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ABSTRACT 

We review the construction and properties of four dimensional string 
models, using free fermions on the world-sheet. We prove that as op- 
posed to gauge symmetries, broken space-time supersymmetry can only 
be restored continuously by decompactification. 

INTRODUCTION 

Much progress has been made recently in the study of classical string so- 

. lutions [3-151. We now know how to explicitly construct lots of consistent and 

phenomenologically interesting string models directly in four dimensions [7-li). 

Furthermore , many calculations with them are simple , often in fact simpler 

than their field theory counterparts [16] ; thus there seems to be little reason 

for even the most pragmatic model-builder not to try and take into account the 

stringy constraints that guarantee a consistent unification of quantum gravity 

- 

Although some 4d models can be obtained by compactification from 10 di- 

mensions [ 3-51, such a geometric interpretation is not always possible because 

the six internal bosonic coordinates are treated in general on the same footing as 

their world-sheet superpartners . Futhermore, even in the case of a bonna fide 

compactification, the size of the internal manifold is often of the order of the 
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Planck scale; the stringy nature of particles becomes then crucial and inval- 

idates our intuition. from field theories. For instance, one may obtain chirality 

from a non chiral 10d theory, or enhance the gauge symmetries [17], both of 

which would be forbidden in a traditional Kaluza Klein compactification. For 

these reasons it is more fruitful to abandon the language of compactification, and 

think of the string as moving directly in four space time dimens,ions with all its 

internal quantum numbers carried by some superconformal modular covariant 

model of appropriate central charge on the world-sheet [18]. 

The space of all such superconformal models is huge and includes such exotic 

possibilities as quantized Liouville modes [19], or collections of models from the 

minimal discrete series [ 111. Nevertheless , most of what we know at present 

about 4d string theory can be learned even if we restrict ourselves to a much 

simpler class of models made out of free bosonic or fermionic fields on the world- 

sheet ; we may refer to these models as Gaussian . Different Gaussian models 

have the same energy-momentum tensor but may differ in the way world-sheet 

supersymmetry is realized and/or the choice of boundary conditions under par- 

allel transport around the string . In this talk I will restrict myself even further 

to a subclass of Gaussian models which , in the fermionic language, are obtained 

by allowing only mutually commuting boundary conditions. Models with non- 

commuting boundary conditions are probably equivalent in the bosonic language 

to generic rational left-right asymmetric orbifolds ; the analysis of multiloop am- 

plitudes is in this case considerably more complicated as discussed earlier by 

Narain [lo]. 

The structure of this talk is as follows : in section 2 , I will briefly review the 

construction of consistent 4d string models using free world-sheet fermions with 

commuting spin-structures . In section 3 , I will show how to obtain models with 

space-time supersymmetry, chiral matter fields and realistic gauge groups, and 

discuss some of their elementary properties. Finally, in section 4 , I will examine 

the spontaneous breaking of symmetries; I will show that as opposed to gauge 

symmetries, space-time supersymmetry can only be restored continuously in a 

decompactification limit. 
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CONSTRUCTION OF 4D MODELS 

The guiding principle for the construction of consistent first-quantized string 

theories is invariance under all (super)reparametrizations of the world-sheet. 

This is required for finiteness and unitarity; it also seems to imply, mysteri- 

ously enough, some of the most profound principles of modern physics such as 

the principle of equivalence, gauge invariance, the cancellation of anomalies and 

the spin-statistics connection. Let us then see how to impose reparametrization 

invariance on a heterotic string [2] moving in four flat space-time dimensions, 

with extra free world-sheet fermions carrying all its internal quantum numbers .* 

Since the 2d theory is free, invariance under infinitesimal reparametrizations 

is guaranteed , provided we cancel the conformal anomaly. This fixes the total 

number of fermions : in the non-supersymmetric antiholomorphic side we have 

in addition to the space-time coordinates &Xp an extra 44 real fermions vA (so 

that 4 + y = 26). In the supersymmetric holomorphic side, on the other hand, 

tie have the d,XF , their supersymmetric partners v+!+ and finally an extra 18 

real fermions xa (so that 4 + 2 + y = 26 - 11 ) . Recall that f, 1, -26 and 11 are 

the contributions of a Majorana fermion ,a boson , the ghosts in the conformal 

gauge and their superpartners , in this order [23]. Note also that our analysis can 

easily be applied to type II supersymmetric strings , but these will not concern 

us here since their phenomenological prospects are dimmer [13,14] . 

Next, we must ensure invariance under 2d holomorphic supersymmetry trans- 

formations. A generic candidate for the Lorentz- invariant, dimension $ genera- 

tor of such transformations is [6,24] * 

TF = $+dzXp + ~fabcXaXbXc P-1) 

* This was suggested already at the dawn of dual models by Bardacki and Halpern [20]. 
The idea was resurrected for supersymmetric strings in ref. [6]. The modular invariance 
constraints were understood following the work of ref. [21,22]. These constraints were 
systematically analyzed in ref. [7,9,12]. 

* More general supercharges can be constructed if we bosonize the fermionic currents but 
these have not yet been completely classified. 
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This must obey the operator product expansion : 

$C ~TB(W) 
TF(z)T~(w) - cz _ 43 + z _ w (2.2) 

with TB the free energy-momentum tensor and c = 15 the central charge of 

matter fields. Using Wick’s theorem, it is straightforward to check that eq. (2.2) 

is satisfied if and only if 

f[abefcd]e = 0 (2.3~) 

and 

facdfbcd = f&b (2.3b) 

where here the brackets stand for antisymmetrization in all loose indices and 

repeated indices are as always implicitly summed. We conclude that the coeffi- 

cients fabc are the appropriately normalized structure constants of a semi-simple 

Lie group G , since they obey the Jacobi and orthonormality conditions (23a,b). 

The dimension of G must be 18, so that it is one of only three possible groups : 

SU(2)6,SU(2) X SU(4) or finally SU(3) X O(5). 

The final requirement is invariance under modular transformations , i.e. 

global reparametrizations that cannot be reached continuously from the identity. 

This forces us to sum over different boundary conditions, or spin-structures for 

the fermions. Strictly speaking, a spin-structure for all fermions f; on a world- 

sheet C is a representation of the first homotopy group XI(C) by orthogonal 

matrices : to every non-contractible loop on the surface we assign some matrix 

A , so that fi + Aiifi under parallel transport around the loop. The matrix 

A should not mix left and right-movers, and should respect Lorentz- invariance 

and world-sheet supersymmetry. Thus, it must have the following block-diagonal 

form : 
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A = -6jq 
l 0 0 

0 AG 0 

0 0 AR 

(24 

where 6~ is a sign which, as we will soon see , plays the role of a space-time 

fermion parity, and A G is an automorphism of the group G, i.e. : 

fabeA:& A& A,Gl = fa’b’c’ P-5) 

This follows from the requirement that the supercharge TF , eq. (2.1) ,be periodic 

or antiperiodic when parallel transported around a loop. 

In general, since rr(C) is non-abelian for world-sheets C of genus g 2 2 , 

the matrices A corresponding to homotopically distinct loops need not commute. 

Major simplifications, however, do occur if we restrict ourselves to matrices cho- 

sen from a set of mutually commuting ones. In this case, rr(C) can be replaced 

by its abelianized version HI (C) , also called the first homology group, the action 

of the mapping class group Diff(E)/Dif fo(C) becomes that of SL(2g,Z) and 

all fermionic determinants depend only on the period matrix of the surface and 

are, in fact, known explicitly in terms of O-functions [22]. 

For these purely technical reasons, we limit ourselves here to mutually com- 

muting matrices A , which can thus be simultaneously diagonalized in some, 

generally complex basis { fl, f2, . ..fK} of fermions. In this basis 

A = -diag(ei”Q1, . . . . . eixaK) 

and we may denote the matrix A by the vector cr = ((~1, . . . . CYK) of phases . 

By convention I will only include the phase of the two real transverse , or one 

complex, fermions @ ‘ and will take -1 < oi 5 1. 

Now a particular string model is determined by a set of coefficients C [;I; 

these are the weights with which a particular spin-structure [$ contributes to 
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the one-loop amplitudes. Here CY and p are as usual the boundary conditions 

in the space and time directions around the torus. The one- loop vacuum to 

vacuum amplitude for instance reads : 

Z1-loop = u--l 
/ 

Fund.dom. 

where r is the modular parameter of the torus integrated over a fundamental 

domain in the upper complex plane , U is a normalization and r] and 0 the 

well-known Dedekind and Jacobi-Riemann functions. 

Modular invariance imposes the following set of necessary and sufficient [22] 

conditions : 

. . 
(2.7~) 

(2.76) 

(2.7~) 

where (2.7 a,b) come from invariance under the modular transformations of the 

torus ( r -+ r + 1 and r --+ -5 respectively), while (2.7 c) comes from two-loop 

modular invariance and the assumption of factorization of string amplitudes. 

In these equations , 1 stands for the vector with all entries equal to one ,the 

dot products are Lorentzian: left minus right-movers, and addition is always 

understood modulo 2 . A detailed analysis of these conditions can be found in 

refs. [7,9,12]. For lack of time, I will only summarize here the results’ that I will 

need in the sequel . 
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To start with, contributing spin-structures correspond to pairs of elements 

of some additive group 9 of boundary conditions, so that : 

I# = { 
1, if cr,p E E 

0, otherwise (2.8) 

We shall assume E is finite ,which means that all vectors Q: E E have ra- 

tional components, since otherwise the normalization in (2.6) diverges and the 

expression is only formal. Being abelian B is isomorphic to a direct sum : 

zn, @ zn2 @ --- @ zne - Furthermore it must contain the vector 1 and, since 

it is a group, also the vector 0 ; these correspond respectively to periodic and 

antiperiodic boundary conditions for all fermions . 

If we were dealing with the type II supersymmetric or the bosonic string, with 

left-right symmetric boundary conditions, all phases in (2.7) would disappear, the 

absolute value in (2.8) could be dropped and this would be the end of the story. 

ior left-right asymmetric models, however, the existence of at least one choice of 

phases for the coefficients C [i] that is consistent with eqs. (2.7) imposes extra 

constraints on the allowed groups E . Let me describe these constraints in the 

simple case where fermions are allowed to be only periodic or antiperiodic. A 

vector Q! can then be interpreted as the characteristic function of a set of periodic 

fermions : 
1, if f; periodic 

ff; = 
0, if f; antiperiodic 

Vector addition can be interpreted as the symmetric difference (union minus 

intersection) of sets . B = 22 @  22 63 . . . $ 22 is generated by a basis {/3(O) = 

1$‘),/3(2)...} f f o ermion sets. Then the constraints on E are that : 

,Q(‘)) = 2n(P(i) n p(j)) = 4n(P(i) n p(j) n ptk) n p(l)) = 0 mod8 P-9) 

where n(p) is the number of real left minus right-moving fermions in the set 

p. Note incidentally that in this case of periodic or antiperiodic fermions all 

coefficients C [a*] are pure signs as follows from eq. (2.7 c) and the fact that 

a+a=O. 
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SUSY , CHIRALITY , AND MORE 

In this section I.will discuss some general properties of these string theories, 

and will try to illustrate how easily one can obtain semi-realistic models with N=l 

space-time supersymmetry , chiral families and phenomenologically acceptable 

gauge groups. Let us begin by noting that from the one-loop vacuum amplitude 

eq. (2.6) we can read off the Hilbert space of string excitations : 

I now explain this formula : Xa is the Hilbert-space sector in which the 2d 

fermions have boundary conditions given by CY when parallel transported around 

the string . This means that states in Ua are constructed by acting on a vacuum 

10 >a with positive frequency oscillators fi(n) , where the frequency n = 9 + 

integer . The total Hilbert space is a direct sum of sectors, one for each cx E H . 

Fi is the fermion-number operator that counts the fermions of type fi . The curly 

brackets in (3.1) stand for a projection operator that projects out all states which 

do not satisfy the equality inside . The factorization condition (2.7 c) guarantees 

that different projectors are mutually compatible, i.e. do not kill entire sectors. 

The Hilbert space (3.1) is a simple generalization of the Neveu-Schwarz-Ramond 

, or heterotic string constructions : each time we add new sectors to a theory , 

we must also add new GSO-type projections [25], so that the vertex operators 

emitting physical states are single-valued relative to each other [26] . 

The mass of a physical state in units of Mpl crn& is given by the zeroth-order 

Virasoro gauge conditions : 

M2 = c (frequencies) - f + aL i aL 
leftmovere 

(3.2~) 

= c (f requencies) - 1 + aR’aR 8 (3.2b) 
rightmovere 
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where LYL, aR are the left- and right-parts of the vector Q, and the sums run 

over all oscillators used to construct the state. The space-time statistics of the 

states in a sector Ua. depend only on whether the $+ are periodic (6a = -1) or 

antiperiodic (6, = 1) under the.boundary condition QI . The reason is that in the 

former case the vacuum 10 >a must represent the Dirac algebra of zero-modes: 

+iwO),tiU(0)~ = rl PJ and is therefore a space-time spinor , while in the latter it 

is a scalar . Furthermore oscillators cannot change the statistics since they carry 

at most a Lorentz-vector index . 

Let us consider now some specific examples of string-models. To simplify 

matters, I will restrict myself to the case of only periodic or antiperiodic fermions; 

the operators eina’F E (-)” are fermion-parities that anticommute with all the 

fermions in cr , while commuting with the rest. I will furthermore choose the 

world-sheet supersymmetry group : G = SU(2)6 so that the supercharge reads : 

. 
6 

(3.32 

The requirement that a boundary condition leave TF unchanged up to a sign can 

be checked easily by inspection . 

The minima1 string model has just two sectors: B = {O,l} , i.e. either 

all fermions are periodic or they are all antiperiodic . The low-lying spectrum 

contains a tachyon T* (M2 = -i) in the vector representation of SO(44) : 

+)I0 >o ? 

a graviton, dilaton and %-index antisymmetric tensor : 

~+xP(l)10 >o , 

gauge bosons Apta and AppAB of G x SO(44) : 

(3.4a) 

(3.4b) 
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x"(g3XP(l)lo >o ; v~;)v*(~v(~)lO ‘0 (3.4c) 

and finally massless scalars ipajAB in the (adjoint,adjoint) of G x SO(44) : 

@Ad) 

All other states have masses of o(Mp). In particular this model contains no 

massless space-time fermions . 

To remedy this situation, as well as get rid of the tachyons, let us change the 

theory by adding a new set : 

s = {~p,xz~3~ (34 

to the generators of the group of sectors which becomes : H = (0, 1, S, S + 1) . 

The effect on the low-lying spectrum is twofold: firstly in the sector Uc the new 

GSO projection sets (-)s = S&* [i] = -1 w h ere the last equality follows easily 

from eq. (2.7~). Th us, out of all the states (3.4) we must only keep those that 

have odd S-parity. This leaves the graviton and company , the six gauge bosons 

4,(1,3) ' the gauge bosons of SO(44), and finaIly six scalars @(zg3)rAB in the 

adjoint representation of SO(44) . S econdly, massless space-time fermions now 

appear in the sector Us , namely four spin-: and four spin-4 states : 

as well as four spin-4 states in the adjoint of SO(44): 

(3.6~) 

(3.6b) 

The multiplicity of four comes from the fact that IO >s is both a Lorentz and 

an internal SO(6) spinor since it must represent the algebra of six zero-modes 
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x’~~(0) . It is straightforward to check that the masssless states (3.6) together 

with the odd-S-parity states (3.4), f orm N=4 graviton and SO(44) Yang-Mills 

multiplets . That the theory has N=4 supersymmetry even when higher excited 

states and interactions are taken into account , can in fact be demonstrated by 

explicitly constructing the space- time supersymmetry generators [27] . 

Of course N=4 theories are phenomenologically uninteresting since they don’t 

have matter multiplets . To reduce the space-time supersymmetry , let us add 

one more basis element : 

p(1) = tx(I=3 ,... 6)(i=2,3),tlA=l ,... 16) 
(3.7) 

to our group of sectors . Proceeding as before, we note first that the result 

of the (-)@I’ projection is to truncate the spectrum of the SO(44) , N=4 su- 

persymmetric theory down to the graviton, SO(16) x S0(28)-Yang-Mills , and 

(vector,vector)- matter multiplets of N=2 . We trust the reader can , if he wants 

to; -work out the details of this truncation , keeping in mind that the operator 
(-y(l) anticommutes with the four zero modes x(‘=~~**~)~~(O) , and therefore 

acts on the states (3.6) as an internal SO(4) chirality . Besides satisfying the 

conditions (2.9), the choice of p(l) was dictated by the requirement that the new 

sectors contribute a massless N=2 matter multiplet, in the (spinor,l) represen- 

tation of SO(16) x SO(28) . These are the states: 

lo >I% and lo ‘p1+s P-8) 

which will give rise to chiral matter families at the next and last stage of our 

construction. 

Indeed let us finally add the following set to our group of sectors : 

p(2) = {~~,x(Z=1,..4),1, x5,3, X6,3,tlA=1 ,... 10,tlA=17 ,... 30) (3.10) 

The result of the (-) PC’) truncation is to break the gauge group down to SO(10) x 

SO(6) x SO(14)2 , and to reduce space-time supersymmetry to N=l . Fur- 

thermore, acting on the states IO >p(x) the operator (-)p”’ equals (helicity) x 
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(SO(lO)chiruZity) . The pt2) projection is therefore precisely a Weyl projection. 

To summarize, we have thus finally obtained a string model whose massless 

spectrum contains the states of a standard N=l supersymmetric SO(lO)- grand 

unified theory , with eight families, and a gauged SO(6) horizontal symmetry. 

One can go on refining this model but I don’t think this would at this stage 

be particularly illuminating . Let me instead make some general remarks. The 

. first is that a given string tree amplitude does not depend on any details of the 

model, other than the external vertex operators inserted on the sphere. On the 

other hand, as the above construction illustrated, the massless states of many 4d 

models can be obtained by truncating a more symmetric theory. This makes the 

calculation of the effective tree Lagrangian of massless modes considerably easier 

[28]. For instance the N=l theory constructed above is an exact truncation of a 

N=2 theory , whose Lagrangian depends on only one rather than two arbitrary 

functions . 

The second remark concerns the graviton, dilaton and antisymmetric tensor 

states (3.4b), which seemed to survive all projections . This is no accident : 

indeed acting on these states eiapeF = 6~ = C* [i] , where the second equality 

follows easily from (2.7 b,c) . Consequently the GSO projections (3.1) are auto- 

matically satisfied, meaning that graviton and company are always in the string 

spectrum. 

The final remark concerns space-time supersymmetry . First note that, in 

the case of only periodic or antiperiodic fermions, the only candidate massless 

spin-z states are : aXp (1) 10 >s , with S a set of precisely eight real left-movers * 

. Indeed S must contain at least 8 fermions to make the supercharge TF periodic 

, and it cannot contain more since the mass , eq. (3.2), would then become 

non-zero . Next note that some or all components of aXp(l) 10 >s will survive 

the GSO projections if and only if for all a E E disjoint from S, we have 

* We will encounter more geneial “supersymmetry generating” vectors S with non-integer 
components in the following section. 
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S 
c =-1 [I a (3.11) 

Note that for o’s overlapping with S , there is no restriction, since (-)” acts like 

a chirality operator and cannot‘eliminate all components . We thus conclude that 

the necessary and sufficient conditions for having at least one massless gravitino 

is that S E B and that (3.11) be satisfied. We may now prove a 

Lemma : For any string model with a massless gravitino , the partition 

function and one-loop cosmological constant vanish . 

To prove this denote for short by [z] th e contribution of a given spin-structure 

to the partition function , i.e. the integrand in eq. (2.6) . Then using the fact 

that B is a group , we may write the full partition function as : 

. c 
a,PEB [;I = .&$I + [T] + [,;s] + [;;:$ t3-12) , 

Now unless x and y are disjoint, [$ is proportional to 0 [i] and vanishes. The 

coefficients of the non-vanishing spin-structures within the curly brackets on the 

other hand, can be related by virtue of (3.11) and the duality and factorization 

conditions (2.7b,c). The result can be shown to be proportional to the Jacobi 

identity: 

- which completes the proof. 

(3.13) 

This is an example of a non-renormalization theorem [29]. Unless the theory 

contains anomalous U(l)‘s [30], the stability of supersymmetric vacua and the 

vanishing of the cosmological constant presumably hold to all orders in the string- 

loop expansion. 
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SYMMETRY BREAKING 

The previous section hopefully illustrated how one can construct 4d string 

models , which could be reasonable first approximations to our real world if we 

were to ignore all masses that’ are much much smaller than Mpranck . Though 

small, the masses of real particles are however finite, and are presumably related 

to the spontaneous breaking of gauge symmetries and, if it exists at all , of space- 

time supersymmetry. To make further progress we must therefore understand 

spontaneous symmetry breaking in string theory. 

Gauge Symmetries 

In what concerns gauge symmetries , things look good : indeed the scalar 

potential in most 4d string models has lots of flat directions along which the 

scalar vacuum expectation values can slide freely , breaking the gauge groups 

spontaneously at classically undetermined scales [5,31-331 . This is reminisent of 

no-scale models [34]. Although we do not fully understand how some of these 

scales will be fixed dynamically to be hierarchically smaller than Mp , the pos- 

sibility that such a thing happens at least exists . 

In order to be more explicit , let us consider for example the potential of the 

massless scalars (3.5d) in the SU(2)6 x 0(44) non-supersymmetric model of the 

previous section. One way of calculating this is to perturb the two- dimensional 

free fermionic action with the corresponding approprietely supersymmetrized 

scalar vertex operators at zero-momentum : 

~(24 = gja,AB 
int 

/ 
dzdzdO(xa + Of abc~b~c)~AqB 

(4.1) 

and then calculate the /?-functions [35] of the resulting generalized Thirring 

model. The classical string equations are : 

&o,AB = 
t3V 

aQa,AB = ’ (4.2) 

These determine the scalar potential modulo field redefinitions , which reflect 
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the dependence of the p -functions on the precise subtraction procedure. The 

two leading orders are however universal and yield [32]: 

V(Q) = &.ijk e Tr(gjZ,i~I~~@~,k) + i c Tr[@Ipi, ipJd]2 

I=1 I, J,i,i 
1 -- 
8 

~(Tr@z+Dz~j)2 + ; x(x Tr@zhi’,i)2 + o(Q5) 
IAi I i 

(4.3) 

where the traces and commutator are with respect to the suppressed SO(44) 

indices . 

It is straightforward to check that the above potential vanishes if we give 

arbitrary vacuum expectation values to all Q(z*i)gAB with (I, ;) and (AB) chosen 

among some 6 and 22 , respectively , mutually commuting generators of SU(2)6 

and SO(44) . That this is true even if higher-order terms are taken into account 

in (4.3) , follows from the fact that the Thirring model with mutually commuting 

left-currents coupled to mutually commuting right- currents has exact conformal 

invariance . In the statistical mechanics language , these flat directions corre- 

spond to integrable marginal operators that deform continuously the spectrum 

of conformal weights , i.e. masses of the string states . 

The scalar potential (4.3) is in some sense universal for the entire class of 

Gaussian string models ; the reason is that the massless scalars coming from the 

purely antiperiodic sector 10 are a subset of the aapAB , and their potential can 

be obtained by appropriately truncating (4.3) . Thus for example our discussion 

of the flat directions can be taken over to the N= 4 , 2 and 1 supersymmetric 

models constructed in the previous section . Of course massless scalars may also 

exist in other sectors of the Hilbert space , and may give extra flat directions 

at appropriate multicritical points . I will refrain , however , from further dis- 

cussing these points and turn now to the more crucial problem of supersymmetry 

breaking . 
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Supersymmetry 

One of the main motivations for introducing supersymmetry is that it can 

solve the technical part of the gauge hierarchy problem , i.e. explain why radia- 

tive corrections do not drive the weak scale MU.J to Mp . Of course , a completely 

different mechanism could be responsible for this in string theory . Otherwise 

following the conventional lore , we should expect space-time supersymmetry to 

be broken at a scale of order Mw , and hence much smaller than Mp . Further- 

more this breaking is either non-perturbative [36], or else it must occur at tree 

level , since the non-renormalization theorems exclude the possibility that it be 

induced by radiative corrections *. Setting the non-perturbative effects aside, the 

following question arises : is it possible , as in field theory , to slightly perturb 

the tree-level spectrum of a 4d supersymmetric string model by introducing in- 

finitesimal (in units of Mp ) mass splittings between superpartners ? I will now 

show that , at least in the class of free-fermionic models considered here , this is 

not possible [37]: the existence of a gravitino of small mass necessarily implies 

the-existence of a whole tower of such states between 0 and tip with mass differ- 

ences of the order of the supersymmetry breaking scale . Thus supersymmetry 

can only be restored in some sort of decompactification limit . 

To prove the assertion let us start by considering the mass of a space-time 

fermionic string excitation . This must belong to a sector Na where the boundary 

eondition cy leaves the @ ‘ and the supercharge TF periodic . Thus from (3.2 a) 

we have : 

M2 = c (frequencies) -i+f+ cxG 8 a!G 
le f tmOVet8 

(4.4 

where f is the contribution to the mass subtraction of the periodic $JP , and CY~ 

is the phase-vector of some automorphism A G , as explained in section 2 . 

To save time I will restrict myself here to inner automorphisms , i.e. group 

elements in the adjoint representation , although all my conclusions will hold 

* The breaking through a on&loop induced Fayet-Iliopoulos D-term [30] does not seem 
phenomenologically relevant. 

16 



also for outer automorphisms . The general inner automorphism is of the form 

A G = eirrGti with H’ a set of mutually commuting generators in a Cartan-Weyl 

basis. We thus obtain : 

,-$YaG- - :rG + c(i-$- l)2 
+ve 

(44 

where rG is the rank of the group and the sum runs over all roots p’, positive 

with respect to e’. Now let us define , $ = 2 c p’, where cG is the Casimir in 
+ve 

the adjoint representation. Using the Freudenthal-de Vries strange formula : 

2 
c&’ ij = idG (4.6) 

and the fact that C p’pj = ySij , we can rewrite eq. (4.5) as follows : 
+ve 

(4.7) 

The minimum vector length is therefore +dG and is obtained for the special 

automorphism : * 

AG = ,ir$.i? 
0 (4.8) 

which we may refer to as a superautomorphism. Plugging now eq. (4.7) back in 

eq. (4.4) , with d G = 18, we conclude that the holomorphic part of a massless 

space-time spinor is necessarily the vacuum of a sector in which the fermionic 

boundary conditions are given by the superautomorphism (4.8). Note inciden- 

tally that we have here also proved that there are no tachyonic spinor excitations 

as is , of course, to be expected of a consistent string theory . 

Consider now a massless gravitino . It follows easily from the above discussion 

that the only candidate for such a state is ax@(l)10 >s where : 

* I owe this elegant argument to Peter Goddard. A brute force but more general classifica- 
tion of minima, that includes outer automorphisms, was given in ref. [12]. 
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In order to give a small mass to the gravitino, we must perturb slightly this 

boundary condition : 

s+6s=( 1 CY,G+6CXG 6sR ) 

where SSi << 1 . The state 

(4.10) 

(4.11) 

has mass 

M2 = $xG)2 = 36~~~2 (4.12) 

. 
where the absence of a linear term is due to the fact that the vector c$ has 

minimum length , so that cxf . 6ayG = 0 . (4.11) is actually the only candidate 

for a slightly massive gravitino, because at S + 6s there are no nearly periodic 

fermions with infinitesimal frequencies at our disposal . 

Let us assume then that the Hilbert space of our model contains such a 

nearly massless gravitino. This means that (S + 6s) E B and, in order that 

(4.11) survives the GSO projections : 

c[“‘p”“] = { -1 if6p=+l 

fl ifs,=-1 
(4.13) 

This condition is due to the fact that eirp’F acts on (4.11) as a chirality operator 

if 6~ = -1 and as the identity otherwise . 

Now we will use the fact that the superautomorphism (4.8) is always an h-th 

root of the identity with h a small integer (for simply-laced groups h’is the dual 
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Coxeter number). This means that 2hS = 0 , which together with the fact that 

E is a group , leads to an entire tower of candidate low-mass gravitinos: 

dXC”(l)p >s+m ; ax’(l) 10 >S+(2h+1)6S ; ax’(l) 10 ‘S+(dh+1)6S **- 

all of which satisfy level-matching due to the absence of a linear term in eq. 

(4.12) . Furthermore they all survive the generalized GSO projections : this can 

be proved by using once more the duality and factorization conditions (2.7 b,c) , 

to reexpress C [(2nh+1J(s+6S)] in terms of C [““,““I . The fact that S minimizes 

vector lenght is again crucial, for getting rid of the phases. 

Thus, what we have concluded is that the existence of a gravitino with, for 

instance, a mass of 1Tev , implies the existence of an entire tower of gravitinos 

with masses (2h + l)Tev, (4h + l)T eu and so on ( incidentally h = 2,3 or 4 for 

the groups that interest us) . The physical interpretation is that supersymmetry 

is broken by a Sherck-Schwarz type compactification [38,31], but with the mo- 

menta in the internal dimensions related to the radii , so that the mass splittings 

can be made to vanish only in the limit of decompuctijkation . Using different 

arguments, Dine and Seiberg [39], and Banks and Dixon [40] have also concluded 

that supersymmetry cannot be restored continuously at an analytic point of the 

scalar potential. As opposed to the proof given here, their arguments are not 

restricted to a particular class of models. However, they do not allow them to 

characterize the singularity uniquely as being due to decompactification. Finally 

I should point out that I have here taken the gravitino mass as a measure of the 

supersymmetry breaking scale. Thus my arguments would not apply if the mass 

splittings in the matter and gauge sectors were small but the gravitino mass was 

of order Mp. 
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