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ABSTRACT 

We review the solution and properties of the diffusion equation in a hierarchical or 

ultrametric space [ 11. 

One of the oldest equations in physics is the equation of diffusion. In its most general form 

it reads: 

dPi N E..p. 
dt = j=l rJ ’ c 

where Pi is the probability of finding a particle at site i (i = 1, . . . . N) of some arbitrary discretized 

space M, and cij is the hopping or transition probability per unit time, from site j to site i. This 

must of course be positive: 

Cij 2 0 f or ifi (24 

and, in order to conserve total probability (C Pi(t) = l), we must have : 
i 

N 

c 
Cij = 0 WJ) 

i=l 

which fixes the diagonal elements eii . Furthermore, I will assume in this talk that the transition 

matrix is symmetric: 
a’\ 

Cij = Cji 
‘\ (3) 

i.e. that there is equal probability of hopping forward and backward between two sites. This 

restriction is not necessary for having a well defined diffusion problem, but as we will see it can 

be effectively lifted. 
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Some general facts follow immediately from conditions (2-3). Firstly, there is a time- 

independent, steady-state solution, corresponding to equal probability at every site: 

Pi(t) = jj for all i (4) * 

Secondly, for any vector x : * 

XfTX = C Cij(2XiXj - Xf - Xi', 5 0 (5) 
i>j 

which shows that with the exception of the zero eigenvalue, corresponding to the vector (4), all 

other eigenvalues of the matrix c are negative. Denote by 

&I = 0 > c(2) 2 . . . . 2 JN) (6) 

these eigenvalues, and by vil) = & , vt2) ,...,v(~) the corresponding orthonormalized eigen- 

vectors. Knowledge of these clearly suffices to solve the diffusion problem (l), for any initial 

probability distribution P(0) at t = 0. The result is: 

Pi(t) = $ + 5 < P(0) Iv(‘) > vp ezp(-t/r(‘)) 
I=2 

where we have here defined the characteristic times : 

q) - l --- 
&I ’ 

(7) 

(8) 

< xly > is the usual vector inner product, and we have used the fact that < P(O)Iv(‘) >= $$ 

since total probability is always one. 

It follows easily from (7) that, at large t, one always approaches asymptotically the steady 

state (4). For finite spaces M the approach is exponential and dominated, generically, by the 

largest characteristic time ~(~1. For infinite spaces the relaxation can be slower than exponential, 

if there is a sufficient concentration of characteristic times at infinity. For instance if the density 

of characteristic times behaves asymptotically when r --+ oo as: 

p(r) - r-y-1 (9) 

then for generic initial conditions the relaxation is described at large times by a power law: 

j’” p(r)e-$dr - tmY . 

* We will often drop the vector index labelling the sites of M; summation over repeated indices is as usual 
implied. 
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Now we all learned in highschool how to solve the problem of diffusion on a regular lattice 

in D-dimensional Euclidean space. The eigenvectors of the transition matrix are in this case 

plane waves, their eigenvalue is proportional to momentum squared, and v = +D . Another 

situation in which one can, if not completely solve the problem, at least calculate exponents 

such as u, is when the space M is scale-invariant or fractd [2]. Here I will consider yet another 

kind of geometry, ultrametric geometry, which has neither translational nor , necessarily, scale 

invariance [3] . Ultrametricity is the statement that , for all i, j and k : 

Eij 2 min(Eik,rjk) 

which implies that given any three sites, the two smallest transition rates are equal. A more 

descriptive but completely equivalent way of saying this is that the sites can be organized as 

the leaves of some genealogical tree, so that transition rates are only a (decreasing) function of 

relation, i.e. a) Eij = CA(i,j) is only a function of the nearest common ancestor A(i,j) of i and 

j , and b) CA is monotone decreasing as A moves up, along any path, towards the patriarch or 

root of the tree. We may in fact encode all the information about the transition matrix c in 

the tree, by stretching the heights hA of its branch-points , so that CA E eWh~ (see fig. la). 

The height h,(i,j) can be thought of as an energy barrier, through which a particle going from 

site i to site j must penetrate. With this convention, both topology and branch heights will be 

relevant when we refer to trees in the sequel. 

Much of the interest in ultrametric geometry was spurred by the discovery [4] that it describes 

the space of spin-glass states in mean field theory [5] . An exact or approximate hierarchical 

organization, however, also characterizes a wide variety of other natural and artificial systems: 

For the mathematicians and, more recently the string theorists, a familiar example of an ultra- 

metric norm is the p-adic norm on rational numbers. What is surprising is that ultrametricity 

is powerful enough to allow us to solve the problem of diffusion exactly, without any further 

assumption or approximation [l] . 

In order to describe the diagonalization of an arbitrary ultrametric transition matrix, let us 

introduce some notation (see also fig.la): for any branch point or tree leaf B, we let B, be its 

unique n-th ancestor, NB the total number of its final descendants , i.e. tree leaves generated 

by B, and xfB) their characteristic function: 

x!B) = 1, if i is a descendant of B 
t 0, otherwise. 

. 
Then for each B : 

(11) 

is an eigenvector of the transition matrix, that describes the process of equilibration 
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Cf=Bz= root 

I 
“B, 

Figure 1 a) A generic tree illustrating our notation; the root is the father of Br and 
C, and the grandfather of B. The nodes Br , B and C have 7 ,3 and 2 final descendants 
respectively. All heights are measured from the leaves, which represent the sites of M. 
b) A self-similar, uniformly bifurcating tree . c) A most complex tree leading to slowest 
possible relaxation; its silhouette is the same as for (b), since total population doubles 
at every generation. 

between the descendants of B and those of all his brothers. The corresponding eigenvalue, or 

inverse characteristic time, of this process can be expressed as a sum over all ancestors of B: 

root 

dB) = ~NB,(~B, - cB,+l) (12) 
n=l 

where by abuse of notation root stands here for the number of generations between B and the 

tree root, and all terms in eqs. (11) and (12) that refer to ancestors of the root should , by 

convention, be dropped. Suppose now that at t = 0, the particle is with probability one at a 

given site, i.e. tree leaf, L. We may decompose this initial condition in terms of the eigenvectors 

(11) : 
root 

6. r,L = c 
u(L) (13) 

n=O 

Since any other initial condition can obviously be written as a linear combination of (13), we 

have thus solved completely the problem of ultra-diffusion, for may underlying tree. 

Let me now concentrate on the exponent u that measures the speed of relaxation for infi- 

nite trees. Since there are many many more trees than real numbers, we expect some kind of 
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universality. In other words Y should only depend on very few characteristics of the tree. One 

obviously relevant characteristic is the asymptotic rate of population growth, or eilhouette : 

Alogn(h) 
s=hthmoo- oh 

I - 

where n(h) is the population at height h. A large s means that there are on the average more 

sites available for hopping in, at given barrier height, and this should speed up relaxation. Thus 

it makes sense to fix the silhouette 8, and ask how u depends on the remaining characteristics 

of the tree. For instance one may want to compare relaxation on the trees of fig. lb and lc, 

which have the same silhouette, i.e. would look the same if they were to wear a coat, but have 

completely different internal structure. The following three theorems address this issue. They 

hold under the assumption of stable relaxation, meaning that the autocorrelation function never 

decays faster than exponentially in time. I state these theorems without proof, since detailed 

proofs can be found in ref. [l]: 

Theorem 1: For uniformly multifurcating trees, u,,,iform = &. For any other tree, 

Examples of uniformly multifurcating trees are the tree of fig.lb, or the tree of p-adic num- 

bers. The above result shows that they lead to optimal relaxation. The next result identifies a 

class of trees leading to the slowest possible relaxation: 

Theorem 2: For the tree of fig. lc, Y = s. For any other tree, u 1 s. 

The third and last result shows that structural noise is irrelevant, in that it modifies the 

power law decay of autocorrelations by, at most, logarithmic corrections: 

Theorem 3: For trees whose branching ratio at every node is an identically distributed, 

independent random variable, Vro,&m = fi . 

Now both uniform and uniformly random trees are self-similar structures, whose parts are 

on the average identical to the whole. Thus we may interpret the above results as saying that , . 
for fixed S, the dynamic exponent -u measures the lack of self-similarity, or the complezity of 

the hierarchical structure. One can in fact define other, static measures of a tree’s complexity, 

that share the same qualitative features as -u [6,7] . An example is the critical threshold for 

percolation, pc, from the root to the bottom of the genealogical tree. It can be shown [7] that 
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pC is also minimized by self-similar trees, is insensitive to noise, and is maximized by the very 

unbalanced tree of fig. lc. This suggests that u may in fact be a monotone function of pc, but I 

have not been able to prove this. 

Let me make here a parenthetical comment on semantics. The use of the word complezity 

in the above context can be motivated in many ways. For instance it is in accordance with our 

intuitive notion that complex is neither ordered nor random [6]. And the threshold for percolation 

on the tree of winning strategies of a game is, indeed, a measure of the fault-tolerance and hence 

of the complexity of the game [7] . Nevertheless, I am fully aware of the fact that complezity 

figures high in the list of most used and abused words in the scientific literature (to give a very 

banal example: complex analysis is as we all know much simpler than real analysis). For this 

reason some other term for u and pc might have been more appropriate. 

I will conclude with some remarks about where and how ultradiffusion could be useful1 (8). , 

Clearly, since an ultrametric transition matrix allows for infinite range hoppings, we do not expect 

it to describe diffusive processes in a finite- dimensional space. M could however be either an 

infinitely connected artificial system , like a neural network, or the configuration space of a spin- 

or other statistical mechanical model . Consider in particular the mean-field spin glass (51. It is 

reasonable to assume that like thermodynamic equilibrium states, long-lived metastable states 

also have a hierarchical organization [4]. Since the appearance of ultrametricity is, however, in 

this case spontaneous, we do not know a priori the structure of the underlying tree, which we 

need as an input in the diffusion equation. We could however try to work backwards; indeed, 

the hopping rates between metastable states are given by: cij = eSAFiilT , where AFij are 

free energy barriers. Let us make the naive assumption that the distribution of these barriers 

does not change, or changes very slowly with temperature. Then clearly the silhouette s is 

proportional to temperature, and the temperature-dependent dynamic exponent behaves like: 

u(T) = 
fi for self-similar trees 

T for most complex trees 
(15) 

below the critical temperature T,, at which relaxation becomes unstable [l]. Note in particular 

that the transition to instability (u = oo) is continuous in, the case of self-similar trees, and 

discontinuous for the most complex ones. Now in the mean-field spin glass it is known (91 that 

below T,: 

1 y=-- T - T, 
2 IrT + o(T - T,12 

c 

so that the transition is discontinuous. Thus, if we take the above naive model seriously, we would 

be tempted to conclude that the tree of the mean field spin glass is not self-similar. Interestingly 
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enough, numerical efforts to reconstruct this tree give a result that looks very much like fig& 

PI- 

Finally let me point out that the set of all ultrametric transition matrices sharing the same 

topological tree, is closed under both addition (trivially) and multiplication (we let the reader . 

prove this for himself). Thus, both ultrametricity and the topology of the tree are stable under 

time-resealings. It would be very interesting to study whether these stable trajectories in the 

space of all possible transition matrices, have any basins of attraction. In this case ultrametricity 

could be recovered as an effective property at large times. It would also be interesting to see 

whether the above ideas on complexity could be extended to the case of diffusion on multifractals 
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