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ABSTRACT 

To obtain luminosities near 1034cm-2sec-’ in a TeV linear collider, it will 
probably be essential to accelerate many bunches per RF fill in order to increase 
the energy transfer efficiency. In this paper we study the transverse dynamics of 
multiple bunches in a linac, and we examine the effects of several methods of con- 
trolling the beam blow-up that would otherwise be induced by transverse dipole 
wake fields. The methods we study are: (1) damping the transverse modes, (2) ad- 
justing the frequency of the dominant transverse mode so that bunches may be 
placed near zero-crossings of the transverse wake, and (3) bunch-to-bunch varia- 
tion of the transverse focusing. We study the utility of these cures in the main 
linacs of an example of a TeV collider. 
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1. INTRODUCTION 

The next generation of e + - e linear colliders, with center-of-mass energy of 
about 1 TeV, is in the conceptual design phase. It is believed that it will be pos- 
sible to build such a collider with moderate extensions of present RF technology. 
However, the power required for the linac is very high. In order to use the RF 
as efficiently as possible and also obtain a luminosity close to 1034cm-2sec-1, the 
acceleration of multiple bunches per RF fill is being considered. Using this tech- 
nique, it is possible to extract more than 20% of the energy available in the RF 
cavities, while keeping the bunch-to-bunch energy variation small.’ 

One of the problems with accelerating multiple bunches per RF fill is the 
cumulative beam breakup instability caused by the transverse dipole wake fields. 
Each bunch in the train feels the wake produced in the accelerating structure when 
preceding bunches are slightly off-axis. The spacing between adjacent bunches is 
only a few RF wavelengths, and the transverse dipole wake in a normal disk- 
loaded structure continues to ring for many multiples of this spacing. As a result, 
the transverse amplitudes of the bunches can grow rapidly. 

Fortunately, there are several things that can be done to mitigate the effects 
of the transverse wake. Briefly, the ones which we shall consider in detail here are: 
(1) damping th e ransverse dipole modes by means of axial slots through the irises t 
of the RF structures coupled with radial waveguides, (2) tuning the frequency of 
the fundamental transverse dipole mode to place the bunches as near as possible 
to zero crossings of the wake fields, and (3) using time-varying quadrupoles to 
introduce a small change in the focusing for different bunches, so that they are not 
in resonance with each other. 

Cumulative beam break-up in linacs had been clearly identified by 1966,3 and 
has been studied by several authors. *-lo In our approach, we derive integral rep- 
resentations of the solution for each bunch using WKB-type approximations. We 
also show that a simple ‘effective length” approximation gives equivalent results 
up to adiabatic damping factors. 

We use our results to study the effectiveness of controlling beam breakup by 
the two methods described above, in an example using current design parameters 
for the main linacs of a TeV collider. Additional results for other subsystems of 
both a TeV linear collider and an intermediate-energy (0.5 Tev in center-of-mass) 
linear collider are discussed elsewhere.” 



2. MULTIBUNCH BEAM DYNAMICS 

We assume an equal charge of N electrons in each bunch and uniform spacing 
4 between adjacent bunches; the bunch spacing e is of course an integral number 
of RF wavelengths. We use the smooth-focusing approximation Ln(s) = l/@,(s) 
for the focusing function of bunch n, where ,&(s) is an average betatron function. 

The transverse dipole wake function is a sum of modes of the following form: 

W*(Z) = --$ C ~ sin(K,z) exp( -z) 
m K7z , (24 

where 
z = distance behind exciting bunch 

K m=a = 

Ql 
wavenumber of mode m 

= quality factor of mode m 
Ll = loss factor of mode m [v/coul/cell] 

P = cell length 
a = iris radius . 

The units of W*(z) are V/Coul/m2,’ and Wl(.z) is to be multiplied by the 
charge and transverse displacement of the exciting bunch to get the wake field a 
distance z behind that bunch. 

The bunches are considered to be point macroparticles. Single bunch beam 
blow-up is a separate question and can be dealt with using different techniques. It 
is controlled by opening the irises of the structure, by short bunch lengths, and by 
using “BNS damping” to compensate the wake effects.12j13 In this paper, we shall 
only be concerned with the bunch-to-bunch wake fields. 

2.1. Multiple Bunches in the Effective-Length Approximation 

The standard treatment of beam breakup using two macroparticles’4’15 starts 
from the equations of motion: 

xc’l’ + kfx1 = 0 (2.2) 

x; + k,2z2 = Ne2W(4 xl 
E - (2.3) 

Here the x1 and 22 are the transverse displacements of the two bunches (assumed 
to be in a single plane), E is the energy of the electrons in the bunches, and wl(e) 
is the transverse dipole wake function at the second bunch due to the first bunch. 
Primes denote derivatives with respect to longitudinal distance s. 
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Suppose kl = kz = k. Then if xl(s) = aleiks and x2(0) = al, the solution 
x2(s) for the second bunch satisfies 

x2 - Xl = Ne2mv> ,,iks 
al 2ikE (2.4) 

Note the linear growth of the envelope of the difference 22 - x1 with longitudinal 
distance s. If ICI = k and k2 = k + Ak, with Ak < k, then: 

x2 - Xl = (1 - N~~~~~) > 2sj sin(F) eitk++Fls . 
al 

(2.5) 

In this case, the envelope beats with wavelength 4a/Ak instead of growing linearly. 
If the coefficient in front is made zero by the proper choice of Ak, then there is no 
growth of the transverse amplitude of the second bunch. 

In this approach, acceleration has not been taken explicitly into account; the 
energy E of the bunches has been assumed constant. However, we may interpret 
E and the k, to be the energy and the focusing functions at the beginning of 
the linac, and s to be not the true distance along the accelerator, but rather an 
“effective distance”. The effective distance is just +(s)/ko, where +(s) is the phase 
advance in the actual distance s along the linac and ko is the focusing function at 
the beginning of the linac. The focusing is assumed to vary as 

and the acceleration to be linear: 7 = 7o+Gs with G a constant. Thus the effective 
distance is 

seff = y = k j k(s)ds 

(2.7) 

and if 7(L) >> 70 at s = L, the end of the linac, the effective length of the linac is 
approximately 

0 112 
L eff =2 - 7o L . 

7 
(2.8) 

Before treating multiple bunches with adiabatic acceleration, we note that an 
approach similar to the above may be taken in the case of more than two bunches. 
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. 
The equation of motion for the transverse displacement of bunch n (n > 1) is: 

5: + k;x,, = f&) , (2.9) 

where the driving term is: 

fn(s) = E j=l 

Ne2 2 W_L((??, - j)i?)Xj(S) m 

We look for a solution of the form xn(s) = a,(s)eikns, which leads to 

(2.10) 

CL; + 2ik,a:, = ,(s),-~~~~ . (2.11) 

Assuming the variation of a, with s is sufficiently slow, we may neglect the ai 
term. Solving for a, then yields as the solution for x,: 

G&(S) = xn(0) + gg- 
[ 

12 je-ikndfj 
. 

W(n -j)l)Xj(S')dS' eikns s (2.12) 
‘= 1 

0 

Again, if there is acceleration we interpret s as the effective length, E as the initial 
energy, and the k, as the initial focusing functions. Then the result is essentially 
equivalent to that in the next section, except for missing adiabatic damping factors. 

2.2. Multiple Bunches with Adiabatic Acceleration 

Taking acceleration into account, the equation of motion for zn is: 

r(s)x: + r’(+; + r(s)k2(+n = &z(s) , 

where we now define 

2 n-l 

&a(s) - $ c W_L((n - Jy)Xj(S> * 
j=l 

(2.13) 

(2.14) 
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Here m is the rest mass of the electron. The WKB solutions of the homogeneous 
. equation are 

x$(s) = x;(o) [$~~$~)]1’2exp [ 4zi/i,(r’)dr’] 

=z:(0)[--$]1’4exp [ &ijk.(s’)ds’] , 

0 

(2.15) 

where we have used Eq. (2.6) for th e variation of k, with 7. Now look for a solution 
to the inhomogeneous Eq. (2.13) of the form: 

x(s) = u+(s)x+(s) + u-(+-(s) (2.16) 

(suppressing subscript n for the moment). Without loss of generality we may 
assume that: 

u’+x+ + u’-x- = 0 . (2.17) 

Substituting into the inhomogeneous equation we obtain 

-&x: + U’-XL) = F(s) - (2.18) 

Thus, we have two simultaneous equations [Eqs. (2.17) and (2.18)] for u!+ and IL’_, 
which we may solve and integrate to obtain: 

s 

u+(s) = u+(O) + 
J 

Fx- 
7(x-x’+ - x+x’_) 

ds’ 

0 5 
u-(s) = u-(O) + 

J 
FX+ 

o $x-x\ - “+L) 
ds’ . 

(2.19) 
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It is easy to show that the denominator 7(x-x’+ - x+x:) = 2i. Thus the . 
general solution to the inhomogeneous equation for bunch n is 

S 

Xn(S) = a&$) + q&(s) + 

J 

Gn(s, s’)F,(s’)ds’ , (2.20) 
0 

where a: and a, are arbitrary constants. The Green function is given by: 

G&, s’) = [r(s)r(s’)kn(s)kn(s’)]-1’2 sinA(s, s’) , (2.21) 

where: 

$,(s, s’) E j k,(s”)ds” 

81 
(2.22) 

is the phase advance for bunch n. Let us take the “positive phase” WKB solution 
as the motion for the first bunch, 

Xl(S) = Xl(O) (-$J4v [i+,o)] , 

and assume a; =Oforalln>l. Then 

4s) = xn(O> (-$$)li4ew [%dO)] t 
S 

[+y(s)k,(s)]-1/2 
J 

[-y(s’)k,(s’)]-1/2 sin $,(s, s’)Fn(s’)ds’ 

0 

= xn(0)(-$J4eq [Gh&,O)] t 

Ne2 (T)“‘j ($)1’4sin$n(s,s’) 
romc2kn(O> Y(S) 

0 

(2.23) 

(2.24) 

n-l 

x C Wl((n -j)e)xj(s’)ds’ - 
j=l 
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. 
This may be written in the following form for comparison with our previous 

results and for convenience of numerical computation: 

Ne2 2i70mc2 kn(0) [ j (~)li4aPliA(s’,0)] 
0 

x 2 Wl((n - j)Oxj(s’)ds’] (-$)1’4~XPi+@$&90)1 
t 

j=l 

Ne2 
2i-yomc2kn(0) 

[ j (~)lilexp~till,(sl,O)j 
0 

n-l 

x C WL((TZ -i)e)xj(s’)ds’ -& 1’4exp[--i$n(s,0)] . 
j=l I( > S 

(2.25) 
The last term is negligible since the integrand is rapidly oscillating (and indeed we 
did not even include it when we derived the effective length approximation). The 
first two terms are equivalent (up to adiabatic damping factors) to the effective 
length result [Eq. (2.12)] with variables interpreted as discussed there. 

3. MINIMIZING THE TRANSVERSE WAKE EFFECTS 

We now turn to the study of ways to prevent beam blowup, by damping the 
transverse wake, by minimizing the wake effects by placing the bunches close to 
nodes of the wake field, and by varying the focusing to partly cancel the wake force 
at the bunches. 

3.1. Damping the Transverse Dipole Modes 

As noted earlier, the modes of the transverse dipole wake can be strongly 
damped by the use of axial slots through the irises of the RF structure coupled 
to radial waveguides. The Q of the fundamental transverse mode can be made as 
low as about 10 in this way, without significant adverse effect on the longitudinal 
accelerating mode.2 The Q’s obtained for the higher order modes should be at least 
as low as the Q of the fundamental. For simplicity in the numerical computations, 
we will take the Q’s to be the same for all modes. 
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3.2. Tuning the Frequency of the Fundamental Transverse Mode 

The transverse dipole wake for the accelerating structure considered here is 
strongly dominated by its fundamental mode and has zero crossings that are ap- 
proximately equally spaced. Figure 1 shows a typical dipole wake which was 
computed using the program TRANSVRSl’ for a disk-loaded structure designed 
to operate at 17.1 GHz. The structure has a cell length of 5.83 mm, internal cell 
radius of 7.47 mm, and a relatively large iris radius of 3.47 mm. This structure 
has no slots to damp the transverse modes. However, assuming that such slots 
damp higher order transverse modes at least as much as they damp the fundamen- 
tal transverse mode and that this fundamental mode dominates the others, the 
slotted structures will also have periodic wake zero crossings. 

Therefore it is possible to place all the bunches in a train near zero crossings 
of the wake field, if the ratio of the frequency of the fundamental dipole mode to 
the frequency of the accelerating RF is appropriately tuned. The condition that 
this be so is just 

1 
-nh, 2 

= m&f = l , (3.1) 

where e is the bunch spacing, m and n are integers, and X,f and Xw, are the 
wavelengths of the RF and the fundamental dipole wake mode. 

3.3. Bunch-to-Bunch Variation of Transverse Focusing 

By the use of a system of time-varying quadrupoles in addition to the main 
system of quadrupoles, we could introduce a small spread in the focusing functions 
k, of the bunches. If the focusing increment at a given bunch is chosen appropri- 
ately, one can at least partially cancel the wake force due to the preceding bunches 
[cf. Eq. (2.5)]. It is not practical to use this method by itself to control the wake 
field effects of multiple bunches because, for the parameter regimes we will be con- 
sidering, the required spread in the values of the k, would be too large. However, 
in some cases it may be a useful adjunct to other methods. 
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Fig. 1. A typical dipole wake for a disk-loaded structure designed to op- 
erate at 17.1 GHz. Ninety modes have been included. The wavenumber 
of the fundamental mode is about 462 m-l and the zero crossings are 
nearly equally spaced at half the corresponding wavelength. (a) shows 
the wake immediately behind the first bunch, (b) is centered at the sec- 
ond bunch, and (c) is centered at nine bunch spacings. The bunch 
spacing is 21.0 cm (twelve RF wavelengths at 17.1 GHz). 

4. RESULTS FOR MAIN LINACS OF A TEV COLLIDER DESIGN 

We have in effect a three-dimensional parameter space to explore, while holding 
all other parameters fixed. The three parameters to be varied are: 

1. The Q value of the modes of the transverse dipole wake (taken to be the 
same for all the modes). 

2. The frequency of the fundamental transverse dipole mode (in our computa- 
tions;the frequencies of the other modes will be assumed unchanged). 
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. 3. The total spread in the values of the focusing function (which can be dis- 
tributed linearly or in some other way among the bunches). 

For illustration, we consider a main linac accelerating frequency of 17.1 GHz. 

Table 1: Parameters for Main Linacs at 17.1 GHz 

L 
I Linac length I 3000 m 

Initial beta function 3.2 m 

(k. = 0.3125 k-l) 

. 

The parameter set used is shown in Table 1. Each linac accelerates 10 bunches 
per RF fill, to an energy of 0.5 TeV. The spacing of 12 RF wavelengths between 
bunches (at the assumed RF frequency) is chosen in order to match the energy 
extracted by the bunch train to the energy input from the RF. This gives very 
nearly the same acceleration for every bunch in the bunch train.’ 

Let us first examine the effectiveness of lowering the Q’s and tuning the 
frequency of the fundamental transverse dipole mode. The RF wavelength at 
17.1 GHz is 1.75 ems, and the wavelength of the fundamental mode of the unmodi- 
fied transverse dipole wake (Fig. 1) is 1.36 ems. If the frequency of the fundamental 
mode is shifted slightly, so that its wavelength is 1.31 ems, then Eq. (3.1) is satisfied 
with n=32, and we have 

x 4 rf -=- 
xw, 3 * 

(4.1) 
When this relation is satisfied, the frequency of the fundamental transverse mode 
is 477.85 m-l, which we shall denote by I(wo. In Fig. 2, we show “tuning curves” 
of the maximum transverse amplitude xmaz in the bunch train as a function of the 
frequency of the fundamental transverse dipole mode, for values of Q = 30, 40, 
50, and 60. The value of xmaz is the maximum of the amplitudes reached by all 
bunches as they travel down the linac, normalized by dividing out the adiabatic 
damping factor (70/r) ‘i4. The central frequency, at which &f/X, = 4/3, is 
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. 477.85 m-l. The range about the central frequency shown in the figure is only 
AO.l%. Thus the tolerances on tuning the frequency of the dipole mode are rather 
tight. If we take x,,, 5 2 as a figure of merit, then for Q = 60 we would have to 
tune to within about 0.04% of the central frequency Kw,. 

Tuning Curves at 17.1 GHz for Q=30 to 60 
-10 
xi 
.N 
3 
E 8 
5 
$ 6 

E 
2 4 
a 
z 

477.4 477.6 477.8 478.0 478.2 
12.88 621 ,A2 Wavenumber of First Wake Mode (m-l) 

Fig. 2. Maximum transverse amplitude xmaz (normalized) of all bunches 
as a junction of the frequency of the jundamental transverse dipole 
mode, for values of Q = 30, 40, 50, and 60, at 17.1 GHz accelerating 
frequency. The central frequency, where X,.f/XwL = 413, is 477.85 m-l. 
The spread shown about Kw,, is f 0.1%. 

Note that at M bunch spacings behind a bunch, the wake field has damped by 
a factor of about 

exp (-“Ti”) xexp (-7) 9 (4.2) 

and so a given bunch can feel a significant wake field from several bunches ahead 
of it, unless it is near a node of these wakes and/or the value of Q is well below 50. 
For smaller Q’s, there will be very little interaction beyond immediately adjacent 
bunches. Figure 3 shows tuning curves for the smaller values Q = 15, 20, and 25. 
The spread around KwO in this figure is ztl%, and as can be seen from the figure, 
for Q = 15, we have x maz < 2 for frequencies within this range. 

Of course, as Q is lowered, the frequency of the fundamental transverse mode 
becomes less sharply defined; the full width at half-maximum of the resonance 
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Tuning Curves at 17.1 GHz for Q= 15 to 25 
$0 
al 
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i3 
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F 
z4 
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474 476 478 480 482 

Wavenumber of First Wake Mode (m-l) 

Fig. 3. Maximum transverse amplitude x,,,~ (normalized) of all bunches 
us a junction of the frequency of the fundamental transverse dipole 
mode, for values of Q = 15, 20, and 25, at 17.1 GHz accelerating jre- 
quency. The central frequency, where X,,/Xw, = 413, is 477.85 m-l. 
The spread shown about KwO is f 1%. 

around the central frequency I(wO is I’ = % (and th e central frequency is shifted 
slightly from that of the undamped mode). So it is also of interest to compare the 
ratio R of the tuning tolerance for a given Q to the full width I of the resonance 
at that Q: 

RI*; wo -. WV 
In Table 2, we show the full-width tuning tolerance AICwo for the criterion 

xmaz 5 2, the full-width I’ of the resonance peak, the tuning tolerance expressed 
as a percentage of the undamped central frequency, and the ratio R. The param- 
eters used and the values of Q tabulated are those used in Figs. 2 and 3. The 
lower values of Q, say, up to 30 or so, seem to be the most desirable in that the 
tolerance on tuning is at least 10% of the bandwidth of the resonance; this should 
be straightforward to do. Thus, since these Q’s have already been achieved in 
models, it appears that the beam blowup can be controlled without resorting to 
the third method, namely the introduction of a spread in focusing over the different 
bunches. However, for illustration we show in Fig. 4 the same case as in Fig. 3, 
except that a nonzero spread in the focusing functions has been introduced. From 
Eq. (2.5), we see that there will be exact cancellation of the part of the wake at a 
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Table 2: Tuning parameters for the 

fundamental transverse dipole mode 

for TLC main linacs 

Q A.K~,,(mB1) I’ = q(rn-l) 92 -q 

15 >ll.O 31.9 >2.3% >34% 

I I 20 4.37 I 23.S 1 1 0.91% 1 18% 1 

50 0.57 9.56 0.12% 6.0% 

60 0.38 7.96 0.08% 4.8% 

given bunch that is due to the immediately preceding bunch when 

Akadj = Ne2Wde) 
2Eko ’ (4.4) 

Here Ak,dj is the difference between the focusing functions of adjacent bunches. 
Multiplying this by 9 gives the total spread Ak tot over all 10 bunches. For Q = 20 
and for a frequency of the fundamental transverse mode 0.6% above Kw,, we have 
Ahot = 6.24%. We show the results for this value of Akt,-,t in Fig. 4(b). However, 
the phase advance difference due to a focusing spread can introduce complications. 
In our example, the total phase advance in the main linacs is about 607r. Thus for 
a focusing spread of 1% or so, the spread in phase advance is becoming significant 
compared to 27r. In such a case, the amplitude of betatron oscillations must be 
smaller than the transverse bunch dimensions or there must be position control 
of individual bunches at the end of the linac, to keep the bunches from missing 
each other at the interaction point. Figure 4(a) shows the case of a total spread 
of 1% linearly distributed over the bunches. We see that for the smaller value of 

. A ktot shown in Fig. 4(a), there is no appreciable increase in the tuning tolerance 
compared to Fig. 3, and so this method of alleviating the wake field effects does 
not seem as useful as the other two methods we have investigated. 

14 



101 I I\ I I I I I 

8 

6 

6.24% Focusing Spread - 

xJ&&& , A 

474 476 478 480 482 
12-88 
6217*4 Wavenumber of First Wake Mode ( m-l) 

Fig. 4. h!laximum transverse amplitude xmaz (normalized) of all bunches 
as a function of the frequency of the fundamental transverse dipole 
mode, for values of Q = 15, 20, and 25, with nonzero, linearly dis- 
tributed spread in the focusing junctions over the bunches. In (a), 
Ak/ko = 1%, and in (b), Ak/ko = 6.24%. 

5. CONCLUSIONS AND ACKNOWLEDGMENTS 

We have demonstrated that it is possible to control the multibunch beam 
breakup due to the transverse dipole wake field by using an experimentally realiz- 
able combination of (1) damping the wake field (1 owering the Q’s of the modes), and 
(2) tuning the frequency of the fundamental mode so that the bunches ride near 
zero crossings of the wake field. The fundamental transverse dipole wake mode 
needs to be damped to a Q below about 30, and experiments done by Palmer2 
indicate that this should be feasible. 

We would like to thank Bob Palmer for many useful conversations, and Karl 
Bane for providing computations of the wake fields used here. 
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