convenient to 

use r-ordered light-cone perturbation theory in place of covariant perturbation 

theory to analyze light-cone dominated processes such as deep inelastic scattering 

and large momentum transfer exclusive reactions. Light-cone quantization and 

perturbation theory are developed in detail in Ref. 3. 

Pauli and 1’1 have proposed a direct approach to solving QCD by attempting 

to diagonalize the light-cone Hamiltonian on a free particle discretized momentum 

Fock state basis. Since HLC, P +, FL, and the conserved charges all commute, HLC 

is block diagonal. By choosing periodic (or antiperiodic) boundary conditions for 

the basis states along the negative light-cone 

?+qz-.= +L) = &?)(z- = 4) , 
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the Fock basis becomes restricted to finite dimensional representations. The eigen- 

value problem thus reduces to the diagonalization of a finite Hermitian matrix. To 

see this, note that periodicity in z- requires 

The dimension of the representation corresponds to the number of partitions of 

the integer K as a sum of positive integers n. For a finite resolution K, the wave 

. function is sampled at the discrete points 

x,skz & 1 2 K-l 
I P+=K= pp..y 

{ 1 
. 

The continuum limit is clearly K + 00. 

One can easily show that P- scales as L. We thus define P- E &H. The 

eigenstates with P2 = M2 at fixed P+ and ?l = 0 thus satisfy 

HLc IQ) = KH I’@) = M2 IQ) , 

independent of L ( w rc corresponds to a Lorentz boost factor). h’ h 

-: The basis of the DLCQ method is thus conceptually simple: one quantizes 

the independent fields at equal light-cone time r and requires them to be periodic ‘_ 
or antiperiodic in light-cone space with period 2L. The commuting operators, 

the light-cone momentum P+ = FK and the light-cone energy P- = T&H are 

constructed explicitly in a Fock space representation and diagonalized simultane- 

ously. The eigenvalues give the physical spectrum: the invariant mass squared 

M2 = P’P,. The eigenfunctions give the wave functions at equal r and allow 

one to compute the current matrix elements, structure functions and distribution 

amplitudes required for physical processes. All of these quantities are manifestly 

independent of L, since M2 = P+P- = HK. Lorentz-invariance is violated by 

periodicity, but reestablished at the end of the calculation by going to the contin- 

uum limit: L + co, I( + co with P+ finite. In the case of gauge theory, the use 

of the light-cone gauge A + = 0 eliminates negative metric states in both Abelian 

and non-Abelian theories. 

Since continuum as well as single hadron color singlet hadronic wave func- 

tions are obtained by the diagonalization of HLC, one can also calculate scattering 

amplitudes as well as decay rates from overlap matrix elements of the interaction 

Hamiltonian for the weak or electromagnetic interactions. An important point is 

that all higher Fock amplitudes including spectator gluons are kept in the light- 
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cone quantization approach; such contributions cannot generally be neglected in 

decay amplitudes involving light quarks. 

Eller, Pauli and 1531 have used DLCQ to obtain detailed results for the 

bound state and continuum spectrum and wave functions for QED in one-space 

and one-time dimension for arbitrary mass and coupling constant. I will give 

here only a brief discussion of the method. The commuting operators I(, Q and 

H = Ho + V have the form 

K = c n(b;bn + &n) + +&an) 

Q = ~(@$n - &n) 

Ho = c + (b;b, + df,d,) + z a;a, 

V = ; c &d;drn 6n+kym+e + . . . . 
n#m,k#e (n - m)2 

Only the one fermion antifermion (Abelian) interaction, corresponding to “instan- 

-taneous” gluon exchange, is displayed. The Q = 0 Fock state basis states are of 

‘the form 

Z&diai IO) = In; m; f?) 

(n + m + e = K) where IO) is the perturbative vacuum. (Spin, color and trans- 

verse momentum for any number of dimensions are represented as extra internal 

variables.) We then solve 

HK IQ) = M2 IQ) 

on the free particle basis 

IQ) = C Ci Ii) . 
i 

Note that the eigenvalues of HLC give not only the bound state spectrum, but also 

all of the multiparticle scattering states with the same quantum numbers. 

In the case of gauge theory in 3+1 dimensions, one also takes the ki = 

Gw5.L)~~ as discrete variables on a finite Cartesian basis. The theory is covari- 

antly regulated if one restricts states by the condition 

.c 
kL+mB < ~2 

Xi - 
, 

i 
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where A is the ultraviolet cutoff. In effect, states with total light-cone kinetic 

energy beyond A2 are cut off. In a renormalizable theory physical quantities are 

independent of physics beyond the ultraviolet regulator; the only dependence on 

A appears in the coupling constant and mass parameters of the Hamiltonian, 

consistent with the renormalization group. 541 The resolution parameters need to 
be taken sufficiently large such that the theory is controlled by the continuum 

regulator A, rather than the discrete scales of the momentum space basis. 

The simplest application of DLCQ to local gauge theory is QED in one- 

space and one-time dimensions. Since A+ = 0 is a physical gauge there are no 
photon degrees of freedom. Explicit forms for the matrix representation of HQED 
are given in Ref. 53. The basic interactions which occur in HLC (QCD) are illus- 

trated in Fig. 18. 
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LI!iI.IXIE 
3-63 45074426 

Fig. 18. Diagrams which appear in the interaction Hamiltonian for QCD on 
the light-cone. The propagators with horizontal bars represent instantaneous 
gluon and quark exchange which arise from reduction of the dependent fields 
in A+ = 0 gauge. 

For the general case m2 # 0, (QED) r+r can be solved by numerical diag- 

onalization. The complete charge zero spectrum (normalized to the ground state 

mass) for K = 16 is shown as a function of coupling constant in Fig. 19. Since 

the physics can only depend on the ratio m/g, it is convenient to introduce the 

parametrization 

which maps the entire range of m and g onto the finite interval 0 5 X 5 1. 

In the zero coupling limit the spectrum is that of the free theory. In the 

infinite coupling limit X = 1 the theory is essentially equivalent to the limit of 
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zero fermion mass. Schwinger has shown that massless (QED)r+l is equivalent to 

a free boson theory. In the light-cone formalism one can solve the m = 0 theory 

explicitly. One defines 551 bilinear operators in the fermion fields a, and ai which 

have normal boson commutation rules. Then for Q = 0 

O”l 
H = m2 c n (b!b, + dt,d,) + % g i da, . 

n+l n=l 

Thus, for m2 = 0 (or g2/7r >> m2), HQED is equivalent to free boson theory with 

rni = g2/7r. The distinction between the theories in the limit of zero fermion mass 

is discussed by McCartor.561 
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Fig. 19. Spectrum of QED in one-space and one-time dimension for harmonic 
resolution K = 16. The ratios Mi/Ml are plotted as a function of the scaled 
coupling constant A. The Schwinger limit is X = 1 (Ref. 53). 

&‘igure 20 shows the structure function for the ground state of (QED)r+r 

as a function of A. In the weak binding limit g + 0 or (m + oo), the structure 

function becomes a delta function at equal partition of the constituent momentum, 
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as expected. In the strong coupling limit g -+ 00 (m + 0) the structure function 

becomes flat. This is consistent with the interpretation of the Schwinger boson as 
a point-like composite of a fermion and antifermion. The contribution to higher 

Fock states to the lowest mass structure function is strikingly small; the probability 
of nonvalence states is less than 1% for any value of A. 

0.0 0.2 0.4 0.6 Q8 x 1.0 
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Fig. 20. The structure function of the lowest mass bound state for QED in 
-’ l+l space-time dimensions, as calculated in the DLCQ formalism (Ref. 53). 

It is interesting that there is analytic agreement between the DLCQ results 
and .the exact solutions of the Schwinger model for finite K, as well as in the 

continuum limit. This can be traced to the fact that the structure function of the 

Schwinger boson is flat and thus needs minimal resolution. In the case of the mas- 

sive Schwinger model (QEDz), we established the existence of the continuum limit 
numerically; for sufficiently large resolution K the results become independent of 

K. The essential criteria for convergence is that the intrinsic dynamical struc- 

ture of the wave functions is sufficiently resolved at the rational values x = n/K, 

n = 1,2, . . . . K - 1 accessible at a given K. 

In the large K limit, the eigenvalues agree quantitatively with the results 

of Bergknoff551 and with those of a lattice gauge calculation by Crewther and 

Hamer.571 This result is important in establishing the equivalence of different com- 

plementary nonperturbative methods. We also verified numerically that different 

Fock space representations yield the same physical results. In particular, we solved 

the QED2 spectrum in the space corresponding to the solutions of the free, massive 

Dirac equation (+‘d, + mp)lC, = 0 as well as of the massless equation +y”‘aPIC, = 0. 

Convergence is slow in l/K only at very large coupling X near one. 
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Even for moderately large values of the resolution, DLCQ provides one 

with a qualitatively correct picture of the whole spectrum of eigenfunctions. This 

aspect becomes important for the development of scattering theory within the 

DLCQ approach. For example, we have found the rather surprising result that 

the lowest eigenfunction has very small probability (less than 1%) for 12f; 2f) 

and higher particle Fock states (i.e., no ‘sea quarks’). We have also obtained 

the spectrum of the Yukawa theory with spin-zero bosons, a theory with a more 

complicated Fock structure. Also, Harindranath and Varys8] have recently used a 

DLCQ approach to analyze 44 theory, a model with a nontrivial vacuum structure. 

Recently, Hornboste15’] has used DLCQ to obtain the complete color-singlet 

spectrum of QCD in one-space and one-time dimension for NC = 2,3,4. The 

hadronic spectra are obtained as a function of quark mass and QCD coupling 

constant (see Fig. 21). Where they are available, the spectra agree with results 

obtained earlier; in particular, the lowest meson mass in SU(2) agrees within errors 

with lattice Hamiltonian results. 601 The meson mass at NC = 4 is close to the value 

obtained in the large NC limit. The method also provides the first results for the 

-baryon spectrum in a non-Abelian gauge theory. The lowest baryon mass is shown 

,in Fig. 21(b) as a function of coupling constant. The ratio of meson to baryon 

mass as a function of NC also agrees at strong coupling with results obtained 

by Frishman and Sonnenschein. 611 Precise values for the mass eigenvalue can be 

obtained by extrapolation to large K since the functional dependence in l/K is 

understood. 

As emphasized above, when the light-cone Hamiltonian is diagonalized for 

a finite resolution K, one gets a complete set of eigenvalues corresponding to the 

total dimension of the Fock state basis. A representative example of the spectrum 

is shown in Fig. 22 for baryon states (B = 1) as a function of the dimensionless 

variable X = l/d-. Antiperiodic boundary conditions are used. Note 

that spectrum automatically includes continuum states with B = 1 . 

The structure functions for the lowest meson and baryon states in SU(3) at 

two different coupling strengths m/g = 1.6 and m/g = 0.1 are shown in Figs. 23 

and 24. Higher Fock states have a very small probability; representative con- 

tributions to the baryon structure functions are shown in Figs. 25 and 26. For 

comparison, the valence wave function of a higher mass state which can be iden- 

tified as a composite of meson pairs (analogous to a nucleus) is shown -in Fig. 27. 
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Fig. 21. The baryon and meson spectrum in QCD [l+l] computed in DLCQ 
for NC = 2,3,4 as a function of quark mass and coupling constant (Ref. 59). 

The interactions of the quarks in the pair state produce Fermi motion beyond 

a: = 0.5. 

There are a number of important advantages of the DLCQ method which 

have emerged from this study of two-dimensional field theories. 

1. The Fock space is denumerable and finite in particle number for any fixed 

resolution K. In the case of gauge theory in 3+1 dimensions, one expects 

that photon or gluon quanta with zero four-momentum decouple from neu- 

tral or color-singlet bound states, and thus need not be included in the 

Fock basis. The transverse momenta are additive and can be introduced on 

a Cartesian grid. Hornboste15gl has developed methods to implement the 

color degrees of freedom for the non-Abelian theories. Tang62l is currently 

studying QED[3+1] in DLCQ as a function of the QED coupling constant. 
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Fig. 22. Representative baryon spectrum for QCD in one-space and one-time 
dimension (Ref. 59). 

0 0.2 0.4 0.6 0.8 1.0 
3 88 x-k/K 5970*2 

Fig. 23. The meson quark momentum distribution in QCD [l+l] computed 
using DLCQ (Ref. 59). 

2. Because we are using discrete momentum-space representation, rather than 

a space-time lattice, there are no special difficulties with fermions, e.g., no 

fermion doubling, fermion determinants or necessity for a quenched approx- 

imation. Furthermore, the discretized theory has basically the same ultra- 

violet structure as the continuum theory. It should be emphasized that, 

unlike lattice calculations, there is no constraint or relationship between the 

physical size of the bound state and the length scale L. 
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Fig. 24. The baryon quark momentum distribution in QCD [l+l] computed 
using DLCQ (Ref. 59). 
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Fig. 25. Contibution to the baryon quark momentum distribution from qqqqij 
states for QCD[l+l] (Ref. 59). 

3. The DLCQ method has the remarkable feature of generating the complete 

spectrum of the theory; bound states and continuum states alike. These can 

be separated by tracing their minimum Fock state content down to small 

coupling constant since the continuum states have higher particle number 

content. In lattice gauge theory it appears intractable to obtain informa- 

tion on excited or scattering states or their correlations. The wave functions 
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Fig. 26. Contibution to the baryon quark momentum distribution from 
qqqqqijij states for QCD[l+l] (Ref. 59). 

F ig. 27. Comparison of the meson quark distributions in the qq@ Fock state 
with that of a  cont inuum meson pair state. The structure in the former may 
be due to the fact that these four-particle wave functions are orthogonal. The 
analysis is for NC = 2  in l+l dimensions (Ref. 59). 

generated at equal l ight-cone time  have the immediate form required for 

relativistic scattering problems. 

4. DLCQ is basically a  relativistic many-body theory, including particle number  

creation and destruction, and is thus a  basis for relativistic nuclear and 

atomic problems. In the nonrelativistic lim it the theory is equivalent to 

many- body Schtidinger theory. 
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The immediate goal is gauge theory in 3+1 dimensions. Already Klabucar 

and Pauli63l have studied QCD[3+1] in the qtj sector for strong coupling. In the 

Abelian case it will be interesting to analyze QED and the positronium spectrum 

in the large cr limit. Whether the non-Abelian theory can be solved using DLCQ- 

considering its greater number of degrees of freedom and its complex equal-time 

vacuum-is an open question. The studies for Abelian and non-Abelian gauge 

theory carried out so far in l+l dimensions give grounds for optimism. 

9. SPIN CORRELATIONS, QCD COLOR TRANSPARENCY 

AND HEAVY QUARK THRESHOLDS IN pp SCATTERING 

One of the most serious challenges to quantum chromodynamics is the 

behavior of the spin-spin correlation asymmetry ANN = [$$#$$#I measured in 

large momentum transfer pp elastic scattering (see Fig. 4). At pi& = 11.75 GeV/c 

and 8,, = 7r/2, ANN rises to 11 60%, corresponding to four times more probability 

for protons to scatter with their incident spins both normal to the scattering 

plane and parallel, rather than normal and opposite. The polarized cross section 
shows a striking energy and angular dependence not expected from the slowly- 

changing perturbative QCD predictions. 641 However, the unpolarized data is in 

first approximation consistent with the fixed angle scaling law ~~~dr~/cZt(pp + 

pp) = f(0c~) expected from the perturbative analysis (see Fig. 28). 

The onset of new structure65l at s N 23 GeV2 is a sign of new degrees 

of freedom in the two-baryon system. In this section I discuss an explanation 

by Guy de Teramond and myself181 for (1) th e observed spin correlations, (2) 

the deviations from fixed-angle scaling laws and (3) the anomalous energy depen- 
dence of absorptive corrections to quasi-elastic pp scattering in nuclear targets, 

in terms of a simple model based on two J = L = S = 1 broad resonances 
(or threshold enhancements) interfering with a perturbative QCD quark-interchange 

background amplitude. The structures in the pp -+ pp amplitude may be associ- 

ated with the onset of strange and charmed thresholds. If this view is correct, large 

angle pp elastic scattering would have been virtually featureless for pl&, 2 5 GeV/c, 

had it not been for the onset of heavy flavor production. As a further illustration 

of the threshold effect, we also show the effect in ANN due to a narrow 3F3 pp res- 

onance at ,/s = 2.17 GeV (pl& = 1.26 GeV/c) associated with the pA threshold. 

The perturbative QCD analysis 661 of exclusive amplitudes assumes that 

large momentum transfer exclusive scattering reactions are controlled by short 
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distance quark-gluon subprocesses, and that corrections from quark masses and 

intrinsic transverse momenta can be ignored. The main predictions are fixed- 
angle scaling laws67l (with small corrections due to evolution of the distribution 

amplitudes, the running coupling constant and pinch singularities), hadron-helicity 

conservation68l and the novel phenomenon discussed in the Introduction called 

“color transparency.- 

As discussed in Sec. 7, the power-law scaling quark-counting predictions 

for form factors, two-body elastic hadron-hadron scattering,6gl and exclusive two- 

photon reactions are generally consistent with experiment at transverse momenta 

beyond a few GeV. (See Figs. 14, 15, 17 and 28.) In leading order in l/m , 

only the lowest particle-number “valence” Fock state wave function with all the 

quarks within an impact distance bl 5 l/pr contributes to the high momentum 

transfer scattering amplitude in &CD. Such a Fock state component has a small 

color dipole moment and thus interacts only weakly with hadronic or nuclear 

matter.161 This m inimally interacting proton configuration can retain its small size 
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as it propagates in the nucleus over a distance which grows with energy. Thus, 

unlike traditional Glauber theory, QCD predicts that large momentum transfer 

quasi-elastic reactions occurring in a nucleus suffer minimal initial and final state 

attenuation, i.e., one expects a volume rather than surface dependence in the 

nuclear number. This is the QCD “color transparency” prediction. 

As discussed in the Introduction, a test of color transparency in large mo- 

mentum transfer quasi-elastic pp scattering at 8,, 21 x/2 has recently been car- 

ried out at BNL using several nuclear targets (C, Al, Pb).171 The attenuation at 

plab = 10 GeV/ c in the various nuclear targets was observed to be in fact much 

less than that predicted by traditional Glauber theory (see Fig. 1). This ap- 

pears to support the color transparency prediction. However, at pl&, = 12 GeV/c, 

normal attenuation was observed, in contradiction to the expectation from per- 

turbative QCD that the transparency effect should become even more apparent! 

Our observation is that one can explain this surprising result if the scattering at 

pl& = 12 GeV/c (,/s = 4.93 GeV), is dominated by an s-channel B=2 resonance 

(or resonance-like structure) with mass near 5 GeV, since unlike a hard scatter- 

ing reaction, a resonance couples to the fully-interacting large-scale structure of 

the proton. If the resonance has spin S = 1, this can also explain the large spin 

correlation ANN measured nearly at the same momentum, plab = 11.75 GeV/c. 

Conversely, in the momentum range plab = 5 to 10 GeV/c we predict that the 

perturbative hard-scattering amplitude is dominant at large angles. The experi- 

mental observation of diminished attenuation at Plab = 10 GeV/c thus provides 

support for the QCD description of exclusive reactions and color transparency. 

What could cause a resonance at Js = 5 GeV, more than 3 GeV beyond 

the pp threshold? We can think of several possibilities: (a) a multigluonic excita- 

tion such as IQQQQQQSSS), (b) a “hidden color” color singlet lqqqqqq) excitation”] 

or (c) a “hidden flavor” IqqqqqqQq excitation, which is the most interesting 

possibility, since it is so predictive. As in QED, where final state interactions 

give large enhancement factors for attractive channels in which ZCY/D,,~ is large, 

one expects resonances or threshold enhancements in QCD in color-singlet chan- 

nels at heavy quark production thresholds since all the produced quarks have 

similar’velocities.711 One thus can expect resonant behavior at M* = 2.55 GeV 

and M* = 5.08 GeV, corresponding to the threshold values for open strangeness: 

pp + AK+p, and open charm: pp + h,D”p, respectively. In any case, the 
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structure at 5 GeV is highly-inelastic:. we find that its branching ratio to the 

proton-proton channel is BP?’ N 1.5%. 

We now proceed to a description of the model. We have purposely at- 

tempted not to overcomplicate. the phenomenology; in particular, we have used 

the simplest Breit-Wigner parameterization of the resonances, and we have not 

attempted to optimize the parameters of the model to obtain a best fit. It is possi- 

ble that what we identify as a single resonance is actually a cluster of resonances. 

The background component of the model is the perturbative QCD am- 

plitude. Although complete calculations are not yet available, many features 

of the QCD predictions are understood, including the approximate sm4 scaling 

of the pp -+ pp amplitude at fixed 8,, and the dominance of those ampli- 

tudes that conserve hadron helicity. 681 Furthermore, recent data comparing dif- 

ferent exclusive two-body scattering channels from BNL6gl show that quark in- 
terchange amplitudes 721 dominate quark annihilation or gluon exchange contri- 

butions. Assuming the usual symmetries, there are five independent pp helicity 

amplitudes: 41 = M(++,++), 42 = M(--,++), 49 = M(+-,+-), $4 = 

jM(-+, +-), 4s = M(++, +-). The helicity amplitudes for quark interchange 
have a definite relationship. 641 For definiteness, we will assume the following form 

h(PQCD) = W3(PQCD) = -W&‘QCD) 

= 4aCF(t)F(U)[~T$ + (u i+ t)]P . 
d 

The hadron helicity nonconserving amplitudes, &(PQCD) and &(PQCD) are 

zero. This form is consistent with the nominal power-law dependence predicted 

by perturbative QCD661 and also gives a good representation of the angular dis- 

tribution over a broad range of energies.73l Here F(t) is the helicity-conserving 

proton form factor, which for simplicity, we take as the standard dipole form, 

F(i) = (1 - t/m;)-2, with mi = 0.71 GeV2. As shown in Ref. 64, the PQCD- 

quark-interchange structure alone predicts ANN L~I l/3, nearly independent of 

energy and angle. 

Because of the rapid fixed-angle s -’ falloff of the perturbative QCD ampli- 

tude, even a very weakly-coupled resonance can have a sizeable effect at large 

momentum transfer. The large empirical values for ANN suggest a resonant 

pp + pp amplitude with J = L = S = 1 since this gives ANN = 1 (in ab- 

sence of background) and a smooth angular distribution. Because of the Pauli 
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principle, an S = 1 di-proton-resonance must have odd parity and thus odd or- 

bital angular momentum. We parameterize the two non-zero helicity amplitudes 

for a J = L = S = 1’ resonance in Breit-Wigner form: 

43 (resonance) =’ 127r 
1 l-ys) 

Gdi,l(ecmlM* ” E 
Pcm cm -I ;I- ’ 

&(resonance) = -127r 
1 rpq s) 

JSd~l,l(ecm) M* ” 
Pcm 

E ir ' 
cm - 2 

(The 3F3 resonance amplitudes have the same form with d$l,l replacing di, 1.) 

Since we are far from threshold, threshold factors in the pp channel can be treated 

as constants. As in the case of a narrow resonance like the Z”, we expect that 

the partial width into nucleon pairs is proportional to the square of the time- 

like proton form factor: I’PP(s)/I’ = BPPIF(s)~~/IF(M*~)(~, corresponding to the 

formation of two protons at this invariant energy. The resonant amplitudes then 

die away by one inverse power of (EC, - M*) relative to the dominant PQCD 

amplitudes. (In th is sense, they are higher twist contributions relative to the 

leading twist perturbative QCD amplitudes.) The model is thus very simple: each 

$p helicity amplitude 4; is the coherent sum of PQCD plus resonance components: 

4 = 4PQCW + W resonance). Because of pinch singularities and higher order 

corrections, the hard QCD amplitudes are expected to have a nontrivial phase;74] 

we have thus allowed for a constant phase 6 in +(PQCD). Because of the absence 

of the $5 helicity-flip amplitude, the model predicts zero single spin asymmetry 

AN. This is consistent with the large angle data at plab = 11.75 GeV/c.751 

At low transverse momentum, pi 5 1.5 GeV, the power-law falloff of 

b(PQCD) in s disagrees with the more slowly falling large-angle data, and we 

have little guidance from basic theory. Our interest in this low energy region is to 

illustrate the effects of resonances and threshold effects on ANN. In order to keep 

the model tractable, we have simply extended the background quark interchange 

and the resonance amplitudes at low energies using the same forms as above but 

replacing the dipole form factor by a phenomenological form F(t) o( e-3 sdtl. 

We have also included a kinematic factor of Js/2pcm in the background ampli- 

tude. The value /3 = 0.85 GeV -’ then gives a good fit to da/dt at 8cm = 7r/2 for 

plab 2 5.5 GeV/c. 761 The normalizations are chosen to maintain continuity of the 

amplitudes. 
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The predictions of the model and comparison with experiment are shown in 

Figs. 29 through 34. The following parameters are chosen: C = 2.9 x 103, 6 = -1 

for the normalization and phase of d(PQCD). The mass, width and pp branching 

ratio for the three resonances .are Mz = 2.17 GeV, Id = 0.04 GeV, BiP = 1; 

M,* = 2.55 GeV, Is = 1.6 GeV, Bip = 0.65; and M,* = 5.08 GeV, Ic = 1.0 GeV, 

Bfp = 0.0155; respectively. As shown in Figs. 29 and 30, the deviations from the 

simple scaling predicted by the PQCD amplitudes are readily accounted for by 

the resonance structures. The cusp which appears in Fig. 30 marks the change in 

regime below pi& = 5.5 GeV/c where PQCD becomes inapplicable. It is interesting 

to note that in this energy region normal attenuation of quasi-elastic pp scattering 

is observed.171 The angular distribution (normalized to the data at 8,, = 7r/2) 

is predicted to broaden relative to the steeper perturbative QCD form, when the 

resonance dominates. As shown in Fig. 31 this is consistent with experiment, 

comparing data at pl&, = 7.1 and 12.1 GeV/c. 
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Fig. 29. Prediction (solid curve) for da/dt(pp + pp) at 8,, = 7r/2 compared 
with the data of Akerlof et al. (Ref. 76). The dotted line is the background 
PQCD prediction. 

The most striking test of the model is its prediction for the spin correlation 

ANN shown in Fig. 32. The rise of ANN to N 60% at pi&, = 11.75 GeV/c is 

correctly reproduced by the high energy J=l resonance interfering with $(PQCD). 

The narrow peak which appears in the data of Fig. 32 corresponds to the onset of 

the pp + pA( 1232) c h annel which can be interpreted as a uuuuddqij resonant state. 

Because of spin-color statistics, in this case one expects a higher orbital momentum 

state, such as a pp 3F3 resonance. The model is also consistent with the recent high 

energy data point for ANN at ‘plab = 18.5 GeV/c and p$ = 4.7 GeV2 (see Fig. 33). 
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Fig. 30. Ratio of da/dt(pp -+ pp) at 8,, = r/2 to the PQCD prediction. The 
data (Ref. 76) are from Akerlof et al. (open triangles), Allaby et al. (solid dots) 
and Cocconi et al. (open square). The cusp at pi&, = 5.5 GeV/c indicates the 
change of regime from PQCD. 
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Fig. 31. The pp + pp angular distribution normalized at ecrn = 7r/2. The data 
are from the compilation given in Sivers et al. (Ref. 69). The solid and dotted 
lines are predictions for j&b = 12.1 and 7.1 GeV/c, respectively, showing the 
broadening near resonance. 

The data show a dramatic decrease of ANN to zero or negative values. This is 

explained in our model by the destructive interference effects above the resonance 

region. The same effect accounts for the depression of ANN for Plab w 6 GeV/c 

shown in Fig. 32. The comparison of the angular dependence of ANN with data 

at Plab = 11.75 GeV/c is shown in Fig. 34. The agreement with the data”] for the 

longitudinal spin correlation ALL at the same pi&, is somewhat worse. 
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Fig. 32. ANN as a function of pi& at Ocm = r/2. The data (Ref. 1) are from 
Crosbie et al. (solid dots), L in et al. (open squares) and Bhatia et al. (open tri- 
angles). The peak at pi& = 1.26 GeV/c corresponds to the pA threshold. The 
data are well reproduced by the interference of the broad resonant structures 
at the strange (pl&, = 2.35 GeV/ ) c an c d h arm (plab = 12.8 GeV/c) thresholds, 
interfering with a PQCD background. The value of ANN from PQCD alone 
is l/3. 
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Fig. 33. ANN at fixed p& = 4.7 (GeV/c)2. The data point (Ref. 1) at 
plab = 18.5 GeV/ c is from Court et al. 

Thus far we have not attempted a a global fit to all the pp elastic scattering 

data, but rather to show that many features can be naturally explained with 

only a few ingredients: a perturbative QCD background plus resonant amplitudes 

associated with rapid changes of the inelastic pp cross section. The model provides 

a good description of the s- and t-dependence of the differential cross section, 
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Fig. 34. ANN as a function of transverse momentum. The data (Ref. 1) are 
from Crabb et al. (open circles) and O’Fallon et al. (open squares). Diffractive 
contributions should be included for p$ 5 3 GeV2. 

including its “oscillatory” dependence78l in s at fixed 8,,, and the broadening of 

the angular distribution near the resonances. Most important, it gives a consistent 

explanation for the striking behavior of both the spin-spin correlations and the 
_: 
anomalous energy dependence of the attenuation of quasi-elastic pp scattering in 

nuclei: We predict that color transparency should reappear at higher energies 

(PM > 16 GWc), and also at smaller angles (e,, M SO’) at pi& = 12 GeV/c 

where the perturbative QCD amplitude dominates. If the J=l resonance structures 

in ANN are indeed associated with heavy quark degrees of freedom, then the model 

predicts inelastic pp cross sections of the order of 1 mb and 1 pb for the production 

of strange and charmed hadrons near their respective thresholds.7gl Thus, a crucial 

test of the heavy quark hypothesis for explaining ANN, rather than hidden color 

or gluonic excitations, is the observation of significant charm hadron production 

at plab 2 12 GeV/c. Other elastic reactions such as rp + rp should also display 

structures at the corresponding heavy quark thresholds. 

10. EXCLUSIVE NUCLEAR PROCESSES IN QCD 

One of the most elegant areas of application of QCD to nuclear physics 

is the domain of large momentum transfer exclusive nuclear processes. Rigorous 

results have been given by Lepage, Ji and myselfsol for the asymptotic properties 

of the deuteron form factor at large momentum transfer. The basic factorization is 

shown in Fig. 35. In the asymptotic Q2 --+ co limit the deuteron distribution ampli- 
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tude, which controls large momentum transfer deuteron reactions, becomes fully 

symmetric among the five possible color-singlet combinations of the six quarks. 

One can also study the evolution of the “hidden color” components (orthogonal to 

the np and AA degrees of freedom) from intermediate to large momentum transfer 

scales; the results also give constraints on the nature of the nuclear force at short 

distances in QCD.811 

Of the five color-singlet representations of six quarks, only one corresponds 

to the usual system of two color singlet baryonic clusters.82] The exchange of a 

virtual gluon in the deuteron at short distance inevitably produces Fock state 

components where the three-quark clusters correspond to color octet nucleons 

or isobars. Thus, in general, the deuteron wave function will have a complete 

spectrum of “hidden-color” wave function components, although it is likely that 

these states are important only at small internucleon separation. 

e’ 

4 e 

Fig. 35. Factorization of the deuteron form factor at large Q2 in QCD. 

Despite the complexity of the multicolor representations of nuclear wave 

functions, the analysis 801 of the deuteron form factor at large momentum transfer 

can be carried out in parallel with the nucleon case. Only the minimal six-quark 

Fock state needs to be considered to leading order in 1/Q2. The deuteron form 

factor can then be written as a convolution as in Fig. 35, 
1 

Fd(Q2) = /[dz] [dy] &y, Q) @+7*-sq(,, Y, Q> Ah Q) 9 
0 
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where the hard scattering amplitude scales as 

.T6q++6q = H [ 1 -g2) 5f(x,~) [l + O(as(Q2))] . 
The anomalous dimensions r,“- are calculated from the evolution equations for 

&(s;, Q) derived to leading order in QCD from pairwise gluon-exchange interac- 

tions: (CF = 4/3, Cd = -CJJ/~) 
. 

1 

2 + y] s(xi, Q) = -F Jrdy] V(xi, Yi)g(Yi, Q) - 
0 

Here we have defined 
6 

@(xi, Q) = JJ Xkg(xi, Q) 7 
k=l 

and the evolution is in the variable 

t(Q2) = $ ]2$as(k2) - In (3) . 
n ’ 

Qf 

The kernel V is computed to leading order in 09(Q2) from the sum of gluon 

,interactions between quark pairs. The general matrix representations of yn with 

bases l-J;=1 x7’ 
> 

is given in Ref. 81. The effective leading anomalous dimension 

70, corresponding to the eigenfunction g(zi) = 1, is 70 = (6/5)(C~/p). 

To make more detailed and experimentally accessible predictions, we de- 

fine the “reduced” nuclear form factor. This removes the effects of nucleon 

compositeness: 831 

Fd(Q2> fd(Q2) = F$(Q2/4) ’ 

The arguments for each of the nucleon form factors (FN) is Q2/4 since in the 

limit of zero binding energy each nucleon must change its momentum from - 

P/2 to (P + d/2* Th is is illustrated in Fig. 36. Since the leading anomalous 

dimension of the nucleon distribution amplitude is C~/2/3, the QCD prediction 

for the asymptotic Q2-behavior of fd(Q2) is 

where -(2/5)(C~/p) = -8/145 for nf = 2. 
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Fig. 36. Application of the reduced amplitude formalism to the deuteron form 
factor at large momentum transfer. 

Although this QCD prediction is for asymptotic momentum transfer, it is 

interesting to compare it directly with the available high Q2 data84l (see Fig. 37). 

In general, one would expect corrections from higher twist effects (e.g., mass and 

Icl smearing), higher particle number Fock states, higher order contributions in 

crS( Q2), as well as nonleading anomalous dimensions. However, the agreement of 

the data with simple Q2fd(Q2) N const behavior for Q2 > l/2 GeV2 implies that, 

unless there is a fortuitous cancellation, all of the scale-breaking effects are small, 

and the present QCD perturbative calculations are viable and applicable even in 

the nuclear physics domain. The lack of deviation from the QCD parameterization 

also suggests that the parameter A is small. A comparison with a standard defi- 

nition such as Am would require a calculation of next to leading effects. A more 

definitive check of QCD can be made by calculating the normalization of fd(Q2) 

from TH and the evolution of the deuteron wave function to short distances. It is 

also important to confirm experimentally that the helicity X = A’ = 0 form factor 

is indeed dominant. 

Because of hidden color, the deuteron cannot be described solely in terms 

of standard nuclear physics degrees of freedom and, in principle, any physical 

or dynamical property of the deuteron is modified by the presence of such non- 

Abelian components. In particular, the standard “impulse approximation” form 

for the deuteron form factor 

Fd@) = $7~2) 54~2) , 

where F, is the on-shell nucleon form factor, cannot be precisely valid at any 

momentum transfer scale Q2 = -q2 # 0 because of hidden color compo- 
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Fig. 37. (a) C om p arison of the asymptotic QCD prediction for the re- 
duced form factor with the SLAC/A merican University experiment using 
FN(Q~) = [l + (Q2/0.71 GeV2)] -2. The normalization is fit at Q2 = 4 GeV2. 

-: (b) Comparison of the prediction [1+(Q2/mi)lfd(Q2) 0; (en Q2)-1-(2/5)(cF/p) 
with data. The value rng = 0.28 GeV2 is used. It is assumed that the helicity 

‘+ conserving form factor is dominant. The helicity-flip form factor is predicted 
to be suppressed by factors of l/Q and may have an interference structure due 
to perturbative QCD contributions. 

nents. More important, even if only the nucleon-nucleon component were im- 

portant, the conventional factorization cannot be reliable for composite nucleons 

since the struck nucleon is necessarily off-shell85l in the nuclear wave function: 

lkt2 - k21 2Q - N I 2 Thus, in general, one requires knowledge of the nucleon form 

factors FN(q2, k2, k”) for the case in which one or both nucleon legs are off-shell. In 

QCD such amplitudes have completely different dynamical dependence compared 

to the on-shell form factors. 

Although on-shell factorization has been used extensively in nuclear physics 

as a starting point for the analysis of nuclear form factors,86l its range of validity 

has never been seriously questioned. Certainly in the nonrelativistic domain where 

target recoil and off-shell effects can be neglected, the charge form factor of a 

composite system can be computed from the convolution of charge distributions. 

However, in the general situation, the struck nucleon must transfer a large fraction 

of its momentum to the spectator system, rendering the nucleon state off-shell. As 
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shown in Ref. 81, the region of validity of on-shell form factor factorization for the 

- deuteron is very small: 

Q2<2Md%i, 

i.e., Q s 100 MeV. However, in this region the nucleon form factor does not deviate 

significantly from unity, so the standard factorization is of doubtful utility. The 

reduced form factor result has general utility at any momentum scale. It is also 

important to confirm experimentally that the helicity X = X’ = 0 form factor is 

indeed dominant. 

The calculation of the normalization Tz+7*46q to leading order in os(Q2) 

will require the evaluation of over 300,000 Feynman diagrams involving five ex- 

changed gluons. Fortunately this appears possible using the algebraic computer 

methods introduced by Farrar and Neri. s71 The method of setting the appropriate 

scale Q of cr: (6”) in TH is given in Ref. 88. 

The deuteron wave function which contributes to the asymptotic limit of 

the form factor is the totally antisymmetric wave function corresponding to the 

orbital Young symmetry given by [6] and isospin (T)+ spin (S) Young symmetry 

given by (33). The deuteron state with this symmetry is related to the NN, AA, 

and hidden color (CC) physical bases, for both the (TS) = (01) and (10) cases, 

by the formula8’] 

Thus the physical deuteron state, which is mostly I,~NN at large distance, must 

eVOhe to the ?,$6]{33} state when the six-quark transverse separations 61 5 

W/Q) --) 0. Since this state is 80% hidden color, the deuteron wave func- 

tion cannot be described by the meson-nucleon isobar degrees of freedom in this 

domain. The fact that the six-quark color singlet state inevitably evolves in QCD 

to a dominantly hidden-color configuration at small transverse separation also has 

implications for the form of the nucleon-nucleon (S, = 0) potential, which can be 

considered as one interaction component in a coupled scattering channel system. 

As the two nucleons approach each other, the system must do work in order to 

change the six-quark state to a dominantly hidden color configuration, i.e., QCD 

requires that the nucleon-nucleon potential must be repulsive at short distances 

(see Fig. 38). 901 The evolution equation for the six-quark system suggests that the 

distance where this change occurs is in the domain where os(Q2) most --strongly 
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varies. The general solutions of the evolution equation for multiquark systems 

is discussed in Ref. 81. Some of the solutions are orthogonal to the usual nu- 

clear configurations which correspond to separated nucleons or isobars at large 

distances. 

Fig. 38. Schematic representation of the deuteron wave function in 
QCD indicating the presence of hidden color six-quark components at short 
distances. 

The existence of hidden color degrees of freedom further illustrates the 

complexity of nuclear systems in &CD. It is conceivable that six-quark d’ 

resonances corresponding to these new degrees of freedom may be found by careful 

searches of the r*d + yd and -y*d -+ ?rd channels. 

11, REDUCED NUCLEAR AMPLITUDES 

One of the basic problems in the analysis of nuclear scattering amplitudes 

is how to consistently account for the effects of the underlying quark/gluon com- 

ponent structure of nucleons. Traditional methods based on the use of an effective 

- nucleon/meson local Lagrangian field theory are not really applicable, giving the 

wrong dynamical dependence in virtually every kinematic variable for compos- 

ite hadrons. The inclusion of ad hoc vertex form factors is unsatisfactory since 

one must model the off-shell dependence in each leg while retaining gauge invari- 

ance; such methods have little predictive power. On the other hand, the explicit 

evaluation of the multiquark hard-scattering amplitudes needed to predict the nor- 

malization and angular dependence for a nuclear process, even at leading order in 

cr, requires the consideration of millions of Feynman diagrams. Beyond leading 
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order one must include contributions of nonvalence Fock state wave functions, and - 
a rapidly expanding number of radiative corrections and loop diagrams. 

The reduced -amplitude method, 831 although not an exact replacement for 

a full QCD calculation, provides a simple method for identifying the dynamical 

effects of nuclear substructure, consistent with covariance, QCD scaling laws and 

gauge invariance. The basic idea has already been introduced for the reduced 

deuteron form factor. More generally, if we neglect nuclear binding, then the light- 

cone nuclear wave function can be written as a cluster decomposition of collinear 

nucleons: tiq/~ = +N/A nN Qq/~ where each nucleon has l/A of the nuclear 

momentum. A large momentum transfer nucleon amplitude then contains as a 

factor the probability amplitude for each nucleon to remain intact after absorbing 

l/A of the respective nuclear momentum transfer. We can identify each probability 

amplitude with the respective nucleon form factor F (& = -& iA). Thus, for any 

exclusive nuclear scattering process, we define the reduced nuclear amplitude 

M 
m= 

‘The QCD 
nf=l FN(t^i) ’ 

scaling law for the reduced nuclear amplitude m is then identical to 

that of nuclei with point-like nuclear components, e.g., the reduced nuclear form 

factors obey 

f~(&~) - 
FA&?~) 

[FN(Q2,#)] A - ‘d A-1 ’ 

Comparisons with experiment and predictions for leading logarithmic corrections 

to this result are given in Ref. 83. In the case of photodisintegration (or electro- 

disintegration) of the deuteron one has 

i.e., the same elementary scaling behavior as for Mr~-,*q. Comparison with ex- 

periment is encouraging (see Fig. 39) h s owing that as was the case for Q2fd(Q2), 

the perturbative QCD scaling regime begins at Q2 ;L 1 GeV2. Detailed compar- 

isons and a model for the angular dependence and the virtual photon-mass depen- 

dence of deuteron electrodisintegration are discussed in Ref. 83. Other potentially 

useful checks of QCD scaling of reduced amplitudes are 
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mpp+dx+ - PF2 f(G) 

~Kd4xd - PT4 fW) - . 
It is also possible to use these QCD scaling laws for the reduced amplitude as a 

parametrization for the background for detecting possible new di-baryon resonance 

states. In each case, the incident and outgoing hadron and nuclear states are 

predicted to display color transparency, i.e., the absence of initial and final state 

interactions if they participate in a large momentum transfer exclusive reaction. 
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Fig. 39. Comparison of deuteron photodisintegration data with the scaling 
prediction which requires f2(&,) t 

- 
o b e independent of energy at large mo- 

mentum transfer. The data are from H. Myers et al., Phys. Rev. 121, 630 
(1961); R. Ch’ g m and C. Schaerf, Phys. Rev. 141, 1320 (1966); P. Dougan et 
al., Z. Phys. A 276, 55 (1976). 
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12. HELICITY SELECTION RULE AND 

EXCLUSIVE CHARMoNIUM DECAYS 

One of the simplest predictions of perturbative QCD for exclusive pro- 

cesses is hadron helicity conservation: to leading order in l/Q, .the total helicity 

of hadrons in the initial state must equal the total helicity of hadrons in the final . 
state. This selection rule is independent of any photon or lepton spin appearing 

in the process. The result follows from (a) neglecting quark mass terms, (b) the 

vector coupling of gauge particles and (c) the dominance of valence Fock states 

with zero angular momentum projection. 911 

Hadron helicity conservation may be relevant to an interesting puzzle con- 

cerning the exclusive decays J/ll, and $J’ + p7r, K*K and possibly other Vector- 

Pseudoscalar (VP) combinations. One expects J/+($‘) to decay to hadrons via 

three gluons or, occasionally, via a single direct photon. In either case, the decay 

proceeds via 1%‘(0)12, where g(O) is the wave function at the origin in the non- 

relativistic quark model for CZ. Thus, it is reasonable to expect on the basis of 

perturbative &CD, that for any final hadronic state h: 
-I 

W’ + q B(+’ + e+e-) 
Qh = B( J,ll, --) h) g B( J,ll, --) e+e-) = 0.135 f 0.023 . 

Usually this is true, as is well documented in Ref. 92, for pj~~rO, 2n+27r-7r”, T+T-U 

and 37r+37r-x0, hadronic channels. The startling exceptions occur for pn and K*E 

where the present experimental limitsg21 are 

Qpr < 0.0063 and Qh’.r < 0.0027 . 

Recently San Fu Tuan, Peter Lepage and 1931 have proposed an explanation of the 

puzzle by assuming (a) the general validity of the perturbative QCD theorem that 

total hadron helicity is conserved in high momentum transfer exclusive processes, 

but supplemented by (b) violation of the QCD theorem when the J/G decay to 

hadrons via three hard gluons is modulated by the gluons forming an intermediate 

gluonium state CJ before transition to hadrons. In essence, the model of Hou and 

Sonig41 takes over in this latter stage. 

Since the vector state V has to be produced with helicity X = fl, the VP 

decaysshould be suppressed by a factor l/s in the rate. The +’ seems to respect 

this rule. The J/lc, d oes not, and that is the mystery. Put in more quantitative 

terms, we expect on the basis of perturbative QCDgll 
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assuming quark helicity is conserved in strong interactions. This includes a form 

factor suppression proportional to [MJI+/&‘] 4. This suppression is not nearly 

large enough, though, to account for the data. 

One can question the validity of the QCD helicity conservation theorem 

at the charmonium mass scale. Helicity conservation has received important con- 

firmation in J/+ --$ pjj where the angular distribution is known experimentally 

to follow [l + cos2 t9] rather than sin2 8 for helicity flip. The $9 decays clearly 

respect hadron helicity conservation. It is difficult to understand how the J/t) 

could violate this rule since the J/$ and r,!~’ masses are so close. Corrections from 

quark mass terms, soft gluon corrections and finite energy corrections would not 

be expected to lead to large J/q differences. It is hard to imagine anything other 

than a resonant or interference effect that could account for such dramatic energy 

dependence. 

A relevant violation of the QCD theorem which does have significance 

to this problem, is the recognition that the theorem is built on the underly- 

ing assumption of short-range “point-like” interactions amongst the constituents 

throughout. For instance, J/+( -) cc + 3g has a short-range g l/m, associated 
with the short time scale of interaction. If, however, subsequently the three 

gluons were to resonate forming a gluonium state 0 which has large transverse 

size g ~/MH covering an extended (long) time period, then the theorem is in- 

valid. Note that even if the gluonium state 0 has large mass, close to MJ,tl,, 

its size could still be the standard hadronic scale of 1 fm, just as the case for the 

D-mesons and B-mesons. 

We have thus proposed, following Hou and Soni, that the enhancement of 

Jl$ + K*K and J/1c, + pn decay modes is caused by a quantum mechanical 

mixing of the J/t+5 with a Jpc = l-- vector gluonium state 0 which causes the 

breakdown of the QCD helicity theorem. The decay width for J/T/I + PT( K*I() via 

the sequence J/ll, + 0 + pn(K*K) must be substantially larger than the decay 

width for the (nonpole) continuum process J/2c, + 3 gluons -+ pr(K*K). In the 

other channels (such as pji,pjjr”, 27r+27r-no, etc.), the branching ratios of the 0 

must be so small that the continuum contribution governed by the QCD theorem 

dominates over that of the 0 pole. For the case of the +’ the contribution of the 
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0 pole must always be inappreciable in comparison with the continuum process - 
where the QCD theorem holds. The experimental limits on QPK and QK.x are 

now substantially more stringent than when Hou and Soni made their estimates 

of MO, I?o--rPK and IodK.-if in 1982. 

It is interesting, indeed, that the existence of such a gluonium state 0 was 

first postulated by Freund and Nambug51 based on 021 dynamics soon after the 

discovery of the J/lc, and $’ mesons. In fact, Freund and Nambu predicted that 

the 0 would decay copiously precisely into p7r and K*K with severe suppression 

of decays into other modes like e+e- as required for the solution of the puzzle. 

Final states h which can proceed only through the intermediate gluonium 

state satisfy the ratio: 

B(t)’ --t e+e-) 
Qh = B(J/$ 

(MJ/+ - Mo)~ + f rg 
+ e+e-) (M+, - Mo)2 + i I’& ’ 

We have assumed that the coupling of the J/t,b and +’ to the gluonium state scales 

as the e+e- coupling. The value of Qj, is small if the 0 is close in mass to the 

J/t,b. Thus we require 
-. 

(MJl+ - Mo)~ + ; r& 6 2.6 Qh GeV2 . 

The experimental limit for QK.x then implies 

1 112 
@b/d - McJ)~ + i r2, S 80 MeV . 

This implies 1 MJ/~ - MO I< 80 MeV and IO < 160 MeV. Typical allowed values 

are 

MO = 3.0 GeV , ro = 140 MeV 

or 

MO = 3.15 GeV , I’0 = 140 MeV . 

Notice that the gluonium state could be either lighter or heavier than the J/$. 

The branching ratio of the 0 into a given channel must exceed that of the J/$. 

It is not necessarily obvious that a Jpc = l-- gluonium state with these 

parameters would necessarily have been found in experiments to date. One must 

remember that, although 0 -+ p7r and 0 + K*K are important modes of decay, at 

a mass of order 3.1 GeV many other modes (all be it less important) are available. 

Hence, a total width I’0 Z 100 to 150 MeV is quite conceivable. Because of 
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the proximity of MO to MJ/$, the most important signatures for an 0 search 

via exclusive modes J/t+5 + K*Kh, J/t) + prh; h = ?rr, r],$, are no longer 

available by phase-space considerations. However, the search could still be carried 

out using $’ + K*Kh, t,b’ -+ prh; with h = TTX, and 7. Another way to search for 

0 in particular, and the three-gluon bound states in general, is via the inclusive 

reaction $’ + (7r7r) +X, where the xw pair is an isosinglet. The three-gluon bound 

states such as 8 should show up as peaks in the missing mass (i.e., mass of X) 

distribution. 

Perhaps the most direct way to search for the 0 is to scan pp or e+e- 

annihilation at Js within N 100 MeV of the J/t), triggering on vector/pseudoscalar 

decays such as up or KK*. 

The fact that the pr and K*?? channels are strongly suppressed in $J’ decays 

but not in J/T) decays clearly implies dynamics beyond the standard charmonium 

analysis. As we have shown, the hypothesis of a three-gluon state 0 with mass 

within E 100 MeV of the J/1c, mass provides a natural, perhaps even compelling, 

explanation of this anomaly. If this description is correct, then the $’ and J/t) 

-hadronic decays are not only confirming hadron helicity conservation (at the $’ 

-momentum scale) but are also providing a signal for bound gluonic matter in &CD,. 

13. CONCLUSIONS 

Quantum Chromodynamics (QCD) is a remarkably interesting theory. As 

we have seen in these lectures, many novel and unexpected phenomena appear 

when QCD processes are studied in the nuclear enviroment. We now are begin- 

ning to confront the nonperturbative nature of the theory and effects which are 

important in the few GeV domain. The hadroproduction of charmed hadrons 

and charmonium plays an important role in these studies, and it is essential that 

discrepancies between experiments be resolved. 

There has been considerable progress understanding the structure of the 

hadrons and their interactions from first principles in &CD. Lattice gauge theory 

and QCD sum rules are providing beautiful constraints on the basic shape of the 

distribution amplitudes of the mesons and baryons. A new method, discretized 

light-cone quantization, has been tested successfully for QCD in one-space and one- 

time dimensions and should soon yield detailed information on physical light-cone 

wave functions. 
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The recent work of Dziembowski and Mankiewicz381 provides a convenient 

relativistic model for hadronic wave functions consistent with the known con- 

straints. Their work provides the starting point for a consistent description of 

exclusive amplitudes such as form factors from low to high momentum transfer. 

The controversy concerning the range of validity of perturbative QCD predictions 

for exclusive amplitudes has thus been largely resolved. Where clear tests can be 

made, such as two-photon processes and the hadron form factors, the perturbative 

QCD predictions appear correct in scaling behavior, helicity structure and abso- 

lute normalization. Most interesting, there is now evidence for the remarkable 

color transparency phenomenon predicted by perturbative QCD for quasi-elastic 

scattering within a nucleus. Further experiments, particularly quasi-elastic lepton- 

proton scattering are crucial.g6l 

One of the most serious challenges to the validity of QCD are the pseudo- 

scalar vector decays of the J/t+b. W e h ave shown that this puzzle can be resolved if 

a gluonium state exists with mass near 3 GeV/c. I have also discussed a possible 

explanation for the strong spin correlations in proton-proton elastic scattering 

and the reversal of color transparency in terms of a novel type of high mass di- 

baryon resonance. For each case, the J/t) anomaly, the structure in ANN, and 

the change in transparency of the nucleus, one can attribute the breakdown of 

the perturbation prediction to a threshold phenomena which requires that the 

full large scale structure of the hadrons is involved. It is important to identify 

explicitly the inelastic channels responsible for the new threshold in pp scattering 

near Js = 5 GeV-perhaps open charm states. A key tool in this analysis is the 

use of color transparency in nuclei to filter out large and short distance phenomena. 

I have also discussed the role of the formation zone and the target length 

condition in understanding the absence of inelastic nuclear effects in the propaga- 

tion of high energy quarks and gluons in nuclear matter. Conversely, coalescence of 

the produced particles with co-moving spectators was shown to produce a number 

of unexpected effects such as enhancement of charmed hadron production but the 

suppression of charmonium production in nuclear collisions. 

Finally, I have discussed applications of QCD to nuclear amplitudes and 

to the basic structure of the nucleus itself. I have also noted areas of potential 

conflict between QCD and more conventional approaches to nuclear interactions, 

e.g., Dirac phenomenology factorization of on-shell nucleon form factors, and the 
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breakdown of conventional Glauber theory due to color transparency in exclusive - 
reactions, and formation zone phenomenology in inclusive reactions. 
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