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ABSTRACT 

We study numerically and analytically spatial properties of the ground state 

of a fundamental string in the light-cone gauge. We find that strings are smooth 

and have divergent average size. Their properties are very different from what is 

expected from particles in a conventional field theory. 
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1. Introduction 

String theory was originally invented to describe hadrons[l]. Ultimately this 

idealized mathematical theory. of hadrons failed, due in part to the inability to 

couple strings to the external local fields, such as the electromagnetic field. The 

reason for this failure is the infinity of normal mode zero point fluctuations spread- 

ing the string over all space[2]. In this paper we will examine in detail the spatial 

properties of fundamental strings. We will also speculate on how they compare 

with the strings of large-N,,l,, gauge theory[3]. W e will be particularly interested 

in the following characteristics of the ground state of the fundamental string: 

1. The average size of the spatial region occupied by the string; 

2. The average length of the string; 

3. Is the string smooth on small scales or does it exhibit rough or fractal-like 

behaviour? 

4. How densely is space filled with string? 

In order to answer these questions and to provide some intuition we have 

constructed a numerical method for generating ‘snapshots’ of the ground state of 

the string. For that purpose we use the exact wave function of free string in the 

light-cone gauge to generate a statistical ensemble of strings. In fact we find that 

the overwhelming majority of the ensemble have similar qualitative features. The 

‘snapshots’ are shown in section 2 and their important features are discussed. In 

particular we find that both the average length of string and the average size of 

the region occupied by the string are infinite. The relationship between the two 

divergences is such that string actually packs the space densely. We also find 

that the string is microscopically very smooth, with no tendency to form fractal 

structure on small scales. The quantitative meaning of the above statements will 

be provided later. 

In section 3 some analytic derivations are given to substantiate the qualitative 

findings of section 2. In section 4 we explain the physical meaning and measura- 
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bility of the divergence in the size of the string. We also speculate on the possible 

qualitative differences between the fundamental strings and the strings of large- 

N COlOT &CD. 

2. Snapshots of Strings 

In the light-cone gauge, the transverse coordinates of the string are free fields 

with mode expansions 

X”(o) = XE, + x(X: cos(na) + iQ sin(n0)) (24 
n>O 

The wave function for each transverse coordinate in the ground state of the string 

has the product form (dropping the superscript i) 

Q (X(4) = n ( cp2 eXp(-Wn(X,2 + X:)/4)) P-2) 
n 

with wn = n. Squaring this gives a probability distribution for the transverse 

position of the string. To carry this out in practice it is necessary to truncate the 

mode expansion at some maximum wave number N. This is one of the ways of 

introducing a cut-off in the parameter space of the string. Passage to the continuum 

limit is achieved as N + 00. 

Another cut-off procedure can be defined where string is replaced by 2N + 1 

discrete mass points connected by identical springs. The normal modes are such 

that the positions of the mass points are given by eq.(2.1) evaluated at discrete 

values of the parameter IY = 27rm/(2N + l), w rere m labels the mass points. Then 1 

the string wave function is eq. (2.2) with frequencies 

where n = 1, . . . , N. 

2N+l 7m 
W n= 7r 

sin( 
2N+l >, (2.3) 
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With both cut-off prescriptions a string configuration is determined by a se- 

quenceofvaluesofXiandXd,withn=l, . . . . Nandi=l, . . . . D-2,sampled 

with probability 

P(XA) = (y2 eXP(-Wn(XA)2/2) (2.4) 

and similarly for Xi. 

For the first cut-off procedure each such configuration defines a parametrized 

curve in (D - 2)-d imensional space. By necessity we show projection of string onto 

2 transverse dimensions. In practice each run consists of choosing 100 x (D - 2) 

random numbers from their respective probability distributions. For each run we 

compute curves with N = 10, 20, 30, 40, 50. F or convenience, let us adopt the 

following method: as we proceed, for example, from N = 10 to N = 20, the 

coefficients of the normal modes with the first 10 wave numbers are kept the same 

as for the N = 10 ‘snapshot’. Similarly, we proceed from N = 20 to 30 to 40 

to 50, always retaining the previous set of coefficients. Therefore, for each run, 

increasing N corresponds to observing the same string with improved resolution. 

The ‘snapshots’ generated by 2 such runs are shown in figure 1 and figure 2. For 

one of the runs we also show graphs of total transverse length ( figure 3 ) and 

average transverse line curvature ( figure 4 ) as a function of N. In figure 5 we 

show curvature as a function of length along the string for cases with N = 10, 20. 

We find the following qualitative features: 

1. Slow growth of the occupied region with N. In the next section we will show 

that the growth is actually logarithmic. 

2. The plots of total string length vs. N appear to be linear. In the next section 

we will show an analytic derivation of this effect. 

3. The transverse curvature averaged over the string appears to be approxi- 

mately independent of the cut-off. In the next section we will show analyt- 

ically that the expectation value of curvature is completely cut-off indepen- 

dent. 
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4. The growth in length with increasing N is achieved by repetition of similar 

smooth structures. In fact, a piece of string of given length at N = 20 looks 

similar to a piece of the same length at N = 10, (cf. Fig. 5). 

5. The slow growth of the occupied volume together with the linear growth of 

length means that there is a strong tendency for the string to pass through the 

same small region many times. It is obvious that, as the cut-off is removed, 

the string fills space densely: there is a point on the string arbitrarily close 

to any point in space. 

In order to elaborate on point (4) and show that no ‘accidents’ occur as we 

proceed to high values of the cut-off we have plotted the section of the string 

confined between cr = 0 and 47r/N for N = 20 and N = 500 ( figure 6 ). The 

remarkable similarity between the two can be qualitatively regarded as a statement 

of conformal invariance in our approach. 

All the above features, except for (3), can also be observed with the discrete 

regularization of the string. In figure 7 we show a typical picture at N = 50. It 

is important to note that, as more and more discrete points crowd the a-axis, the 

string never becomes continuous in space. In section 3 we show that, as N + 00, 

the average distance in space between each pair of neighboring points approaches 

a constant. This, of course, is responsible for the linear growth of the total length. 

Thus, all the important information about the spatial properties of string can be 

obtained in the regularization where the string never becomes continuous in space. 

This fact will be essential for treatment of strings in discretized space. 
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3. Analytical Results 

In this section we give analytic derivations of some qualitative conclusions 

reached in the previous section. Let us begin with the growth of the volume 

occupied by the string with the cut-off N. Define r to be the rms distance of a 

point on the string to its center of mass: 

r2 = ((J?(g) - 2c,)2) (3.1) 

Since there is no preferred point on the closed string, we can arbitrarily set r~ = 0. 

r2 = (D-2) (5X,)” 
( > 

+-2)&x3 = (n-2)5; (3.2) 
n=l n=l n=l 

It follows that the rms volume of the transverse region occupied by string - 

(log N) 9. 

-To find the dependence of average length on the cut-off, we start with 

27r 

(L) = / (4 da, 
0 

where 

By translation invariance in CT 

(L) = 27r (?I(0 = 0)) 

For each transverse direction 

(3-3) 

(3.4) 

(3.5) 

WY 

Using the fact that each x’:, is gaussian distributed, it is easy to show that 
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dXi/da(o = 0) ’ g 1s aussian distributed with variance 

p. = 5 n = n’(N2+ 1). 

1 

Therefore, v’ = dx’/da is distributed according to 

P(C) - exp 

As a result, the distribution for the length of v’ is 

.D-3d, 

It follows that 

(4 = 
Jam exp(-v2/2C2)uD-2dv - c 

Jam exp( -v2/2C2)vD-3dv N 
N 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

The slope of the linear growth determined by above expression depends on dimen- 

sionality. For example, if the number of transverse dimensions is an even number 

(D - 2 = 2x7) then (3.10) yields 

w = (21c - 1’!a3’22 (N + l/2 + 0(1/N)) 
4”-1 ((k - l)!) 

(3.11) 

In particular, in D = 26 we find 

(L) x 21.54 (N + l/2) (3.12) 

As shown in figure 3, the data for any given run agrees well with this linear depen- 

dence. This shows that the standard deviation is small compared with the average 

length. 



It is also interesting to study eqn. (3.11) in the limit of a large number of 

dimensions. Using the Stirling formula for the factorial we find that the slope of 

growth of transverse length with N is given by 

(L) IN x m/m3 + 0(1/d=) (3.13) 

as D becomes large. In D = 26 this predicts the slope of 21.76, which is very close 

to the exact number (3.12). 

Similar analytic results can be derived in the regularization where string is 

replaced by a collection of mass points connected by springs. For example, the 

length is 

Ld = c lqn+1) - qn,l (3.14) 

where the subscript labels the mass points. Using translation invariance, 

Wd) = w + 1) (lLq2, - &,I) (3.15) 

After a few steps analogous to the ones for the continuous regularization we find 

(L d ) = (2k - 1)!@.x)1’2 (N + l/2 + 0(1/N)) 
49k - 1)!)2 

(3.16) 

Note that, with the definition of length (3.14), the slope of linear growth in the 

discrete regularization differs slightly from (3.11) f ound in the continuous regular- 

ization. However, the linearity of growth and other properties important for our 

physical conclusions are unaffected. 

Extrinsic curvature can only be investigated in the regularization where the 

string is kept continuous. It is conveniently expressed as 

(3.17) 
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where 21 is the component of a’ = d2k/do2 normal to v’= dJ?/dg. Since 

%(o = 0) = - &xi, 
n=l 

eq. (3.6) implies that a’ and v’ are uncorrelated. Therefore, 

(4 = WLI) ($) 
. From the distribution (3.9) we find 

1 ( > 1 
.2 = a@ - 1)X2 

(3.18) 

(3.19) 

(3.20) 

It is important to note that this diverges in D = 4. Since a’ and 5 are not correlated, 

(IZll) is effectively the average length of the vector (3.18) in D - 3 dimensions. 

Denoting IZll = a we find the probability distribution 

a2 
P(a) - exp(-T)aDm4da 

2s 
(3.21) 

with 

C2=en3 
1 

= ($N(N + 1))" = c4 (3.22) 

It follows that (K) - g/C2 is independent of the cut-off! After a short calculation 

we find 

(~) = ((k - 2)!)222k-3 

(2k - 3)!& ’ 
(3.23) 

- which in D = 26 yields (rc) = 0.216. This is in good agreement with figure 4 which 

shows the data for a sample run. In the limit of large dimensionality (3.23) reduces 

to 

-& (3.24) 

This confirms the intuitive expectation that increasing dimensionality makes the 

string smoother. 
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On the lower end of the range of dimensionalities the average curvature diverges 

in D = 4, (cf.- Eq, (3.20)). We b 1 e ieve there is a simple intuitive reason for 

this which we proceed to explain. There are two kinds of singular points which 

can occur on a string: a kink, where the tangent vector dJ?/dcr is discontinuous, 

and a cusp, where it vanishes. In other words, at a cusp string turns back onto 

itself. From eq. (3.17) we see that at a kink the curvature has an integrable (S- 

function) singularity, while at a cusp it has a non-integrable singularity. Our study 

. of projections of strings onto 2 transverse dimensions indicate that cusps are fairly 

likely 10 occur there. We find that most of these cusps are projections of smooth 

configurations in higher dimensions. Therefore, we conjecture that the relatively 

high likelihood of cusps in D = 4 is responsible for the divergence in the average 

curvature. 

4. Discussion 

One may wonder whether any of the strange effects described in the previous 

sections are observable. In particular, the infinite rms radius seems very unphysical. 

However, it does lead to an observable effect. Consider scattering of a high-energy 

string from a string at rest. The interaction is mediated by string exchange. In the 

light-cone frame of the fast string of energy E the lifetime of the interaction is of 

order r = l/E. Oscillations with frequency > l/r average to zero. Thus, we retain 

a number of modes N E. This introduces mode cut-off and gives an observable 

particle radius - ,/ii. As the resolution is improved, the string ‘expands’. 

This phenomenon leads to the well-known Regge behaviour of scattering cross- 
- 

sections satisfied by the dual amplitudes.[2] Th us the effect is indeed observable 

and presents no obvious difficulty for scattering of strings by strings. 

On the other hand, imagine that the string is being scattered by a local external 

field. This situation is analogous to the electromagnetic probing of hadrons. In 

this case the interaction is instantaneous and therefore the string must appear 

infinite. It is precisely for this reason that the fundamental strings cannot be 
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consistently coupled to arbitrary external fields. That is why they are either a 

theory of everything or of nothing. 

Let us speculate now on how the fundamental strings might differ from the 

large-N,,l,, QCD strings. Our results indicate that the fundamental strings are 

smooth. This should be contrasted with the expected behaviour of QCD strings. 

In the limit NcOlor + 00 Migdal and Makeenko derived an exact lattice string 

equation[3]. If QCD had an ultraviolet fixed point then the string would be mi- 

croscopically self-similar. QCD being asymptotically free is likely to make strings 

even rougher. 

Another difference between the QCD and fundamental strings involves the spa- 

tial distribution of the longitudinal momentum p +. For a hadron, this could be 

measured by interaction with external gravitational field. The result is a form 

facto] F(q2). F or a fundamental string an analogous form factor can be ob- 

tained by observing that the distribution of p+ is measured by the vertex operator 

&X+d”X+ exp(iq . X), where (Y is the world sheet index. In the light-cone gauge 

X+ = T and the form factor reduces to 

F(q2> = (J da exp(iq + X(a)) 
> 

- exp( -q2 log N) (4.1) 

In the limit N + 00 the form factor is non-vanishing only at q = 0. It follows 

that p+ is smeared uniformly all over space. This peculiar property applies not 

only to the ground state of the string but also to any finitely excited state. For 

any such state the change in the wave function relative to the ground state con- 

cerns only a finite number of normal modes and becomes negligible in the limit 

N + x). The strange behaviour of the gravitational form factors is possibly con- 

nected with the existence of the graviton: at least for the massless spin-2 state 

it could be foreseen on the basis of general principles. A theorem by Weinberg 

and Witten [4] states that in a Lorentz invariant theory with a Lorentz invariant 

energy-momentum tensor the gravitational form factor of a massless spin-2 particle 

must satisfy F(q2 # 0) = 0. It seems that string theory uses its infinite zero point 

fluctuations to allow the existence of gravitons. 
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FIGURE CAPTIONS 

- 1) (a>+> P ro’ec J t ion of string onto 2 transverse dimensions with mode cut-off 

N = 10, 20, 30, 40, 50. 

2) Another run, analogous to fig. 1. 

3) Total transverse length vs. mode cut-off for one run in D = 26. Broken line 

shows the analytic result for the expectation value, Eq. (3.11). 

4) Transverse extrinsic curvature averaged over the string vs. mode cut-off for 

one run in D = 26. Broken line shows the analytic result for the expectation 

value, Eq. (3.22). 

5) Transverse extrinsic curvature as a function of length along the string for (a) 

N = 10 and (b) N = 20. 

6) Section of string confined between r~ = 0 and 47r/N for N = 20 (solid line) 

and N = 500 (dashed line). 

7) A typical configuration of the ground state of 101 mass points connected by 

springs. 
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LENGTH VS CUTOFF 
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Curvature vs length, D=24, N,,, = 10 
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