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1. INTRODUCTION 

To obtain a luminosity of 1034cm-2sec-’ in a TeV Linear Collider (TLC), it 
will probably be necessary to accelerate many bunches in one filling of the RF 
structure. This has the effect of extracting more energy from the structure and 
thus enhances the overall efficiency of the accelerator. However, this leads to 
many problems. First, the train of bunches is subject to cumulative beam breakup 
transversely. This can be controlled by damping the transverse modes with slots in 

lY2 !he irises coupled to waveguides. In addition, the energy of the bunches must be. 
kept the same to high precision. For the fundamental mode, this entails adjusting 
the timing of the RF fill and also the bunch spacing. The higher longitudinal 
modes, although they do not induce instability, also may lead to bunch-to-bunch 
variations in energy. However, it also seems possible to damp these modes to cure 
this problem.’ Of course, there are also problems associated with damping a train 
of bunches in a damping ring. 

In this paper we discuss some of the issues of multi-bunch energy compensation. 
In the first two sections, we review some basics about) energy extraction by a single 
bunch. In Section 4, multi-bunch energy compensation is treated. In Section 5, we 
discuss various tolerance issues associated with deviations of amplitude and phase 
of the RF away from the ideal. 

For general information on high energy electron linacs the reader is referred to 
the review article by P. Wilson in Ref. 3. 
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2. A SINGLE BUNCH 

Consider a single bunch traversing an RF structure of length L which is par- 
tially full of RF. Th e energy gain of a test charge at the front of the bunch is 

L 

AE = 
J 

E&)ds (24 
0 

where E=(s) is the envelope of the RF as a function of distance along the structure. 
The bunch is assumed to be at the crest of the cosine. For off-crest operation 
this is modified by a factor of the cosine of the phase angle. This factor will be 
suppressed in the next 3 sections but included where relevant in Section 5. 

To calculate energy gain, we need to know the field profile in the structure. As 
a simple model, consider an initial RF pulse that is square with a width equal to 
the filling time of the structure. That is, the RF pulse duration is 

(2.2) 

where vg is the group velocity of the structure and L is the length of the structure. 
A-s the structure fills, the field level drops due to losses. If the characteristic decay 
time is 

T=2& 
0 w ’ (2.3) 

thenthe fields decay like 

6$((t) = EodT” . (2.4) 

To relate this to the field profile along the structure, we have 

t=S 
Wug 
TfS t=- 

L * 

(2.5) 

Thus, along the structure, the fields decay like 

E,(s) = CC”l” (2.6) 

where 
LTo e=----- 
Tf - 

(2.7) 

Therefore, in this case, the energy gain of a test particle at the front of the bunch 
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is 

AE = e&Q1 - e-so/e) (2.8) 

where so is the distance which the field has propagated when the particle traverses 
the structure. For no attenuation, we have 

AE = e&,s, . P-9) 

We assume, throughout the paper, that the particle traverses the structure in a 
time small compared to the filling time. Thus, during passage there is no additional 
filling. This is not strictly true. In fact for a structure with og = 0.1~ the structure 
fills an additional 10 % while the particle is traversing it. This modifies the particle 
injection time relative to the time for starting the RF fill and also changes the 
energy extraction efficiency by about 10 %. 

3. THE WAKEFIELD 

The field induced in the fundamental accelerating mode by a short bunch with 
charge q is given by 

& wake = -2kq 

-where k is the fundamental loss parameter per unit length. Ignoring 
losses, the efficiency of energy extraction from a no loss structure is 

17 
0 

= 1_ 6 - 2kd2 
e 

4kq 4k2q2 

=-- &2 * &Z 

For small energy extraction, the second term can be neglected. 

(3.1) 
higher mode 

(3.2) 

The particle at the tail of the short bunch feels an accelerating field & - 2kq; 
therefore, for a uniform distribution the average energy gain of the bunch is 

aE/e = (Ez - kq)so - kq(L - ~0) . (3.3) 

Including the losses in the structure, 

AE/e = E,&,(l - e-s”le”) - kqL . (3.4) 
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4. MULTI-BUNCH EFFECTS 

First consider the case of two bunches traversing a partially filled accelerating 
structure. Let the bunches be separated by a time At. This allows the field to 
propagate a distance 

As =v,At . (4.1) 

Now consider the energy gained by a particle at the headof each of the two bunches. 
The average energy gain can be calculated with Eq. (3.4). For the first bunch, the 
result is the same as Eq. (2.8), 

AVr = Eo,e(l - e-so/e) (4.2) 

where we have introduced V G E/e to simplify the formulae. For the second 
bunch, the structure has been filled a bit more and so we find 

As so-t-As L 

AV, = I,(s)& + 
J J 

(E,(s) - 2kq)ds - 
J 

2kqds . P-3) 
0 As so+As 

This expression includes the incoming field and also takes care of the wakefield 
which propagates out the end of the structure. Performing the integrals we find 

AV2 = ~?,e(l - e-(so+As)le) - 2kq(L - As) . (4.4) 

Equation (4.4) includes the reduction of accelerating field due to attenuation of 
the input RF. It does not include the attenuation of the wakefield. This is a rather 
good approximation since for the case of a short train of bunches the wakefield is 
in the structure for a much shorter time than the input RF. 

To calculate the energy gain of the head of the third bunch, proceed as before 
to obtain 

Av, = TE,(s)ds + i”;&(s) - 2kq)ds + s"~A;G(s, - 4kq)ds 

0 As 2As 
- 4kq(L - so - 2As) 

c4.5j 

which yields 

AV3 = &,e(l - e -(so+2As)/t) - 4kqL + 6kqAs . (4.6) 
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For n bunches, the result is given by 

AVn =E,[(l - e-(so+(n-l)As)le) - (n - 1)2kqL 

+ n(n - 1)kqAs . 
(J-7) 

The coefficient of the last term is actually a sum and is given by 

[ 

(n-2) 

2 (n-1)2- c m . 
m=l I 

(4.8) 

After summing the series, this yields the coefficient in Eq. (4.7). 

4.1. SMALL ATTENUATION 

In the previous section we have neglected the decay of the wake during the 
passage of the bunch train. To be consistent we should also neglect the additional 
decay of the incoming accelerating field during that time. This approximation 
yields particularly simple formulae and corresponds to the case of 

nAs/.! << 1 . W) 

In this case, one can expand the relevant exponential in Eq. (4.7) to yield 

AV, = &,e(l - e -so/e) + (n - l)E,e-so’eA.s - (n - 1)2kqL + n(n - 1)kqAs (4.10) 

The first two linear terms in n could be used to cancel the variation of V, exactly 
were it not for the quadratic effect remaining. Since it is quadratic, it could get 
quite large. A possible optimum might be to match the energy of the first and last 
bunch in the train. For N bunches, this is done by setting 

(N - l)Eoe -sO’eAs - (N - 1)2kqL + N(N - 1)kqAs = 0 (4.11) 

which yields 
As 2kq -= 
L &,e-“ol” + Nkq ’ 

(4.12) 

In this case, the energy gain of the n th bunch in a train of N bunches is 

AV, = Eol(l - e -sole) + (n - N)(n - 1)kqAs . (4.13) 

This has its maximum deviation at the center of the bunch train. For an even 
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number of bunches 

JJ4ma.x = - 
N(N - 2) 

4 kqAs. (4.14) 

It is useful to express these formulae in terms of the single bunch efficiency 
factor qo, 

4kq 170 = - Eo * 
(4.15) 

In this case, the bunch spacing is given by 

As At qoesole 1 -=-=- 
L Tf 2 1 + +~oeso/e ’ 

(4.16) 

Of course, the spacing must also be some multiple of the RF period. After contin- 
uous acceleration, we can ignore the injection energy; thus, the fractional variation 
of the bunch energy is given by 

For small q. we have 

hEmax N(N - 2) 
E= 32 Fd 

(4.17) 

(4.18) 

where F is the factor in square brackets in Eq. (4.17). Thus if we have a tolerance 
on the energy difference between bunches of SE,,,, the energy extraction per 
bunch is limited by 

bEma, ‘I2 
E 1 (4.19) 

In the previous analysis the bunch spacing is simply determined by the bunch 
charge. This is true because we have assumed that all sections in the entire linac 
are filled in the identical manner. If we wish to have the same bunch spacing, 
but with say l/2 the current, then we need to delay the filling of only l/2 of the 
sections. The remaining sections must be full when the first bunch arrives and 
must remain full throughout the bunch train. In this case the RF pulse width 
must be somewhat greater than the fill time. 

This discussion also points the way towards the tailoring of the effective RF 
pulse by section-to section delays and/or pulse shape changes. In this way it may 
be possible to correct the droop in energy calculated in this section. 
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4.2. AN EXAMPLE 

Say that we allow the bunches to vary by a full energy spread of 

sl3 
( > - 

E 
=2 x 1o-3 ) 

max 
(4.20) 

and consider the case of 10 bunches. To calculate F and e-s0/e we need to know 
so- As a first approximation we can take so = L. Then the factor F is only a 
function of the attenuation parameter r = L/e. For this example we take r = .6, 
which means the energy extraction per bunch could be 

q. N 1.82% . (4.21) 

This in turn determines the bunch spacing to be 

At 
- = 1.53 x 1o-2 
Tf 

. (4.22) 

If-we consider a structure with an RF frequency of 11.4 GHz, then a filling time of 
70 nsec yields a bunch spacing of about 12 RF periods (1.1 nsec). In this case, the 
first bunch is injected when the structure is 84.7% full. Thus the 10 bunch train 
has an energy which is 15.3% lower than a single bunch would have if injected into 
the full structure. In general, the percentage loss of average acceleration gradient 
in the structure is simply NAt/Tf. 

5. TOLERANCES FOR MAINTAINING 
BUNCH-TO-BUNCH ENERGY 

In the next few short sections we discuss several different effects which can 
destroy the careful energy match calculated in the previous section. In these next 
few sections the attenuation parameter r is set to zero and thus losses are neglected. 

5.1. PHASE SHIFT DUE TO WAKEFIELDS 

As discussed in the first section, the head of the bunch sees a different field 
than the tail. For a short uniform bunch and considering only the fundamental 
longitudinal mode, the wakefield induced by the bunch causes the tail particles to 
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be depressed in energy by 

A&,, = -2kqL . (54 

This yields a linear slope across the bunch given by 

dVw ake 2kqL -=- 
d4 A4 

(5.2) 

where Ad is the full bunch length in RF phase. This is typically cancelled by 
shifting the phase of the drive relative to the bunch arrival so that the slope of the 
RF cancels that due to the longitudinal wakefield. In this case the energy gain of 
the nth bunch is 

AVn($) = &SO COS(~) + (n - l)EoAs COS(~)+ 
[-(n - 1)2kqL + n(n - l)kqAs] cos($ - $o) 

while the slope of the RF at the nth bunch is given by 

(5.3) 

~I,+, = -Eoso sin $. - (n - l)E,As sin do (5.4) 

where tie is the location of the bunch on the RF. Increasing 4 corresponds to 
movement ahead of the bunch. We would like to cancel the linear slope for all 
bunches; however, Eq. (5.4) makes that impossible. 

For a single bunch we cancel the wakefield slope which yields 

2kqL 
siwJo = EoLA4 . 

Written in terms of the q. parameter this becomes 

(5.5) 

770 sin 4. = - 
2A$ ’ (5.6) 

For many bunches, one might cancel the slope at the middle bunch, g. This yields 

70 sin do = - 
L 

2& so + @$&Is * 

Simplifying by using the results of the previous section we find 

770 sin4, 21 - 
1 

245 l- vqo * 

(5.7) 

(5.8) 

For the example shown in Section 4.2, this yields a variation in slope of about 
&ts%. If we consider a full bunch length of 125 pm, this yields a A4 of 3 x 10s2 
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for 11.4 GHz. For the q. given in the example, we find 

sin $. N .30 (5.9) 
or 

cjo N 18’ . (5.10) 

In this simple model, the full energy spread of the head and tail bunch is 

SE -= 
E 

*(N - 1)As 

2so 
sin$,A$ 21 f7 x 10P4. (5.11) 

Since we expect the final focus to have a relative energy bandwidth of about f2 x 
10V3, this variation of slope is probably acceptable. 

5.2. TOLERANCEON PHASEOFTHE RF 

For a single bunch, phase variations over the RF pulse are not that important 
since the bunch integrates over them. For many bunches, phase variations lead to 
bunch-to-bunch energy differences. To model this, consider first a systematic phase 
variation SC$ over the train of bunches which occurs during the last part of the fill 
of the structure. The phase variation during the RF pulse up to so is averaged. 
over by all bunches. Then the energy gained by the last bunch is 

&v/e =~osocos~o + E,(N - ~)Ascos($, + 64) 
- (N - 1)2kqL + N(N - 1)kqAs . 

(5.12) 

The deviation from the gain of the first bunch is 

AEN 
- = -S$tand, 

(N - 1)As 

Eo so 
AEN N -6@anr$oq . 

Eo 

(5.13) 

Notice that the tolerance is less severe for smaller phase angles and that the effect 
is reduced by the ratio of the length of the bunch train to the initial fill. 

Random phase variations from section to section are calculated in a similar 
fashion. In this case if M is the number of independently powered sections, the 
variation in energy of the tail relative to the head grows proportional to a while 
the energy grows proportional to M. Thus the energy variations due to random 
phase errors are reduced relative to the systematic by a factor of &. 
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For the example shown in Section 4.2 the tolerance for systematic phase vari- 
ation over the bunch train is 

scp N 4O. (5.14) 

For a large number of sections the random phase variation tolerance is much larger 
(cx a); however, Eq. (5.13) is not accurate in this case since we have assumed 
small SC$. 

5.3. TOLERANCEON q 

If for some reason the charge per bunch is different than design, the relative 
energy of the bunches in the bunch train will be shifted. 

Using Eq. (4.7), the shift in energy of the nth bunch due to a change Aq in 
the charge of each bunch is given by 

AV, = [-(n - 1)2kL + n(n - l)kAs]Aq . (5.15) 

The relative energy change after acceleration is given by 

AE, AE, 
E, = &,s, - 

(5.16) 

Substituting and rewriting in terms of q. we find 

N _ b - lho Aq AEn 
En - 2 Q’ 

(5.17) 

If only one bunch changes charge by Aqlzo, then the change in energy is 

AEn - rlo &no 
En - 2 qno * 

(5.18) 

For the example shown in Section 4.2 the tolerance on the systematic variation 
of charge in all bunches is 

6% N 2 5 x 1o-2 
Q’ - 

(5.19) 

Random variations could perhaps be a factor of 3 larger while the allowable vari- 
ation of a single bunch in the train is a factor of 10 larger. 



5.4. TOLERANCE ON E(S) 

If there are variations in the amplitude of the RF pulse in the last part of the 
pulse which is just entering the structure as the bunches are extracting energy, 
this will lead to bunch-to-bunch changes in energy. To model this effect, consider 
that at the mth RF section, the RF pulse is modified by A&m over a distance d,. 
Then those bunches which arrive after this perturbation has entered the structure, 
receive an additional energy gain 

SV = A&mdm . (5.20) 

If this effect is random and uncorrelated from section to section, then the 
relative energy change induced in M sections is 

6ETrns 

E 
(5.21) 

Systematic variations would yield 

SErrns A&sys Nqo 

E ’ 
~- 

& 2 * 
(5.22) 

For the example shown in Section 4.2, the tolerance on systematic variation of the 
accelerating field over the bunch train is 

A&,, - N 0.02. 
& 

(5.23) 

Once again random variations can be much larger for many sections. 

5.5. THE EFFECT OF A LEADING EDGE ON Eo(s) 

It is easy to calculate the effect of a non-square RF pulse on the overall energy 
gain by superposition. It causes no problem in the previous analysis unless it begins 
to propagate out the end of the structure during the bunch train. In this case, it 
induces a large bunch-to-bunch energy spread. The simple method of dealing with 
this problem is to avoid it; that is, inject the bunch train in such a way so that the 
last bunch traverses the structure just before the leading edge begins to propagate 
out the end of the structure. The analysis in Section 4 applies in this case; however, 
the energy of the bunch train is once again reduced somewhat. 
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Let the leading edge be triangular in shape and be of length aL. Then the 
reduction in energy gain is simply 

AE aL a -E-N- 
E 2s, - 2 

6. Conclusion 

In this paper we have discussed the control of the bunch-to-bunch energy spread 
for a short train of intense bunches. We have seen that it is indeed possible under 
ideal conditions to control the energy spread while extracting as much as 20% of 
the RF energy. Unfortunately conditions are rarely ideal, so tolerances have also 
been discussed here. The tolerances do not look that bad, but it is likely that 
in any real system we would need a strategy for measuring the bunch-to-bunch 
energy differences. In this way by adjusting the fill timing of several special RF 
sections, it is probably possible to correct errors which do not vary from pulse to 
pulse. Pulse-to-pulse systematic variations are rather unlikely but do have tight 
tolerances while the more likely random variations which might happen pulse to 
pulse have much looser tolerances. 

Finally, one should note that the transverse motion is coupled to the energy’ 
variation through the chromaticity of the lattice. This probably means that energy 
discrepancies between bunches must be corrected locally where they develop or they 
could lead to separate trajectories for each bunch in the bunch train. 

To conclude, recall that we have assumed that the higher order longitudinal 
modes are damped between bunches. Structures which accomplish this have been 
suggested in Ref. 1 and there is presently a program at SLAC to do more detailed 
measurements. It is also important to continue the studies discussed here to develop 
a realistic strategy for controlling bunch to bunch energy in the face of errors. In 
spite of all these difficulties the result is most likely well worth the effort since it 
leads to much higher luminosities for future linear colliders. 
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