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1. INTRODUCTION 

The practice of physics cannot get off the ground without essential agreement among the practitioners 
as to what they are about, how to go about it, and what constitutes progrees in their common effort. 

We adopt David McGoveran’s modeling methodology 11). Thii has three critical elements: 
(1) an ep%stemologkal framework (‘E-frame”), which is a set of loosely defined agreements made 

explicit by those injecting information into the model formulation- Gefwert (21 would call this a pructicul 
under&wading of physics; 

(2) a’representational framework (‘R-framen), which is an abstract formalism consisting of a set 
-of symbols and a set of rules for manipulation -to formulate such a frame is, for Gefwert, to practice 
syntaq 

(3) a procedural framework (“P-hame-), which is an algorithm that serves to establish rules 01 
correspondence between the observations agreed on in the E-frame and the symbols of the R-frame. 
Gefwert would describe this activity as the practice of scmcmtics. Through recursion, the P-frame 
serves to modify the rules of correspondence, the Reframe and the R-frame, until a sufficient level of 
agreement concerning accuracy is achieved-or the model fails. Kuhn 131 would call such a failure a 
“crisis,” which in the fullness of time could lead to a “paradigm shift.” 

Note that we halt the infinite regress of the analysis of terminology in constructive modeling by 
recognizing the epistemology. We deny the validity and the value of any attempt to analyze Yheory- 
laden” language. Such an analysis lies outside our task when we engage in generating a specific model. 
Attempting to make such an analysis would require us to generate a model which would contain the 
specific model as an instance. We connot do so within our methodology. Analysis of that sort would 
involvenonconstructive methods: the analyst must work from a specific model by generalization-having 
failed to construct the general model first. 

The methodology implies iteration in the EPR or ERP sequence, or any interleaving of such se- 
quences. Comparison with our diagram showing how the purticiputor engages in a research program in 
physics (41 is given in Fig. 1. The comparison with McGoveran’s modeling methodology is supposed 

to bring out the fact that the possible legal walks of the diagram are the same, but that the research 
program is contained within the methodology and that the methodology contains routes (arrows)that 
are outside the program. Thus the entry of the participator from a direction outside the box, and of 
the empirical confrontation (represented by Posiden’s pitchfork U) from a different direction, remain 
the same; so does the fact that corroboration leaves the participator inside, while falsification takes 
him outside, in yet another direction. The practitioner (and hopefully the reader of this volume) should 
therefore ask how far we have gone toward meeting his problems with contemporary physics. We assume 
that we agree on the following criteria: 

1. agreement of cooperative communications 
* commonly defined terms as fundamental 
* fundamental VB. derived terms 
* agreement of pertinence 

2. agreement of intent 
3. agreement on observations 
4. agreement of explicit assumptions 

_ 5. The Razor 
* agreement of minimal generality 
* agreement of elegance 
* agreement Of parsimony 
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Fig. 1. Comparison between McGoveran’s modeling methodology and Gefwert’s participator model. 
Our agreed upon intent is to model the practice of physics. We take as fundamental the commonly 

defined terms of laboratory physics, treating terms denoting nonobservables as derived or theoretical 
terms. We take laboratory events as a sufficient set of observations to be modeled, without requiring 
the standard theoretical interpretation. We take as understood that an experimental (laboratory) mea- 
surement may encompass many acts of observation. In other words, we are not committed to accept the 
how and why of the observations, only the observations themselves, operationally understood.* 

In the next chapter we make a brief historical review of some aspects of modern physics which we 
find most significant in our own endeavor. In Chapter 3 we discuss the “Yukawa Vertices” of elementary 
particle theory as used in laboratory practice, second quantized field theory, analytic S-Matrix theory 
and in our own approach. In Chapter 4 we review the conserved quantum numbers in the Standard 
Model of quarks and leptons. This concludes our presentation of the “E-frame.” 

In Chapters 5-8 we try to develop a self-consistent representation of our theory. We have already 
claimed that this approach provides a discrete reconciliation between the formal (representational) as- 
pects of quantum mechanics and relativity [S]. 

Chapters 9-13 provide rules of correspondence connecting the formalism to the practice of physics 
by using the counter paradigm and event-based coordinates to construct relativistic quantum mechanics 

* Note the distinction between E-terms and R-terms. Von Neumann’s “observation” is, at best, only an R-term. One line 
of criticism of von Neumann starts there, because his R-term is not necessarily consistent with SchrGdinger continuity. 
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I in a new way. The process comes to a temporary halt with a sequence of questions which could be 
answered in this framework. 

2. THE HISTORICAL PRACTICE OF PHYSICS 

Physics was a minor branch of philosophy until the seventeenth century. Galileo started “physics” 
in the contemporary sense. He emphasized both mathematical deduction and precise experiments. 
Some later commentators have criticized his a priori approach to physics without appreciating his 
superb grasp of the experimental method which he created-including reports of his experiments that 
still allow replication of his accuracy using his methods. He firmly based physics on the measurement 
of length and time, and established the uniform acceleration of bodies falling freely near the surface of 
the earth. 

A century later, Newton entitled what became the paradigm for %lassical” physics, ‘The Mathe- 
matical Principles of Natural Philosophy,” recognizing the roots that physics has in both disciplines. 
He also was a superb experimentalist. To a greater extent than Galileo, Newton had to create “new 
mathematics” in order to express his insight into the peculiar connection between experience, formalism 
and methodology that still remains the core of physics. To length and time, he added the concept of 
mass in. both its inertial and its gravitational aspect, and tied physics firmly to astronomy through 
universal gravitation. For philosophical reasons, he introduced the concepts of absolute space and time, 
and thought of actual measurements as some practical approximation to these concepts. 

It is often thought that Einstein’s special relativity rejects the concept of absolute space-time, until 
it is smuggled back in through the need for boundary conditions in setting up a general relativistic cos- 
mology. The concept of the homogeneity and isotropy of space, used by Einstein to analyse the meaning 
of distant simultaneity in the presence of a limiting signal velocity, in fact is very close to Newton’s 
absolute space and time. What Einstein shows is rather that it is possible to use local, consequential 
time to replace this concept. This was pointed out to me by David McGoveran in the context of our fully 
finite and discrete approach to the foundations of physics, and our derivation of the Lorentz transforma- 
tions without using the concept of continuity (cf., Ref. [l]). Th is same analysis shows that in a discrete 
physics, the universe has to be multiply connected. The space-like separated “supraluminal” correlations 
predicted by quantum mechanics-and recently demonstrated experimentally to the satisfaction,of many 
physicists-can be anticipated for spin and for any countable degrees of freedom. 

Nineteenth century physics saw the triumph of the electromagnetic field theory. That “classical” 
physics was still firmly based on historical units of mass, length and time; it provided no way to question 
scale invariance. Quantum theory and relativity were born at the beginning of this century, Quantum 
mechanics did not take on its current form until nearly three decades of work had passed. Although one 
route to quantum mechanics (that followed by deBroglie and Schedinger) started from the continuum 
relativistic wave theory, the currently accepted form breaks the continuity by an interpretive postulate 
due to von Neumann sometimes called “the collapse of the wave function.” 

Criticism of this postulate as conceptually inconsistent with the time reversal invariant continuum 
dynamics of wave mechanics has continued ever since. This criticism was somewhat muted for a while 
by the near consensus of physicists that Bohr had “won” the Einstein-Bohr debate and the continuing 
dramatic technical successes of the theory. Scale invariance is gone because of the quantized units of 
mass, action and electric charge. These specify in absolute (i.e., countable) terms what is meant by 
“small.” Explicitly rgohr = ti2/mLe2 (with me the electron mass) specifies the atomic scale, &ompion = 
(e2/Wwohr = h/m,!: specifies the quantum electrodynamic scale and the “classical electron radius n 
e2/m,c2 = (e2/hc)Xc,,pton II 2h/m,c N 14ii/mpc specifies the nuclear scale; here mp is the proton 
mass, and m ,r cy 2 x 137m, is the neutral pion mass. The elementary particle scale fi/mpc is related to 
the gravitational scale by & = (Gti’/c) 4 = h/MplanckC = (Gmi/hc) i (h/mpc) 

< The expanding universe and event horizon specify what is meant by “large.” Here the critical 
numbers any fundamental theory must explain are: “Age” of the universe as about 15 billion (15 x 10’) 
years; “Mass” of the universe as about 3 x 1076m,--or at least ten times that number if one includes 
current estimates for “dark matter” ; “Size” of the universe or event horizon-naively the maximum 
radius which any signal can attain (or arrive from) transmitted at the limiting signal velocity c during 
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I the Age of the universe. Backward extrapolation using ccntemporary “laws of physics” to the energy and 
matter density when the radiation breaks away from the matter (size of the Fireball”) is consistent with 
the observed 2.7OK cosmic background radiation. The cosmological parameters are numerically related 
to the elementary particle scale by the fact that the visible mass in the currently observable universe 
is approximately given by M,,is.u N (hc/Gm:)2mp, and that linearly extrapolating backward from the 
fireball to the “start of the big bang” gives a time Tfircboll = (hc/Gmi)(h/mpc2) =3.5 million years. It is 
clear that any theory which can calculate all these numbers has a claim to being a fundamental theory. 

For a while it appeared that reconciliation between quantum mechanics and special relativity would 
resist solution, since the uncertainty principle and second quantization of classical fields gave an infi- 
nite energy to each point in space-time ! During World War II, Tomonoga, and afterwards Schwinger 
and Feynmant developed formal methods to manipulate away these infinities and obtain finite pre- 
dictions in fantastically precise agreement with experiment. Recently the non-Abelian gauge theories 
have made everything calculated in the “standard model” finite. Weinberg recently asserted at the 
SchrGdinger Centennial in London that there is a practical consensus-but no proof-that second 
quantized field theory is the only way to reconcile quantum mechanics with special relativity. However, 
he also pointed out that the finite energy due to vacuum fluctuations is then 1012’ too large compared 
to the cosmological requirements; the universe should rap itself up and shut itself off almost as soon as it 
starts expanding [6]. E ven if one is willing to swallow this camel, there is no clear way to include strong 
gravitational fields in the theory. So continued attention to foundations seems fully justified. 

The concept on which most of elementary particle physics rests has moved a long way from the mass 
points of post-Newtonian dynamics. For us, a paraphrase of the concept used by Eddington [7] is more 
useful: A PARTICLE is “A conceptual carrier of conserved 3-momentum and quantum numbers between 
events.” This definition applies in the practice of elementary particle physics, both (1) in the high energy 
particle physics laboratory and in the theoretical formulations of either (2) second quantized field theory 
or (3) analytic S-ma.trix theory. In (l), the experimental application, “events” refer to the detection 
of any number of incoming and outgoing “particles” localized in macroscopic space-time volumes called 
%ounters,” or some conceptual equivalent. In (2), =events” start out as loci in the classical Minkowski 
rl-space continuum at which the “interaction Lagrangian” acting on a state vector creates and destroys 
particle states in Foch space. Since this prescription, naively interpreted, assigns an infinite energy and 
momentum to each space-time point, considerable formal manipulation and reinterpretation is needed 
before these “events” can be connected to laboratory practice. In (3), “events” refer to momentum- 
energy space “vertices” which conserve 4-momentum in the “Feynman diagrams” originally introduced 
in context (2) as an aid to the systematic calculation of renormalized perturbation theory. S-matrix 
theory makes a strong case for viewing continuous %pace-time” as a mathematical artifact produced by 
Fourier transformation. Like any scattering theory, or any application of second quantized field theory 
to discrete and finite particle scattering experiments, S-matrix theory includes rules for connecting 
amplitudes calculated from these diagrams directly to laboratory practice (1). 

For “events” generated by Program Universe [8] connecting bit strings (see Chapter 6), the “carriern 
connects shorter to longer strings, or for strings of the same length connects two “3-events” to form a 
“4-event.” We prove below that in this context the conservation of S-momentum and quantum numbers 
consistent with laboratory practice (1) (thanks to the “counter paradigm,” Chapter 9) can be derived 
within our construction of discrete physics, and serves the same purposes as the theoretical constructs 
in second quantized relativistic field theory (2) or analytic S-Matrix theory (3). 

‘ / 3. YUKAWA VERTICES 

With the exception of gluons, the standard model of quarks and leptons starts from conventional 
interaction Lagrangians of the form g&!+, into which various finite spin, isospin, . . . operators may be 
inserted. Here g is the “coupling constant” which measures the strength of the interaction relative 
to the mass terms in the “free particlen part of the Langrangian, rl, (4) is a fermion (antifermion) 
second quantized field and Q a boson or Yquantumn field. All three fields can be expanded in terms of 
creation and destruction operators in “particle” or “Foch” space states, which in the momentum space 
representation contain separate &momentum vector variables for each fermion, antifermion or quantum. 
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FortunatPly for us, in one of the first successful efforts to tame the inIinltles m tnrs tneory, reynman 
introduced a diagrammatic representation for the terms generated by such interaction Lagrangians in 
a perturbation theory (powers of g) expansion of the terms which need to be calculated and summed 
in order to obtain a finite approximation for the predictions of the theory. These “Feynman Diagrams” 
have taken on a life of their own; they bring out the symmetries and conservation laws of the theory in 
a graphic way. This can be a trap, particularly if they are reified as representing actual happenings in 
space time; but if used with care, they can short circuit a lot of tedious calculation (or suggest viable 
additional approximations) and provide a powerful aid to the imagination. 

In the usual theory, Minkowski continuum space-time is assumed and any interaction Lagrangian 
is constructed to be a Lorentz scalar. Consequently, the quantum theory conserves &momentum at 
each 3-vertex. Here one must use care because of the uncertainty principle. If &momentum is precisely 
specified, the uncertainty principle prevents any specification of position, and the vertex can be anywhere 
in space-time. This is the most obvious way in which the extreme nonlocality of quantum mechanics 
shows up in quantum field theory. However, if we use a momentum space basis, we can still have precise 
conservation at the vertices. In practical application of the theory, of course, momentum cannot be 
precisely known; quasi-localization is allowed as long as the restrictions imposed by the uncertainty 
principle are respected. In a thorough treatment, this is called “constructing the wave packetn; this 
requires. some care, as can be seen, for instance, by consulting Goldberger and Watson’s Collision 
Theory. In practice, one usually works entirely in momentum space, knowing that the orthogonality and 
completeness of the basis states will allow the construction of appropriate wave packets in any currently 
encountered experimental situation. We have made a start on the corresponding construction in our 
theory [4]. 

Although 4-momentum conservation is now insured in the conventional treatment, this is not the 
end of the problem. All this insures is that for a particle state with energy c and 3-momentum p’, that 
2 - p’. p’= M2; here M is any invariant with the dimensions of mass and need not correspond to the 
rest mass of the particle m. In the usual perturbation theory this is simply accepted. The dynamical 
calculations are-made “off mass shell,” and the specialization to physical values appropriate to the actual 
laboratory situations envisaged is reserved to the end of the calculation. S-Matrix theory sticks closer 
to experiment, in that all amplitudes refer to physical (realizable) processes with all particles “on mass 
shell.” The dynamics is then supposed to be supplied by imposing the requirement of flux conservation 
(%nitarity”)-a nonlinear constraint -and relating particle and antiparticle processes by “crossing.” 
The analytic continuation of the amplitudes for distinct physical processes which gives dynamical content 
to the theory then makes the problem a self-consistent or “bootstrapn formalism. There is no known 
way to guarantee a solution of this bootstrap problem, short of including an infinite number of degrees 
of freedom-if then; of course, it is also well-known that there is no known way to prove that quantum 
field theory possesses any rigorous solutions of physical interest. Consequently, one again has recourse 
to finite approximations which may or may not prove adequate to particular situations. 

The finite particle number scattering theory (9-121 keeps all particles on mass shell and, hence, has 
3-momentum conservation at 3-vertices. This theory then insures unitarity for finite particle number 
systems by the form of the integral equations; these also provide the dynamics. The uncertainty principle 
is respected because of the “off-energy-shell” propagator, as it is in nonrelativistic scattering theory; the 
approximation is the truncation in the number of particulate degrees of freedom. 

If we -put the “Feynman Diagrams” of the second quantized perturbation theory on mass shell, we 
can talk about 3-vertices and &events using a common language for all three theories. The rules are 
easy to state, particularly if we do so in the “zero momentum frame.n We are justified in using this 
frame in the mathematical models* because we have restricted ourselves to free-particle, mass-shell 
kinematics. We can use a corresponding statement in the laboratory because this frame is empirically 
specified as the frame at rest with respect to the 2.7OK background radiati0n.t Then the Poincare’ 
invariance of the theories allows us to go from this description to any other convenient Galilean frame. 

* This a “Representational framework” statement in McGoveran’s terminology. 
t That is, again in the language of McGoveran’s modeling methodology, we have a rule of correspondence (“Procedural 

framework” statement) connecting this sero momentum frame to laboratory practice (‘Epistemological framework”), 
including the way calculations are performed in setting up and interpreting experiments. 

109 



As we show in Chapter 7, the 3-momenta at a 3-vertex add to zero. Diagrammatically we have 
three “vectors” which are “incomingn or “outgoing.” By putting one of each together we obtain the 
generic 4-event, as indicated in Fig. 2. Clearly, for ri-events the total momentum of the two outgoing 
lines has to equal the total momentum of the two incoming lines, but the plane of the outgoing S-event 
can be any plane obtained by rotating the outgoing vectors in the planar figure about the axis defined 
by the single line connecting them. By associating quantum numbers with each line, we can extend this 
description of 3-momentum conservation in Yukawa vertices and the rl-events constructed from them 
to the conservation of quantum numbers which “flow” along the lines. The idea of associating physical 
particles with the lines as carriers of both momentum and quantum numbers which comes from this 
pictoriai representation is almost irresistible. The reader is warned once again to resist this temptation. 
The diagram is in 3+1 momentum-energy space and not in space time. In fact, if we insist on interpreting 
it as a space-time diagram representing the motion of particles, the quantum theory will blow up! It 
will force us to assign an infinite energy and momentum to each point of that space time, and simplicity 
of interpretation becomes elusive. 

3-Vertices 4-Event 

>-cs 
Incoming Outgoing 

5-66 6017Al 

Fig. 2. The connection between 3-vertices and &events. 

Once we have this picture in hand, “crossingn is easy to define. Since reversing a line and at the 
same time changing all quantum numbers to their negatives does not alter the conservation laws, the 
new diagram also represents a possible physical process. The “particle” whose quantum numbers are the 
negative of another is called its “antiparticle.” So %rossingn can also be stated as the requirement that 
the reversal of a vector and the simultaneous change from particle to antiparticle represents another 
possible physical process. The manner in which a single diagram in which momenta and ‘quantum 
numbers add to zero at a general 3-vertex generates emission, absorption, annihilation and decay vertices 
by this rule is illustrated in Fig. 3. The manner in which a single diagram, in which momenta and 
quantum numbers add to zero in a general 4-event, generates six physically observable processes by this 
rule is illustrated in Fig. 4. 

Since one of the quantum numbers (“spin”) is a pseudovector, “time reversal,” which changes the 
sign of velocity and, hence, the direction, is not the same as the =parityn operation which changes all 
coordinates to their negatives. In quantum electrodynamics or QED, the theory in which the diagrams 
originated, the quantum number which distinguishes particle from antiparticle is electric charge; these 
rules are a consequence of the “CPT invariance” of the theory. They generalize to other types of 
“charge’; e.g., %olor chargen in quantum chromodynamics (QCD). Spin is of great interest since it has a 
%pace-timen significance as well as sharing the discrete, quantized character of other quantum numbers. 

Before going on to the other quantum numbers, we note that the form of the Yukawavertex couples 
the particle and antiparticle field in such a way that in the “time ordered” interpretation of the diagrams 
the number of fermions minus the number of antifermions is conserved; this is called the conservation 
of fermion number. Flearly, the diagrams respect this conservation law; so far as we know, f-number 
conservation is followed’ in nature. 

4. THE STANDARD MODEL 

The fermions encountered in nature fall into two classes: leptons and baryons. So far as we know 
to date, lepton number and baryon number are separately conserved. The lifetime for the decay of the 
proton into leptons and other particles has been shown to be greater than 1O35 years; the experimental 
upper limit for the value depends on which decay mode was searched for. This fact has already ruled out 
many proposed schemes for “grand unification.” The existence of the enormous underground detectors 
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4-EVENT CROSSING 
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Fig. 3. The generic Yukawa vertex and crossing. Fig. 4. Four-leg crossing. 

constructed tc test the hypothesis of proton decay had an unexpected payoff when two of them detected, 
“simultaneous!y,” neutrino bursts from a supernova explosion 50,000 parsecs (1 parsec = 3.3 light-years) 
away. Individual neutrinos within the burst were cleanly resolved, but the time  spread of the burst itself 
was SO short that no information about the mass of the neutrinos was obtained. Although the time  for 
the actual production of the neutrinos is supposed to be very short, the spread induced by the subsequent  
diffusion of the neutrinos out through the bulk of the star makes the calculation sensitive to the model  
used for calculating the explosion. It appears unlikely that lim its on how much the neutrino mass m ight 
depart from zero better than those already established by terrestrial methods will be forthcoming from 
the analysis of this exciting event. Empirically, we can take electron-type neutrinos to be massless. 

The quanta which couple via elementary Yukawavert ices in the standard model  all have spin-l. The 
earliest coupling explored in quantum field theory was the electromagnetic coupling between electrons 
(e-), positrons (eS) and the massless electromagnetic quanta; the theory, which can be extended to other 
charged fermions, is called quantum electrodynamics (QED). Th e  masslessness of the electromagnetic 
quanta is imposed within the second quantized relativistic field theory by requiring the theory to be 
‘gauge invariant.” A lower lim it to the mass of either fermions or quanta with specif ied quantum 
numbers defines a  well-understood experimental problem; if all such lower lim its had to be finite, this 
would kill “gauge invariance.” The requirement of gauge invariance is not compell ing for me  prior to 
some rough consensus as to what additional, independent tests (at an accuracy specif ied in advance) 
are relevant. I know of no proposed experimental program that could test gauge invariance within 
realistic error bounds. However, the upper lim its on the mass of electromagnetic quanta are very good; 
empirically, we can assume photons to be massless. 

The skepticism just’ implied makes my  explanatory problem difficult. The current fashion in high 
energy elementary particle physics starts from “non-Abelian” gauge theories. Their broken “symmetries” 
generate “mass” from a “spontaneous breakdown of the vacuum.” W ith care, this mechanism is claimed 
to be a  guaranteed way to remove the infinities from a tightly constrained version of second quantized 
field theory. W ithout those constraints, which start from the necessity to get rid of the “classical” infinity 
of the e2/t potential (infrared divergence) and the ‘second quantized n infinity of energy-momentum at 
each space-t ime point forced on us by the uncertainty principle (ultraviolet divergence), these theories 
are prima facie nonsensical.  Self-consistency within the mathematical theory (R-frame) is contested by 
some who take the “rigour” of cont inuum mathematics seriously. 
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Following a conventional route in a 4-dimensional formalism one runs into trouble because a mass- 
less photon with momentum has only two chiral states (7y~~ and ERR), while the formalism requires 
four components for a 4-vector. For a massive spin-l =particle” (i.e., something that can “carry” 3- 
momentum between two events in any coordinate system, and whose msss defines a rest system) there 
is no problem. The three states which quantum mechanics requires for spin 1 can be resolved along, 
against or perpendicular to the direction of motion, while the fourth component of the 4-vector is related 
to these three components “on-shelln by the invariant mass. When the invariant mass is zero, we are 
left with only two chiral J-momentum carrying states. For fermions this is no problem, once parity 
conservation is abandoned. But for spin-l massless bosons, the “third” and “fourth” component of the 
“4-vector” have to combine to yield an undirected l/ r “coulomb potential” in a gauge invariant and 
manifestly covariant manner. In a classical theory with extended sources this was no problem because 
the transformation between the 4-vector notation and the “coulomb gauge” was always well-defined, 
although coordinate system dependent; but in second quantized field theory, consistency between the 
classical substrate and the Feynman rules requires all kinds of technical artifices (indefinite metrics and 
the like). In a finite particle number theory, one can avoid some of these technical difficulties by always 
using transverse photons and the coulomb interaction in a well-defined coordinate system, provided the 
(no longer manifest) %ovariancen can be maintained. Of course, this removes some of the (we believe 
superficial) formal simplicity of the “manifestly covariantn 4-vector formalism. Since the theory we have 
developed commits us to 3-momentum conservation as fundamental, this is a natural route for us to 
take. 

Once this is understood, the ei(Q = -e,s& = -iti), ei(Q = --e,ShA = +kti) crossing symmetric 
Yukawavertices specifying massive leptonic QED for a single flavor (in this case e) coupled to ILL, ERR, rC 
are given in Fig. 5. We note that for electromagnetic coupling, charge and lepton number go together, 
so the conservation law for one implies the conservation law for the other. We represent the combined 
conservation laws of 2sh E 0, fl, f2 and IZ = -Q/e E 0, fl, by the vector states in a plane by 
Fig. 6. A Yukawa (QED) vertex requires three quantum number “vectorsn consisting of a fermion, an 
antifermion and a quantum which add to zero, plus the temporally ordered processes derived from the 
fundamental diagram by crossing. The field theory notation for this QED coupling is [13] -iifyxeAx, with 
Q2/hc = e2/hc-- l/ 137. 

p--Q/e 

- eL 
----e + 

R 1’ 
+ 

eF4 
5-08 r, 0 -1 

6017~4 5-66 6017A5 

Fig. 5. Quantum electrodynamics. Fig. 6. Quantum electrodynamic conser- 
vation laws as planar vectors. 

In contrast to the parity conserving electromagnetic vertices, the “weak n interactions violate parity 
conservation maximally. The easiest way to represent this is to use a massless neutrino (vL), convention- 
ally called “left-handed.” Consider an arrow in front of you with the head on the right. If you slip your 
right hand under the arrow to pick it up, your thumb will point in the same direction as the head; if you 
pick it up by slipping your left hand under the arrow, your thumb will point in the opposite direction 
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I to the head. The latter case is called “left-handed.” By the Feynman rule, the antineutrino DL is then 
right-handed. The charged quantum which couples to the electron and neutrino is called W (the weak 
vector boson) and is also chiral, since in the zero momentum frame ei + DL -+ WiL; in field theory 
notation the coupling is 

-i(GFM$/h)i ~7~(1- rS) ew, . 

The Weinberg-Salam-Glashow “weak-electromagnetic unification” requires, in addition to this elec- 
trically charged weak boson, which was a convenient way to parameterize the parity-nonconserving 
theory of P-decay, the neutral weak boson 20 responsible for %eutral weak currents.” The reasons had 
to do initially with the removal of infinities from the theory, and go through a complicated sequence of 
arguments that predict, in addition, one or more scalar “Higgs bosons,” for which there is at present no 
laboratory evidence. Since our theory is born finite and cannot produce the infinities of second quantized 
field theory, we have no need for these hypothetical particles in the first place. If they should be discov- 
ered (thanks to current efforts at many laboratories which are now consuming a large fraction of their 
experimental and computational resources), we will be faced with some difficult conceptual problems in 
our discrete’theory. Fortunately, for the moment, we can ignore them, which makes our presentation of 
the conservation laws in the leptonic sector considerably simpler. 

The coupling of the 2’ to neutrinos is chiral and is given by 

(-i/h)(G~Mi/h)d ~7~(1- 75) eZA . 

The coupling to electrons is more complicated because it brings in the “weak angle” 8~ that distinguishes 
the coupling to left- and right-handed electrons in the following way: 

(-i/h)(G~@/d); Erx[&(l + 75) + L,(l - 75)] eZx . 

Here R, = 2sin2Bw, L, = 2sin2Bw - 1. If sin28w = l/4, which is not too bad an approximation to 
the experimental value, 2 couples to electrons like a heavy gamma ray, except that it is a pseudovector 
rather than a vector. The mixing angle is not independent of the masses of the weak bosons, because 

MW sin 8w = [ze2/ticG&]i = 37.3 Gev/c2 = Mz sin Bw cos Bw . 

Since there were estimates of the weak mixing angle available before the discovery of the weak bosons, 
their masses could be estimated to be around 84 and 94 Gev/c2 respectively, which aided greatly in 
their experimental isolation. Since the W’s are charged, they couple to photons and also directly to the 
2. These couplings are given in Ref. [13], p. 116. Eventually the more complicated 4-vertices given 
in the same reference should provide a critical test of the standard model, and conceivably might also 
distinguish between our theory and the standard model, even in the absence of experimental evidence 
for the Higgses. We ignore this complexity in what follows. 

The conservation law situation is now considerably more complicated than it was for electromagnetic 
quanta. Charge, lepton number and helicity are still conserved, but the pattern is not easy to follow if 
written in those terms. Following a strategy that was first introduced into nuclear physics to describe the 
approximate symmetry’between neutron and proton as an “isospin doublet,” we form a “weak isospin 
doublet” from the left-handed electron (iZ = - f) and left-handed neutrino (iz = +$) and, assuming 
lepton number conservation, can talk about either charge conservation or “s-component of isospin 
conservation,” by introducing an appropriate version of the Gell-Mann-Nishijima formula, namely Q = 
e/2 + i,, for the left-handed doublet. To include the right-handed electron, which does not couple to 
neutrinos, we make it an isospin singlet. To couple it to r-rays, we assign it a “weak hypercharge” 
Y= -2 and modify Gel1 Mann-Nishijima formula to read Q = Y/2 + i,. Our conservation laws are no.w 
conveniently described in the S-space picture given in Fig. 7. The numerical specifications are given m 
Table 1. 
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Fig. 7. 

5-88 6011A6 

Weak-electromagnetic unification in terms of weak hypercharge, weak isospin and helicity. 

Table 1. Quantum numbers for weak-electromagnetic unification. 

Particle Q Y 2i, t 2h m in Gev/c2 

0 -1 +1 -1 -1 
0 +1 -1 +1 +1 

-1 -1 -1 -1 -1 

+1 +1 +1 $1 +1 
-1 -2 0 -1 -1 

+1 +2 0 +1 +1 
-1 0 -2 0 -2 
+1 0 +2 0 +2 

0 0 0 0 -2 
0 0 0 0 +2 

0 0 0 0 0 

0 
0 

.511 x 10-3 
n 
n 

n 

37.31 sinew 
n 

37.31 sinew cos ew ,0 
n 
n 

Although the type of spatial representation of the quantum numbers presented in Fig. 7 suggests 
that there might be rotational invariance in this space, actually only the values on the axes have precise 
meaning in terms of conservation laws. Total isospin is only approximately conserved; it is a “broken 
symmetry.” Perhaps this should not be a surprise in a relativistic theory; if we take as the four indepen- 
dent generators of the Poincare’ group mass, parallel and perpendicular components of &momentum and 
helicity (or the component of angular momentum along the parallel direction), the total angular momen- 
tum cannot be simultaneously diagonalized. People often forget that “total spin” is not a well-defined 
concept in a relativistic,, theory. 

Now that we have explored in detail the weak-electromagnetic unification of electrons, whose mass is 
0.511 Mev/c2, and their associated massless neutrinos, the full weak-electromagnetic unification scheme 
is easy to state. In addition to the electrons, we have two systems of leptons with much larger masses, 
the muon with mass 105.66 Mev/c2 and the tau lepton with mass 1784 Mev/c2. Associated with each 
are left-handed (v~)L and (vr)~ neutrinos whose interactions can be experimentally distinguished from 
those of the electron neutrinos (v~)L and from each other. They may well be massless, but the upper 
limits on their masses are much higher than for the electron type neutrinos. The coupling scheme is the 
same as that we have already discussed above within each “generationn (e,p,r = lst,2nd,3rd) and the 
coupling between generations, specified by the Kobiyashi-Maskawa mixing angles, is weak. 
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To comp!ete the scheme for the weak interactions we must bring in the quarks. There are two 
“flavors” (up and down) for the first (electron) generation, and two (charmed and strange) for the 
second (muon) generation; there are supposed to be two more in the third (tau) generation to complete 
the picture. The existence of the beautiful (or bottom) quark is well-established, but searches for the 
true (or top) quark are still under way. It is the only particle missing from the scheme, other than the 
Higgses, if you stick to three generations. The quarks are fermions and have electric charge QU,C,t = #I$, 
Qd,+ = pi and baryon number 5. Each forms a weak isodoublet and an isosinglet in the now familiar 
pattern. This completes the weak-interaction picture at the level we will discuss it here. 

The-quarks differ markedly from the leptons in several respects. To begin with, they carry a conserved 
“color charge” with three colors, three anticolors and an eightfold symmetry we will describe in more 
detail in Chapter 8. They couple strongly at low energy to eight spin-l colored Ugluons.n Color 
conservation is given a vector representation in Fig. 8. 

Remarkably, both quarks and gluons are “confined”: they show up like internal particulate degrees 
of freedom in high energy experiments (parton model), but never have been liberated to be studied as 
free particles. Hence, the definition of their masses is indirect; recent calculations would seem to indicate 
that the “massn of an up or down quark is about one-third the mass of a proton at low energy, but 
falls of7 like l/p2 as the momentum with which they interact increases [14]. One up quark combined 
with an up-down pair in a spin-singlet state to forsm an overall color singlet state form a proton with 
charge 1, while a down quark combined with the pair in the same way forms a neutron with charge 0. 
Consequently, the P-decay properties of the neutron can be related to the weak isodoublet description 
given above. 

Y( 010) 

5-88 6017A7 

Fig. 8. Colors and anticolors as discrete vectors. Fig. 9. Spin, isospin and baryon number con- 
servation for color singlet neutrons and protons 
p = u(ud),n = (d(d). 

So far as quantum number conservation goes, we can talk about baryon number (B) spin and 
(strong) isospin with charge conservation given by Q = B/2 + Iz in the same way we talked about weak 
hypercharge and weak isospin conservation above. Quark-antiquark pairs describe the mesons (pions, 
etc.,) which older theories used to explain nuclear forces, but the details of how the quark-nuclear physics 
interface actually works quantitatively is a very controversial field of research. The easiest way to picture, 
all this is to write the “colorn vertices separately as vectors in a plane and assume that they add to 
form a color singlet ;(which can be a neutral colored or anticolored triplet, or any one of the color- 
anticolor pairs). Then we can return to the familiar picture of neutron, proton, and their antiparticles 
and associated mesons in the (sh, I*, B) space pictured in Fig. 9. Note the symmetry of the diagram for 
these parity-conserving strong interactions, in contrast to the asymmetric diagram which pictures the 
parity ‘nonconserving weak-electromagnetic unification. 

We will show in Chapter 8 how this whole picture can be reproduced at this level by our discrete 
physics construction. To get the quantitative details right is obviously a major research program, com- 
parable (until we can find short cuts) to the hard work that is engaging many particle physicists every 
day in many laboratories. A useful reference that gives some idea of the magnitude of the task is the 
Proceedings of the 1986 SLAC Summer Institute [15]. Clearly, we must stop at some point short of that 
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I effort in this volume; we choose to do so when we have reached the same degree of desciption explained 
in this chapter. 

5. THE COMBINATORIAL HIERARCHY AND THE LABEL-CONTENT SCHEMA 

The overall status of the research [16-171, h ere aimed at providing a common explanatory theory for 
both quantum mechanics and relativity in a discrete and finite framework, has been provided a historical 
context in Chapter 2. The early thinking in this program did not approach the problem with such an 
explicit objective. B&in realized that when we go to the very large (distant galaxies, early times.. . ) 
or the very small (quantum events, elementary particles . . . ) the information available to us becomes 
extremely impoverished compared to the phenomena modeled by classical physics. He concluded that 
this fact should be reflected in the theory in such a way that this restriction is respected. 

The route into the theory initially followed by Bastin and Kilmister concentrated on the problem 
of modeling discrete events 1181. 0 r d ered strings of zeros and ones gave a powerful starting point for 
analyzing this problem. Attention eventually centered on the question of whether bit strings were the 
same or different. Define a bit string by 

(a),=(... , b4 ,... )n; bEO,l; iE1,2 ,..., n. 

An economical way to compare an ordered sequence of two distinct symbols with other sequences of 
the same bit length is to use the operator XOR (“exclusive or,” symmetric difference, addition (mod 2) 
= +2, . . . ). Since we sum (or count) the one’s in the string to specify a measure, we must treat the 
symbols “0, * “1” as integers, and only in some contexts can we think of them as bits; hence, our “bit 
strings” are more complicated conceptually than those encountered in standard computer practice. We 

t therefore use the more general discrimination operation “$,” and a short hand notation for it. Define 
the symbol (ub), and the discrimination operation @  by 

(ub), E s= e Sb - [. . . , (6; - t&2, . . .ln = [. . . , b; +2 bf, . . .ln . 

The name comes from the fact that the same strings combined by discrimination yield the null string, 
but when they differ and n 2 2 they yield a third distinct string which differs from either; thus the 
operation discriminates between two strings in the sense that it tells us whether they are the same or 
different. 

We define the null string (0), by bf = 0, i E 1,2, . . . ,n and the antinull string (l)n by bf = 
1,i E 1,2, . . . ,n. Since the operation @  is only defined for strings of the same length, we can usually 
omit the subscript n without ambiguity. The definition of discrimination implies that 

(au) = (0); (ub) = (bu); [(ub)c] = [u(bc)] E (ubc) , 
- 

and so on. 

The importance of closure under this operation was recognized by John Amson. It rests on the 
obvious fact that [a(&)] = (b), and so on. We say that any finite and denumerable collection of strings, 
where all strings in the collection have a distinct tag i, j, k . . . , are linearly independent iff 

(i) # (0) : (id # (O), (ijk) # (O), . . . (ijk . . .) # (0) . 

We define a discriminately closed subset of nonnull strings {(a), (b), . . .} as the set with a single string 
as member or by the requirement that any two different strings in the subset give another member of 
the subset on discrimination. Then two linearly independent strings generate three discriminately closed 
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I subsets, namely 

Wh Wh {(Q), (% (41 - 

Three linearly independent strings give seven discriminately closed subsets, namely 

We m (413 w4, (49 (W, t(c), (Q), (ca)) , 

In fact, z linearly independent strings generate 2= - 1 discriminately closed subsets because this is simply 
the number of ways one can take z distinct things one, two, three,. . . , z at a time. This is critical to 
the construction of the combinatorial hierarchy, as we now discuss. 

The discovery of the combinatorial hierarchy [19] was made by Parker-Rhodes in 1961. The story as 
I recall hearing it a decade after the facts, which Bastin now informs me is somewhat misleading,* was 
that the-challenge posed to Frederick was how to generate a sequence with one or two small numbers, 
something of the order of a hundred, some very large number and stop.+ Frederick (P-R) did indeed 
generate the sequence 3,10,137, 2r2’ + 136 N 1.7 x 103s in suspiciously accurate agreement with the 
“scale constants” of physics. This was a genuine discovery; the termination is at least as significant!* 
The sequence is simply (2 =+ 22 - 1 = 3), (3 =% 23 - 1 = 7) [3 + 7 = lo], (7 + 27 - 1 = 127) (10 + 127 = 
1371, (127 =+ 2127 - 1 cv 1.7 x 1038). The real problem is to find some %top rule” that terminates the 
construction.. 

The original stop rule was due to Parker-Rhodes. He saw that if the discriminately closed subsets at 
one level, treated as sets of vectors, could be mapped by nonsingular (so as not to map onto zero) square 
matrices having uniquely those vectors as eigenvectors, and if these mapping matrices were themselves 
linearly independent, they could be rearranged as vectors and used as a basis for the next level. In 
this way the first sequence is mapped by the second sequence (2 =+ 22 = 4), (4 =+ 42 = 16), (16 3 
162 = 256), (256 =+ 2562). The process terminates because there are only 2562 = 65,536 = 6.5536 x lo4 
linearly independent matrices available to map the fourth level, which are many too few to map the 
2127 - 1 = 1.7016 . . . x 1O38 DCsS’s of that level. The (unique) combinatorial hierarchy is exhibited in 
Table 2. 

Although this argument proves the necessity of the termination (which is no mystery in the sense 
that an exponential sequence must cross a power sequence at some finite term), it did not establish 
the existence of the hierarchy. This was first done by me by creating explicit constructions of the 

* Quoting a recent letter by Bastin to HPN, 3 March 1988, ‘Frederick had come very recently into the discussions about 
hierarchies and level relationships [among Amson, Bastin, Rilmister, Pask], and couldn’t come on a second trip with 
me to the analog computer at Brussels [where they were being explored experimentally?] because of ‘flu. When he 
had. his mapping relation giving an ‘information preserving’ (as we should then have said) relation between levels; and 
the numbers. He and the rest of us knew that the numbers had to be the primary step to physics, but we planned to 
avoid any attempt at deduction of them thinking it probably impossible. It was a morning or two later that Prederick 
&rived very crestfallen because he had found the breakdown of the algorithm.” [The ‘breakdown” referred to is the 
termination of the sequence at the fourth level, which turns out to be a critical success of the basic theory when we 
come to explaining gravitation.] 

t Continuing the quote from Bastin, ‘I never proposed that sort of challenge to Frederick, though I can see you may have 
wanted a quick way to be fair to everyone and hit on that.” 

* According to Parker-Rhodes, in ‘Agnosia,” Proc. ANPA 7, p. 74: ‘Somewhere around 1962 I hit upon a series of 
numbers of which Ted Bastin noticed that the last two (the generating procedure could not produce more than four) 
were close to two well-known physical constants, the reciprocals of the fine-structure constant and the gravitational 
coupling constant.” The somewhat different history given in the ‘Preface and Acknowledgements” to Parker-Rhodes’ 
The Theory of Indistinguishables does not give this credit to Bastin. I know that this preface was an afterthought, and 
that Frederick did not prepare it with care. 
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Table 2. The combinatorial hierarchy. 

HireyeihY e I?@ + 1) = a(e) a(e) = 2B(l) - 1 M(.t + 1) = [M(t)]" C(l) = C&H(j) 

(0) - 2 (2) 
1 2 3 4 3 
2 3 7 16 10 
3 7 127 256 137 
4 127 2127 - 1 (256)2 2127 -1+137 

Level 5 cannot be constructed because M(4) < H(4). 

mapping matrices [20] and later more elegantly by Kilmister [21]. That the termination, and indeed the 
combinatorial hierarchy itself, is much more than the apparently ad hoc mapping procedure which first 
led to it -might suggest, can be seen either by Kilmister’s latest derivation [22] or by the very different 
way Parker-Rhodes now gets it out of his Theory of Indistinguishubles [23]; a useful discussion of that 
theory entitled “Agnosia” is given in Ref. [17]. 

For some time, the only operation used in the theory was discrimination. Kilmister eventually 
realized that one should also think about where the strings came from in the first place. He met this 
problem by introducing a second operation which he called “generation.” As he and I realized, this 
operation eventually generates a universe which goes beyond the bounds of the combinatorial hierarchy. 
Once this happens, we can separate the strings into some finite initial segment that represents an element 
of the hierarchy, which we call the label, and the portion of the string beyond the label which we now* 
call the content. It is clear that from then on the content ensemble for each label grows in both number 
and length as the generation operation continues. Since it takes 2+3+7+ 127 = 139 linearly independent 
basis strings to construct the four levels of the combinatorial hierarchy, the labels will be of at least this 
length; if we use the mapping matrix construction, they will be of length 256. Call this fized length L, 
the length of any content string n, and the total length at any TICK ( see next section) in the evolution of 
the universe NV = L+ n. Then the strings will have the structure Sa = (La)LII(Az)n where a designates 
some string of the 2127 + 136, which provide a representation of the hierarchy, and x designates one of 
the 2n possible strings of length n; the symbol “I]” denotes string concatenation. 

6. PROGRAM UNIVERSE 

In order to generate a universe of strings which grows, sequentially, in either number (SU) or length 
(Nu) Mike Manthey and I created program unioerse. Recently Manthey realized that the criterion 
used to increase the string length (TICK) was unjustifiably selective, The previously published version 
of the program [8], called progrum universe 1, is compared with Manthey’s new proposal in Fig. 10. 
The most significant effect of the change, other than simplification (using “The Razor” in McGoveran’s 
terminology), is to allow the bit string universe to contain, ephemerally in many cases, distinct strings , 
which are indistinguishable under discrimination. This will not affect anything in this paper, but might 
eventually provide alternative cosmological models that make observationally different predictions. 

, 
1 

$ The term Kilmister and I first used was ‘address” rather than ‘content.” This has turned out to be unfortunate from 
the point of standard computer science usage. It has been proposed that ‘address” be replaced by ‘content,” and I 
adopt that new usage in what follows. Kilmister and I used ‘address” because we envisaged (as has now happened) 
the use of this portion of the string to construct our discrete version of ‘space-time;” thus the address is like that on an 
envelope, with the label being the name. This has the advantage that neither is meaningful without the other. On the 
other hand the ‘contents” of a label describe the relevant states which are occupied at a given TICK of PROGRAM 
UNIVERSE, and their order of production- if known or knowable-would serve to enumerate them. We should try to 
stabilize the terminology at ANPA 10. 
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PROGRAM UNIVERSE 1 PROGRAM UNIVERSE 2 

NO. STRINGS = SU a 4 0.1 (FLIP BIT) 
LENGTH = N” PICK := SOME U(i) p = 1lSU 
ELEMENT U(i) 
i E 1,2....,SU 

g: LJ;;” 11 A 
N 

1 U(I) := r U(2) := 5 SU := 2 Nu := 11 

TICK 1 ADJOIN 
U := U 11 A u := u u 512 
N, := N,+l su:=su+1 

c 

NO. STRINGS = SU a =+ 0,l (FLIP BIT) 
LENGTH = Nu PICK := SOME U(I) p = IlSU 
ELEMENT U(i) TICK U := U 11 A 
i E 1,2, . . ..SU 6=1,es 

U(l):=r U(2):=? SU:=2 N,:=l 

I 

TICK 
U:=UNR 
N, := N,+l 

1 

S, := PICK 
s,, := s,es, 

I 

ADJOIN 
u := u us,* 
SU:=SU+l 

b 

I I 
# {CAN BE 

LABELED) 

Fig. 10. Program Universe 1 and 2 compared. 

The program is initiated by the arbitrary choice of two distinct bits, which become the first two strings 
in the universe. Whether insisting that one be “0” and the other “1,” as in done in the flow chart, rather 
than allowing both to be arbitrary, will eventually produce a significantly different cosmology (or choice 
among cosmologies) at our epoch is an open question. Entering the main routine at PICK, we choose 
two strings (i). and (j) and discriminate them: (ij) - (i) @ (j). Wh enever the two strings picked are 
identical, (ij) = (0)~” and we go to TICK. TICK concatenates a single bit, arbitrarily chosen for each 
string, to the growing end, notes the increase in string length and the program returns to PICK. The 
alternative route, which occurs when discrimination generates a nonnull string, simply ADJOINS the 
newly created string to the universe and the program returns to PICK. 

In the older version, we proved that TICK had to be “caused” (in the computer simulation) either by 
the occurrence of the “3-event” configuration Sa @ Sb @ SC = 0 ~~ or by the configuration Sa @ Sb $ SC $ 
Sd = ON,, which we called a “4-event.” But this implied a uniqueness which has no known demonstrable 
counterpart in nature, as modeled by contemporary physics; there can be many “simultaneous” events. 
At ANPA 9, I extended the definition of “event” to include all cases in which, at a given string length (or 
TICK), three or four strings combine under discrimination to produce the null string. This definition is 
retained here, but in Program Universe 2 is no longer the “cause” of TICK. Instead, we TICK whenever 
two strings “interact” without producing any novelty. This is as close as we need to get to defining what 
would be called a “point” in a continuum theory. We will see in Chapter 10 that this construction of a 
“point” is consistent with our development of Einstein synchronization and, hence, to the extent possible 
in our discrete theory, consistent with the conventional use of the term “event” in relativity theory. 

The constraints (abc)~~ = (0)~” = (abcd)~, at each TICK are our model for t,he unique, nonlocal, 
yet indivisible and irreversible events of quantum mechanics. We have a lot more work to do before we 
can show that they have the requisite properties. In particular, we have to demonstrate that they can 
act like the 3-vertices and 4-vertices of the Feynman Diagrams discussed in Chapter 3. When Nu is 
large, these constraints will be satisfied by many combinations and-because of McGoveran’s Principle 
I-9 --all must be viewed as “simultaneous” events. 

h “The theory possesses the property of absolute nonuniqueness,” cf., Ref. [l]. 
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The method Manthey and I use to %onstruct” the hierarchy is much simpler than the original matrix 
construction given by Parker-Rhodes; in fact, some might call it %imple-minded.” We claim that all 
we have to do is to demonstrate explicitly (i.e., by providing the coding) that any run of PROGRAM 
UNIVERSE contains (if we enter the program at appropriate points during the sequence) all we need to 
extract some representation of the hierarchy and the label content scheme from the computer memory 
without affecting the running of the program. The obvious intervention point exists where a new string is 
generated, i.e., at ADJOIN. The subtlety here is that if we assign the tag i to the string U[i] as a pointer 
to the spot in memory where that string is stored, this pointer can be left unaltered from then on. It 
is, of course, simply the integer value of SU + 1 at the “time” in the simulation [sequential step in the 
execution of that run of the program] when that memory slot was first needed. Of course, we must take 
care in setting up the memory that all memory slots are of length Nmaz > NV; i.e., can accommodate 
the longest string we can encounter during the (necessarily finite) time our budget will allow us to run 
the program. Then, each time the program TICKS, the bits which were present at that point in the 
sequential execution of the program when the slot [ i was first assigned will remain unaltered; only the ] 
growing head of the string will change. Thus, if the strings i, j, k . . . tagged by these slots are linearly 
independent at the time when the latest one is assigned, they will remain linearly independent from then 
on. 

Once this is understood, the coding Manthey and I gave for our labeling routine should be easy to 
follow. We take the first two linearly independent strings and call these the basis vectors for /eve/ 1. The 
next vector which is linearly independent of these two starts the basis array for level2, which closes when 
we have three basis vectors linearly independent of each other and of the basis for /eve/ 1, and so on until 
we have found exactly 2 + 3 + 7 + 127 linearly independent strings. The string length when this happens 
is then the label length L; it remains fixed from then on. During this part of the construction, we may 
have encountered strings which were not linearly independent of the others, which up to now we could 
safely ignore. Now we make one mammoth search through the memory and assign each of these strings 
to one of the four levels of the hierarchy; it is easy to see that this assignment (if made sequentially 
passing through /eve/ 1 to /eve/ 4) has to be unique. 

From now on, when the program generates a new string, we look at the first L bits and see if they 
correspond to any label already in memory. If so, we assign the content string to the content ensemble 
carrying that label. If the new string also has a new label, we simply find (by upward sequential search 
as before) what level of the hierarchy it belongs to and start a new labeled content ensemble. Because 
of discriminate closure, the program must eventually generate 212’ + 136 distinct labels, which can be 
organized by us into the four levels of the hierarchy. Once this happens, the label set cannot change and 
the parameters i for these labels will retain an invariant significance, no matter how long the program 
continues to TICK. It is this invariance which will later provide us with the formal justification for 
assigning an invariant mass parameter to each string. We emphasize once more that &hat specific rep- 
resentation of the hierarchy we generate in this way is irrelevant; any “run” of PROGRAM UNIVERSE 
will be good enough for us. 

It should be noted that in a strict sense this way of arriving at the hierarchy is not “constructive.” 
What we do is to go through a procedure which allows us to recognize that the program has generated 
some bit string representation of the hierarchy. This recognition program is internal to a part of the 
computer memory, and is not used explicitly in the way we go on to set up rules of correspondence and 
physical interpretation; it in no way affects the running of the basic program and was coded only in 
order to show that we could do it. The new Universe Program being written by McGoveran will, instead, 
be s’trictly constructive and will generate its own stop rule for the label-content separation, rather than 
putting it in from the outside. This has no immediate consequences other than satisfying the rule of 
parsimony, but will tie down our cosmology more firmly than the current Program Universe does. The 
event definition which we have explained above [(abc) = (0); (abed) = (0)] will continue to be rigorously 
applicable. 

Each event occurs in a TICK, which increases the complexity of the universe in an irreversible 
way. Our theory has an ordering parameter (Nu) which is conceptually closer to the “timen in general 
relativistic cosmologies than to the “reversiblen time of special relativity. The arbitrary elements in 
the algorithm that generates events preclude unique “retrodiction,” while the finite complexity param- 
eters (SU, NV) prevent a combinatorial explosion in statistical retrodiction. In this sense, we have a 
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&e&though only partially retrodictable--past and a necessarily unknown future of finite, but arbi- 
trarily increasing, complexity. Only structural characteristics of the system, rather than the bit strings 
used in computer simulations of pieces of our theory, are available for epistemological correlations with 
experience. 

What was not realized when this program was created was that this simple algorithm provides us 
with the minimal elements needed to construct a finite particle number scattering theory. The increase 
in the number of strings in the universe by the creation of novel strings from discrimination is our 
replacement for the “particle creation” of quantum field theory. It is not the same, because it is both 
finite and irreversible; it also changes the “state space.” Note that the string length NV is simply 
the number of TICKS that have occurred since the start up of the universe; this order parameter is 
irreversible and monotonically increasing, like the cosmological “time” of conventional theories. Our 
events are unique, indivisible and global, in the computer sense; consequently, events cannot be localized 
and will be “supraluminally” correlated. 

7. ‘VECTOR” CONSERVATION LAWS 

So far we have a gross structure based on bit strings, and two operations which generate them 
via a specific program: (1) ADJOIN, which adjoins a nonnull string produced by discrimination to 
the extant bit string universe, and (2) TICK which increases the string length by concatenating a 
single bit, arbitrarily chosen for each string, at the growing end of each string. We have two kinds of 
connectivity which result from this construction. One is the label-content schema. Once the label basis 
has closed under discrimination to form 2+3+7+127 linearly independent strings, program universe will 
necessarily generate some representation of the combinatorial hierarchy at that label length; this will 
close with 3 -t- 7 $ 127 + 2127 - 1 labels of that length. Once the label basis (and label string length) 
is fixed, program universe assigns each novel content string to a specific label when it is created by 
discrimination,-and augments each content string by an arbitrary bit at each TICK. The second is the 
connectivity between strings of the same length (i.e., “between ticks”) which we have characterized as 
3-vertices (ubc)L+, = (O)L+~ and rl-events (ubcd)L+, = (O)L+~. 

To come closer to what we need for physics in the sense of relating the (R-frame) model to measure- 
ment (“counting”) in the laboratory, we need to introduce a quantitative measure and a norm for such 
measures. Once we have done this, we can introduce a third operation connecting bit strings (“inner 
product”) that supports relative conservation laws. Define a measure /[z/1 on (z) by 

This is the usual Hamming measure. ~~z~~/ n is McGoveran’s normalized attribute distance relative to 
the reference string (0) (by = 0 for all i; IlOll = 0), and (n - Ilsll)/ n is the distance relative to the antinull 
string (1) (bi = 1 for all i; 11111 = n). 

Consider a S-uertcz defined by (ubc) = (0) or, equivalently, by llabcj\ = 0. 
Theorem 1: The measure llzll is a norm, i.e., 

- (abe) = (0) =+I II41 - llbll II llcll _<I llall + llbll I, colic on a,b,c - 

Argument: 
From the definition of discrimination, if we consider the three bits at any ordered position i in the 

three strings of a 3-vertex, we can only have either one zero and two ones’s in the three strings, or three 
zeros. If the single zero is bf = 0, call the number of times this occurs nb, (cyclic on a, b, c) and the 
number of times we have three zero’s no. Clearly, nbc + nca + n&, + no = n and llull = nbc + nca, cyclic 
on a, b, c, from which the desired inequalities follow. 

Note that this theorem depends on a computer memory. It is static in that it depends only on a 
particular type of configuration that is “wired in” by the program. It is dynamic, in the sense that the 
three strings are brought together as a consequence of past sequences that are arbitrary from the point 
of view of the local vertex. It is global in that any single 3-vertex (or 4-event) could lead to a TICK 
which affects the whole bit string universe. 
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I If we now define the inner product ((5) . (y)) between two strings (a), (b) connected by a 3-vertex 
(abc) = (0) with the equality 

2 ((4 . w z 11412 + 11~112 - 11412 ; 
it follows immediately that 
Corollary 1.1: 

ll~bl1~ = ((a) - tab)) + t(b) - (4) = ((4 - tab)) , 

llbl12 = ((4 * (b)) + ((4 * w = @I - w * 
If we define a I-uertez by (abed) = (0), or equivalently by IlubcdlI = 0, with an obvious extension of 

the notation, it also follows that 
Theorem 2: . 

(ubcd) = (0) =+ llull = Ilbcdll, cyclic on ubcd . 

II4 = ll4; lbll = IPII; lb4l = llbcll 
Argument: 

(abed) = (0) =S (ubc) = (d), etc., and =+ (ub) = (cd), etc., from which the result follows. 
Corollary 2. I : For any pair taken from the ensemble ubcd, the appropriate version of Corollary 1.1 
follows. _ 
Corollary 2.2: 

((4 - (4 + Nb) - (4 = ll~bl/~ = llcd112 = ((4 - (4) + ((4 . (4 , 
and so on, for any of the three pairs. 
Theorem 3: 

((ubcdl( = 0 * l/u/j2 = ((b) * (a)) + ((c) * (a)) + ((d) . (a)) , cyclic on ubid . 

Argument: 

This follows by standard (finite!) algebra. 
It is tempting to go from these results for the inner product to the conclusion that a 4-vertex defines 

the vector conservation law 
- ii+z+z+z= 0, 

and that with d= 0, the same is true at a S-vertex. This, however, depends on a convention. If some 
vectors are “incoming” and some are “outgoing,” the same algebraic relations can be interpreted as also 
supporting the three interpretations 

ii+; = z+d; ii+; = ic+z; ii+cL g+c’, 
and the four interpretations 

ii+&‘= d-; cyclic on a, b, c, d . 

We can base our version of “crossing invariance on these eight interpretations. 
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To go from what we have proved above to the usual definition of directions and angles in a “vector 
space” would require us to derive (among other things) rational fractions for the sines of angles whose 
cosines are also given by rational fractions. As Pythagorous is often credited with discovering, this 
problem cannot always be solved in the space of rational fractions (though, of course, he didn’t put it 
that way). We have conservation laws at vertices; they are not vector conservation laws in the continuous, 
directional sense. 

We can use Udirections” to model experimental (laboratory) facts with reasonable precision. This 
amounts to a rule of correspondence: the counter paradigm, Chapter 9. Here we assume that at some 
string length N, we have either a 3-vertex or a 4-vertex involving a labeled string (a)~ and that we 
have a second vertex involving the same label and a string (a)~+%. From now on, we consider the latest 
portion of the string of length n and interpret it as a “random walk” in which a “1" represents a step 
in the + direction and a “0” a step in the - direction. Then the =distance” between the two vertices 
can be defined as 2114 - n. The direction is established macroscopically by thinking of the vertices as 
sequential ‘counter firings” involving the same “particle” separated by distance L and a (positive) time 
interval 7’. Since, empirically, such events always define a velocity V = L/T less than or not measurably 
different from the limiting velocity c, we relate this type of laboratory fact to our bit string model by 
taking V = ‘pc with & = 2llujl/n - 1, and the positive direction along this line defined by the positive 
sign for p. 

Since a 4-vertex (ubcd) = (0) can be decomposed in seven different ways, namely 

(ub) = (cd) ; (UC) = (bd) ; (ad) = bc) ; 

(a) = (bed) ; (b) = (cdu) ; (c) = (dub) ; (d) = (ubc ; ) 

we can -by appropriate identification of the directions with sequential counter firings in the labora- 
tory-make seven different temporally ordered interpretations of the single &vertex given above: three 
(2,2) channels, four (3,l) channels and the unobservable (4,0) channel. Note that all eight relationships 
are generated by one &vertex. 

Our next step is to recall that we can always separate a string into two strings (a)~+~ = (La)~II(Aa),, 
where “II” denotes string concatenation. We call the first piece the label and the second the’content. 
There is a simple correlation between the two pieces. If we take some content string A, with velocity 
Pa = 21/Aalj/n - 1, the string (al) has the opposite velocity. Further, if we use the string (a) as the 
reference string for a conservation law defined by the inner product relations given above, the reversal 
of the velocity achieved by discrimination with the antinull string also reverses all the label conservation 
laws. However any system of bit strings has a dual system with all zeros and ones interchanged, but 
precisely the same algebraic structure. Thus, the theory is invariant under the urbitrury choice of 
reference direction and the arbitrary choices of the dichotomous reference symbols in the label, provided 
they all reverse on this same interchange. 

8. THE STANDARD MODEL FOR QUARKS AND LEPTONS 
USING COMBINATORIAL HIERARCHY LABELS 

Physical interpretation of the labels naturally starts with the simplest structures, which are the weak 
and electromagnetic interactions. We can get quite a long way just by looking at the leading terms in a 
perturbation theory in powers of e2/tLc H l/137 for quantum electrodynamics and of GF E 10V5/mi for 
the low energy weak interactions, such as beta decay. As Lee and Yang saw, if the neutrino is massless 
and chiral, the Fermip-decay theory will violate parity conservation maximally; this is still the simplest 
accurate description of low-energy, weak interactions. 

Since level 1 has only two basic entities, we identify these with the neutrino u and the antineutrino 0. 
Their closure is the zero helicity component of the spin-l neutral weak boson Z”, defming the S-vertex 
(YPZ”). If we follow the usual convention of defining the chirality of the neutrino as “left-handed,” 
once we have added content strings and defined directions, we still need a convention as to whether 
the label is to be concatenated with the string (l)n with velocity +c or the string (0), with velocity 
-c. We can take the bit string state (vL)L+~ = (vA)L([(~)~ and the right-handed (i.e., anti) neutrino 
(Q)L+, = (fip)~ll(o)n. Th en, if we use a representation in which (vp)~ = (l~x)~, the Feynman rules 
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I will be obeyed. The vertex can be interpreted as representing the physical processes UL + VR f+ Zt, 
UL e, VL + 2: or UR c) VR + zt, depending on context. Taking all three particles as incoming (or 
outgoing), the quantum numbers add to zero-as they should-while, if we reverse the direction of 
either neutrino to make it outgoing, it becomes the same as the incoming neutrino. Note that for 
massless particles (/? = kc), we cannot specify a direction until we connect them to slower particles 
whose directions can be assigned. Thus we are forced to adopt a Wheeler-Feynman type of theory, in 
which all massless “radiationn emitted by charged particles must be absorbed; we will see later that 
charged particles must be massive and, hence, must have IpI < c. 

Interpretation of /eve/ 2 as modeling the vertices of quantum electrodynamics for electrons, positrons 
and photons is almost as easy. We take as the linearly independent basis strings (el), (ei), (I’xx) and 
define the nonnull string which guarantees their independence as (I’,) = (e;‘,iI’xx). The remaining 
three label strings which close essi level 2 are then defined by 

(et) = (hi) ; 

We take-the same convention for positive direction and chirality as we did for level I, using the negative, 
left-handed electron as our reference string and the velocity /?,, = 2k,;/n - 1 as positive when this 
number is positive. The physical states, where we omit the subscripts on p, are then given by 

kdL+n = (WLll(l)n ; (ei) = (e;)lW% ; (ei) = (e;t)ll(--& , 

(4 = g)ll(P)n = (7&) ; &I = (eJ/l(P)n = (rd,‘) , 

(7d = (bdll(% ; (^ILL) = (Jb)ll(o), = (XTRR) , 

and the Feynman rules are obeyed for all 3-vertices. 

The 4-vertex (eE77,) = (0) cannot be readily discussed until we have the configuration space theory 
nailed down. It is related to our finite treatment of Bremstrahlung in a ‘coulomb field.” The vertex 
(rLLrRR%) = (0) would seem to imply an interaction between photons and the “coulomb field,“-a 
vertex that vanishes in the conventional theory because of the masslessness of the photon and gauge 
invariance. 

A related problem arises with the vertices implied by our connection between particles and antipar- 
ticles, namely 

(VI7 1) = (0); (eE1) = (0); (771) = 0. 

A little thought shows that such vertices will occur for uny particle-antiparticle pair. Hence, the antinull 
labelstring “interacts” with everything and must be assigned to /eve/ 4. This unique label string, which 
occurs with probability, 1/(212’ + 136), is identified with Newtonian gravitation. It leads to the bending 
of light in a “gravitational field,” as we will show at a later stage in the development of the theory. Of 
course, to get the experimentally observed result, we will have to identify the “spin-2” gravitons as well, 
and show that they double this deflection. 

These problems will have to be deferred until we have articulated the theory further. We conclude 
this article by identifying the level 3 structure with the quarks and gluons of quantum chromodynamics. 
This discussion follows along the lines already laid down in discussing the first two levels. We take as our 
basis label strings a quark part (u+), (u-), (d+) or (d-) concatenated with a color part (r), (y), (b), which 
gives us the seven independent strings needed to form /eve/ 3. The color strings are linearly independent, 
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I so we can define (analogous to what we did at /eve/ 2) 

WI = (w) ; (‘) = (tw) ; (8) = (yw) ; (2;) = (bw) ) 

from which it follows that 

(ry6) = (0) ; (rgb) = (0) ; (fyb) = (0) ; (F$) = (0) . 

Similarly, the linear independence of the quark parts allows us to define 

(u+u-d+d-) = (9) ; (ff) = (qQ) 9 q E u+,u-,d+,d-. 

Then a colored quark label (q:) = (q*) I[( ) c an d a colored gluon label (gc) = (Q) I[ (c), c E r, y, b allow 
us to recognize the label part of the Yukawa vertex for QCD as (qCx&gCs) = (0). The essential point 
here is that, as proved above, (~1~2~s) = (0) f or any three distinct colors. We can then attach content 
labels and helicity in the same way we did in QED, and once again the Feynman rules apply. Any one 
familiar.with lowest order QCD can now immediately derive from our formalism the “valence quark” 
structure of the proton and neutron in terms of three quarks, and the structure of the z, p and w in 
terms of quark-antiquark pairs. In contrast to the level 2 situation, the 3-gluon vertex does not vanish 
and implies a 4-gluon vertex, so we find that we have constructed all the lowest order vertices of QCD 
with the correct conservation laws. 

The problem of “color confinement” is solved, in principle, by McGouerun’s Theorem [24,25]; i.e., the 
conclusion that in any finite and discrete theory there can be no more than three “homogeneous and 
isotropic dimensions” that remain indistinguishable as the (finite and discrete) cardinals and ordinals 
keep on increasing. (We discuss this theorem with more care in Chapter 9.) Because our labels are 
tied to contents and, hence, via the counter paradigm to macroscopic directions, we can only have 
three quantum number “dimensionsn asymptotically. These are saturated by the three absolutely (so 
far as we know currently) conserved quantum numbers: lepton number, baryon number and charge 
(or “z-component” of isospin), leaving no room for free quarks or gluons conserving asymptotic “color 
charge.” They can occur at short distance as degrees of freedom in the scattering theory-as we showed 
above-but eventually they have to %ompactify” and become distinguishable from free particle quantum 
numbers. We can conclude this immediately without any detailed dynamical argument. 

9. THE COUNTER PARADIGM 

B&in has insisted for decades that the primal contact between a (computable) formalism and 
the empirical. %orld” can only be made once. This was a basic reason why he and Kilmister [18,19] 
fastened on steps of a scattering process as a likely point at which to investigate the connection between 
finite mathematics and physical theory. I started thinking of the elementary scattering process as 
fundamental, thanks to my early involvement in Chew’s S-Matrix theory; for me this gave specific 
content,to Bridgman’s operationalism and Heisenberg’s very early ideas. At ANPA 2 and 3 some of us 
saw that Stein’s “random walk” derivation of the Lorentz transformation and the Uncertainty Principle 
[26] must somehow connect to scattering processes; others recognized the seminal nature of his work 
because of his ontologicpl viewpoint. 

The specific genesis of the “counter paradigm” occurred after my presentation [27] at the conference 
honoring deBroglie’s 90 fh birthday. Fortunately, I had an opportunity to start working on the final 
version of that paper [28] in consultation with Ted B&in before it was published. I realized that if 
I thought of Stein’s %andom walk” as a model for two sequential events in two spatially separated 
laboratory counters with the discrete step length being the deBroglie relativistic phase wavelength, that 
by representing Stein’s random walks as bit strings with the bit 1 taken as a step toward the final counter 
and the bit zero a step away from it, I had the right point of contact between the bit strings used in the 
combinatorial hierarchy and the start of a scattering theory. 
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So far we have only discussed 3- and 4-vertices for a fixed value of n, but each time program universe 
TICKS, each content string in each labeled ensemble acquires an arbitrary bit at the growing end. In the 
absence of further information, each content string therefore represents a sequence of Bernoulli trials, 
with 0 and 1 representing the two possibilities. This has an extremely important consequence, which we 
call McGouerun’s Theorem [24,25]. As has been noted by Feller [29], ‘f 1 we have D independent sequences 
of Bernoulli trials, the probability that after n trials we will have accumulated the same number (Ic) of 
one’s is pD(n) = (&)Ci=o(;)D. He th en shows that the probability that this situation will repeat N 
times is strictly bounded by 

h(N) = CL1 m(n) < -$ [ 1 
-4 EN- n+CDsl) 

n-l . 

Consequently, for D = 2,3 where pg(n) < n-4, n-l, such repetitions can keep on occurring with finite 
probability; but for four or more independent sequences, this probability is strictly bounded by zero in 
the sense of the law of large numbers. 

McGoveran uses finite attributes, which can always be mapped onto ordered strings of zeros and ones, 
as the starting point for his ordering operator calculus. As is discussed in more detail in Ref. [l], these can 
be used to construct a finite and discrete metric space. In order to introduce the concept of dimensionality 
into this space, he notes that we need some metric criterion that does not in any way distinguish one 
dimension from another. (In a continuum theory, we would call this the property of “homogeneity and 
isotropy” ; we need it in our theory for the same reason Einstein does in his development of special 
relativity.) McGoveran discovered that by interpreting the coincidences n = 1,2, . . . , N in Feller’s 
construction as “metric marks,” the metric space so constructed has precisely the discrete property 
corresponding to “homogeneity and isotropy” as just defined. Consequently, Feller’s result shows that 
in any finite and discrete theory, the number of independent ‘homogeneous and isotropic” dimensions is 
bounded by three! If we start from a larger number of independent dimensions using any discrete and 
finite generating process for the attribute ensembles, we find that the metric will, for large numbers, 
continue to apply to only three of them, and that what may have looked like another dimension is not; 
the probability of generating the next “metric” mark in any of the others (let alone all of them) is strictly 
bounded by l/N~m! 

Of course, the argument depends on the theory containing a universal ordering operator which is 
isomorphic to the ordinal integers. Further-since we know empirically that uelementary particles” are 
chirul-we will need three, rather than two “spatial” dimensions. Thus uny discrete and finite theory such 
as ours, when applied to physics, must be globally described by three dimensions and a monotonically 
increasing order parameter. Consequently, we are justified in constructing a “rule of correspondencen 
for our theory which connects the large number properties of our R-frame to laboratory (E-frame) 
3 + 1 space-time. Earlier treatments of the “counter paradigm” simply took this possibility for granted. 
McGoveran’s Theorem fills this serious logical gap. 

We begin with the paradigmatic case of a single particle entering a space-time volume (detector) 
AVAT, causing a count and a time T, later entering a second detector with similar resolution a macro- 
scopic distance L from the first and causing a second count. We then say that the (average) velocity 
of the particle between the two detectors is V = L/T; empirically, this number is always less than or 
indistinguishable from the limiting velocity c. 

This language is well-understood by the particle physics experimentalist, but raises a number of 
problems for others.’ To begin with he uses %ausen in a philosophically vague but methodologically 
precise sense, which includes a host of practical experience about Ubackground,n “spurious counts,” 
“real counts,” “goofs,n “GOK’s” (i.e., “God only knowsn), . . . . 

The actual practice of experimental particle physics implies the concept of indistinguishability in a 
critical way; the experimentalist uses, often without conscious analysis, finite collections whose cardinal 
number may exceed their ordinal number; this fact is diagnostic for sorts that are not reducible to sets 
(241. To put it more formally in terms of “backgroundn and “counts, n in the absence of a constructive 
definition of the two subsets-which is often unavailable in practice, and in our theory we would claim 
can be unavailable in principle-the two collections are sorts rather than sets. 
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The rule of correspondence in the counter paradigm case (two sequential counts spatially separatedj 
applies to a labeled string with label L,, which at the TICK with the content string length no was part of a 
3- or 4-vertex and, again, part of a vertex at content string length no+&,, AND WHICH IS APPROPRIATELY 
ASSIGNED TO THEORETICALLY RELEVANT DATA RATHER THAN TO BACKGROUND. We ask how many 
one’s were added to the content string; we call these k,. We identify the (average) laboratory velocity of 
the particle (V = L/T) with the R-frame quantity by the equation V = [(2ka/n,) - l] c. The sign of this 
velocity defines the positive or negative sense of the direction between the counters in the laboratory (or 
visa versa: a choice must be made once). Since the evolution of the bit string universe will provide many 
candidates for the strings which meet these criteria within the time and space resolution of the counters, 
we will have to provide more and more precise definitions of these criteria as the analysis develops. 

10. EVENT-BASED COORDINATES AND THE LORENTZ TRANSFORMATIONS 

As is discussed with much more care in Ref. [l], any theory satisfying our principles can be mapped 
onto ensembles of bit strings simply because, with respect to my attribute, we can say whether a 
collection has that attribute or does not. To introduce a metric, we need a distance function relative to 
some reference ensemble. Because of our finite and discrete principles, any allowed program can only 
take a finite number of steps to bring any ensemble into local isomorphism with the reference ensemble 
in respect to that attribute. Note that there can be many attributes, many distance functions, and that 
the space can be multiply connected. Note also that this definition also provides a (dichotomous, e.g., 
&) sense to the computation steps: they must increase the attribute distance or decrease it. Calling the 
number of increments I and the number of decrements D, using a well-defined computational procedure, 
the attribute distance is, clearly, DA = I - D, and the total number of steps N = I + D. Then we can 
also define the attribute velocity with which the two ensembles are “separating” or “coming together,” 
VA=(I-D)/(I+D). Th us, there always is a “limiting velocity” for each attribute, which is attained 
when all steps are taken in the same direction. 

If we wish to model the events of which contemporary physics takes cognizance, we know that all 
physical attributes are directly or indirectly coupled to electromagnetism. Therefore, the limiting veloc- 
ity of physics, c, will be the smallest of these limiting attribute velocities, simply because it refers to the 
attribute with the maximum cardinality. Any ensemble of attributes specified by a more limited descrip- 
tion involves a “supraluminal” velocity, without allowing supraluminal communication of information. 
Hence, we can expect to find correlation between and synchronization of events in space-like separated 
regions; from our discrete point of view, the existence of the effects demonstrated in Aspect’s and other 
EPR-Bohm experiments is anticipated and in no way paradoxical. We guarantee Einstein locality for 
causal events; that is, for those initiated by the transfer of physicul information [30]. 

In order to go from this general proof of the limiting velocity to the laboratory practice of relativis- 
tic particle quantum mechanics, we need a more specific formalism than the general derivation given in 
Ref. [l]. We start from the 3- and 4-vertices already mentioned and consider how they can be used 
to model the “laboratory” situation given in Fig. 11. The initial 4-vertex (a!&)~+~,, = 0 is followed 
sequentially by five vertices involving “soft” photons. In the laboratory neither vertices, nor elementary 
events, nor soft photons can be observed; limiting cases in which the disturbance caused by the firing 
of counters connected with these five events is negligibly small are easy to envisage. We use a specific 

0 
d . , 

b 

7-88 
6017All C 

Fig. 11. A rl-event followed by five events involving limiting velocity signals which can be used to 
establish the Lorentz transformations for Event 3. 
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example of labels that can, if we wish, be given a specific interpretation in which particles a, b, c have 
spin-l/2 and the photons have left or right spin-l helicity. 

We assume that it takes ni TICKS of program universe beyond L+~Q to generate the strings involved 
in the r?‘ event. Since all strings will have the portion through content string length no unaltered, we 
need use only these relative values: ni = NV(i) - L - no and the corresponding terminal pieces of the 
strings for our contents. For Event 1, we take the three strings to be 

(a> = (1000) II(ASt)n, ; (a’) = (OIOO)lk%l ; (=Y) = (lloo)ll(o),, . 

Hence, (au’?) = (0) d fi e nes a 3-vertex in which the velocity of a does not change; we could call it 
a “soft photon” vertex. By crossing (cf., Chapters 3 and 7 above), this also can be interpreted as a 
vertex in which a flips its spin and emits a photon with the appropriate helicity; i.e., (7) = (0011) II (l)n,. 
The laboratory direction between Events 1 and 2 then defines the reference direction for all subsequent 
discussion. The remaining vertices can be consistently represented by using 

(b) = (1OOO)lI(A;)~, ; (7) = (~ll)]](& ; (b’) = (Olll)]](A;),, ; 

(7') = (f100)11(1)n2 ; 

(c) = (1000)11(Aj)n, ; (7') = (llOO)~~(l)ns ; (c') = (Olll)I~(A~l),, ; 

(7’) = wl)ll(o)m , 

(b’) = (Olll)~l(A~),, ; (7’) = (~ll)ll(O),, ; (b”) = (lOOO)]](A&, ; 

(7) = ww IlP>*, ; 

(a’) = (OlOO)II(&)n, ; (a”) = (lOOO)II(A~‘),, ; (7) = (~loo)ll(o),, . 
We now trust that our rule of correspondence between 3- and 4-vertices and a standard “laboratory” 
situation used in the derivation of the Lorentz transformations is clear. 

For simplicity, we consider here that particle a is, on the uueruge, “at rest” between Events 0, 1 and 
between Events 1, 5: 

k+-:; k;+ k;+ 

We also assume, again on the average, that b and c have constant velocity over the appropriate intervals: 

‘ , 

Our next simplification is to assume that all the events lie on a single “line,” reducing this to a l+l 
dimensional problem. None of these simplifications are needed, as can be seen from the general discussion 
in Ref. [l]. 
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In conventional terms, we are asking the question of how the coordinates of an event at z = /?ct 
in one coordinate system (the one in which particle u is at rest) transform to the coordinate system in 
which particle b is at rest. We assume, as in conventional treatments, that the velocity of light is the 
same in all coordinate systems and that the time at which Event 3 occurs is the average between when 
the light signal that defines Event 3 was emitted by u and returns to it. Introducing a parameter with 
the dimensions of length, whose value we will discuss later, these statements follow immediately from 
the definitions of attribute distance and velocity, since 

X = 2k-n; ct 
;r 1 = n; 

for any particle, and k = 0 or n specifies a connection with the limiting velocity for any set of strings. 
This is even clearer when we introduce “light conen coordinates: 

d-t = n + (2k - n) = 2k ; d- = n- (2k - n) = 2(n- k) . 

The relationship between the two descriptions is illustrated in Fig. 12. 

d, ((0) = 2k-n) 
A n = et/X 

2k-n 

6-88 x/x 6017A9 

Fig. 12. The connection between space-time and light-cone coordinates in terms of bit string distances 
and velocities for the physical situation envisaged in Fig. 1. 

One way to derive the Lorentz transformations is to require that the interval s between Events 0 
and 3 be invariant, where 

2 c2t2 - x2 
x2= x2 = 

n2 - (2k - n)2 = 4k(n - k) . 

In light cone coordinates this relationship becomes 

. , d+d- = 4k(n - k) = g , 

which makes one way of insuring the invariance requirement particularly simple, namely 

k’ = pk , n’ - k’ = p-‘(n - k) =+ 4k’(n’ - k’) = 4k(n - k) . 

Note that if we are to compare the integer bit string coordinates, this restricts k’ to be a rational multiple 
of k. One of the great successes of our theory is precisely this restriction that keeps events an integral 
number of deBroglie wavelengths apart. A fundamental explanation of why our theory can contain 
“interferencen phenomena starts here. 

129 



I If we now note that 

&=(lfP)n, 

the invariance requirement gives us 

k’ n-k 1+P’ 1-P --= 
k ,I_ k’ p2 = 1+P m ’ 

Hence, 

pp = P--P - /)2 = :+;. 1-m P 

From the fact that when transforming from a system at rest d+/d- = 1, we see that the relative velocity 
between the two systems is simply pp; we have derived the velocity composition law for rational fraction 
velocities in any system. Tom Etter arrived at this composition law for attribute velocities on general 
grounds, as is discussed in Ref. [l]. With 

. 
7 = ; [P +p-‘1 , 

we have that 
x’ = 7(x + Ppct) ; t’ = 7(ct + PP4 * 

QED 

11. QUANTUM MECHANICS 

Program universe provides an invariant significance for the label strings, once they close (in some 
length, with at-least 139 bits) to form some basis for some realization of the combinatorial hierarchy. 
For each of the 212’ + 136 labels Ll, we can assign a dimensional parameter Ai, which is the step length 
when the particle is uat rest”; i.e., when on the average 2kl = nf. Since program universe increases the 
string length one arbitrary bit at a time, this requirement can at best be satisfied only at every other 
step. We have seen that when all steps are in the same direction (i.e., when the content string is either 
the null string or the antinull string), this corresponds to a “light signal.” In any string evolution, all 
steps are executed at the limiting velocity c- a finite and discrete “zitterbewegung.” The invariance of 
X5 allows us to associate with each label an invariant parameter with the dimensions of mass mt, and 
relate the two by At = h/mtc, whe re h is a universal constant with the dimensions of action. We will 
now show that h can indeed be identified with Planck’s constant. 

The extension of our Lorentz transformations to momentum space is now immediate. We simply 
define E = 7moc2, p = 7Pmoc. For pi = E/c f p, we have p+p- = mic2, p+/p- = k/(n - k) and 
(p+x- + p-x+)/2 = Et - p x. The justification of calling this “momentumn is more than definitional; 
we showed above that 3- and 4-vertices support “vector” conservation laws and “crossing symmetry.” 
We have 3-momentum conservation in any allowed event-based reference frame. Clearly, m&o = h = 
EX/c in any allowed coordinate system, and we have recovered the initial identification of the step length 
in the “random walk” as X = he/E, the deBroglie phase wavelength with which our initial statement 
of the %ounter paradigm” began. We can now deriue the quantum mechanical commutation relations 
from our model. 

We note that if we consider a system that evolves with constant velocity ,f& G 2ko/no - 1, strings 
which grow subject to this constraint, i.e., n = nTn0, k = rqko, 1 < ?ZT < n/no, will have a periodicity 
T E nTbt = nTA/C specifying the events in which this condition can be met. Hence, in more complicated 
situations where there can be more than one “path” connecting strings with the same velocity to a single 
event, this event can occur only when the paths differ by an integral number of “d-wavelengths” A. Thus, 
our construction already contains the seeds of “interference” and a conceptual explanation of the “double 
slit experiment .n 
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I We have-already seen that any system with %onstant velocityn-at those “ticks” when events can 
occur-evolves by discrete steps fX, in z = q. between ticks. McGoveran’s ordering operator calculus 
[l] which specifies the connectivity between events allows these discrete happenings to occur in a void 
where space and time are meaningless. Since X/At = c, each step occurs forward or backward with the 
limiting velocity; thus, we deduce a discrete tittcrbcwcgung from our theory. If we think of this as a 
“trajectory” in the pq phase space, each time-step induces a step fX in q correlated with a step ztmc 
in p. Even in the case of a particle “at rest,” this must be followed by two steps of the opposite sign to 
return the system to “rest.” Thus there is, minimally, a 4-fold symmetry to the 9,rajector-y” in phase 
space corresponding to the generation periodicity we discovered above. 

If we now recall from classical mechanics [31] that for any momentum which is a constant of the 
motion, we can transform to angle and action variables, with f p~dq~ = J where J has the dimensions 
of action, pi = J/&r and qJ is cyclic, we have an immediate interpretation. In the classical case, 
the “period” goes to infinity for a free particle; for us, we have already seen that we have a finite 
period T = X/c. Therefore, we can immediately identify ma& = J = nTh; we have constructed 
Bohr-Sommerfeld quantization within our theory. 

To go on to the commutation relations, we can replace the geometrical description of periodic tra- 
jectories in phase space by using complex coordinates z = (q, ip) (or by (q.r, inTh/2n), where qJ is 
restricted to 2n + 1 values with -nT 5 n 5 +nT]. Then the steps around the cycle in the order qpqp 
are proportional to f2r (l,i, -1, -;), where f depends on whether the first step is in the positive or 
negative direction or, equivalently, whether the circulation is counterclockwise or clockwise. We have 
now shown why qp - pq = fiti for free particles in our theory; this result holds for any theory satisfying 
our principles which uses a discrete free particle basis. 

In order to go to a detailed 3-dimensional description, we must supply three linearly independent 
reference strings, define inner products with respect to them (cf., Chapter 7) and go to a “coordinate” 
description. There will then be three independent periodicities (velocities and momenta) which will 
commute with each other but not with their conjugate position variable. The commutation relations 
for angular momentum follow immediately. Since this has already been shown in quite general terms 
in Ref. [l], we will leave the details to future publications. An alternative is to develop the “radial 
coordinate” (n,Z,m) description using =bound states” as the basis. 

Now that we have two (ti and c) of the S-dimensional constants needed to connect a fundamental 
theory to experiment in the S-space in which physics operates, and which we have proved must be the 
asymptotic space of our theory, all that remains is to determine the unit of mass. This has already been 
done for us by the combinatorial hierarchy result 212’ + 136 z 1.7 x 1O38 H tLc/Gmi = (Mplanck/mp)2, 
which tells us that we can either identify the unit of mass in the theory as the proton mass, in which 
case we can calculate (to about 1% in this first approximation) Newton’s gravitational’constant or-if 
we take the Planck mass as fundamental-calculate the proton mass. From now on, we have to compute 
everything else. If we fail to agree with experiment to the appropriate accuracy (one of the rules of 
correspondence!), we must either revise or abandon the theory. 

12. A DISCRETE MODEL FOR THE BOHR ATOM 

We,have seen that any bit string has the deBroglie periodicity h/mc2 for each digital “time step” 
An = 1 and that, when it evolves with %onstant velocity,” also has the longer digital period no connected 
to the velocity by p 7 2ko/no - 1 at each finite “position” NphnOP = lVph(2ko - no), where an event can 
(but need not) occur.after the initial vertex at N& = 0. Note that we are not interested in particles “at 
rest.” We define Ako = ko - no/2 and, hence, /? = Ako/nc. Only one integer can be added to the string 
at each step. This must happen Ako times before the periodic pattern can be completed. Therefore, 
the number of step lengths in the periodic pattern -the coherence length-is no = l/p. Since, as we saw 
above, the step length is X = he/E, we find that the coherence length required for periodic phenomena 
at constant velocity is X, = hc/PE =-h/p. 

By adding a constraint representing a second periodicity, we can now model the periodicity repre- 
senting a ?losed orbit around some fixed center.” Clearly, this periodicity must use the coherence length 
derived above if we are to have a stable, repeating pattern that starts from some “origin” and closes 
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I after NB coherence lengths. This model, which only describes the average “motion,” will persist from 
the time when we start the model off to the time when some vertex-for example the absorption of a 
“hard” photon-ends the finite sequence of periods. Of course, this can only occur at one of the positions 
allowed for events. In the average sense, we can image this “trajectory” as a regular polygon with NB 
sides of length X,. With the usual “geometrical” image in mind, we call the distance traversed in this 
period “27rRn= NB& and, hence, muR = Ngti. Afficionados of the early history of quantum mechanics 
will recognize that we have constructed a digital version of deBroglie’s analysis of the geometry of the 
Bohr atom and produced a reason for angular momentum quantization. For the meaning of “z” in a 
discrete and finite theory, refer to the discussion in Ref. [l]. 

Although this part of the derivation of the Bohr atom should be reasonably familiar, our introduction 
of the “electromagnetic interaction” will be radically different from the conventional approach. We have 
seen above that the coulomb interaction is represented by only one out of 137 labels in the combinatorial 
hierarchy construction, and that strings evolve by the arbitrary selection of strings from memory to 
calculate the vertices (thanks to the counter paradigm, these vertices have now become =eventsn). In 
the case at hand, 136 of these choices can only provide a “background” which will cause fluctuations of 
the position of our particle; on the average these must cancel out. Only once in 137 times will the step 
correspqnd to the vertex that serves to keep the particle in its orbit. We can think of this as happening 
at the vertices of the polygon; i.e., NB times in one full period. So, compared to the basic evolution 
time, we find that for this electromagnetic orbit, p = 1/137N~. Making the hierarchy identification 
137 = tLc/e2, our quantization condition derived above then gives us the standard result R = Ngh2/me2 
and an explanation of the old puzzle of why the Bohr radius is 137 times the Compton wavelength! 

To calculate the binding energy, consider the energy change between this average motion and the 
particle at rest caused, for example, by the emission or absorption of a photon. We must use the 
average velocity because, in the absence of other information, we cannot know “wheren in the orbit the 
interaction occurs. Our theory can readily accommodate emission and absorption of photons-conserving 
both momentum and energy- as we have seen in our derivation of the Lorentz transformations, and can 
include the usual recoil correction, if we so desire. Thus, we argue that the binding energy ~~~ is related 
to the velocity ~~~ = 1/137N~ by (ebb + m,y2)2 = mfjc4/(l - @kB), from which all the usual results for 
the Bohr atom follow to order p2. 

13. SCATTERING THEORY 

To construct a scattering theory, we need to provide the connectivity between events. To obtain 
a statistical connection between events, we start from our counter paradigm and note that, because 
of the macroscopic size of laboratory counters, there will always be some uncertainty Ap in measured 
velocities, reflected in our integers k, by Ak = iNAp > 0. A measurement which gives a value of p 
outside this interval will have to be interpreted as a result of some scattering that occurred among the 
TICK’s that separate the event (firing of the exit counter in the counter telescope that measures the 
initial value of p = DO to accuracy Ap), which defines the problem and the event which terminates the 
Yree particle propagation”; we must exclude such observable scatterings from consideration. 

What we are interested in is the probability distribution of finding two values k, k’, within this 
allowed interval, and how this correlated probability changes as we TICK away. If k = k’, it is clear that 
when we start, both lie in the interval of integral length 2Ak about the central value ko = $(l + PO). 
When k # k’, the interval in which both can lie will be smaller and will be given by 

[(k + Ak) - (k’ - Ak)] = 2Ak - (k’ - k) , 

when k’ > k, or by 2Ak + (k’ - k) in the other case. Consequently, the correlated probability of 
encountering both k and k’ in the “window” defined by the velocity resolution, normalized to unity when 
they are the same, is f(k, k’) = (2Ak 7 (k’ - k)]/[2Ak f (k’ - k)], w h ere the positive sign corresponds 
to k’ > k. The correlated probability of finding two values kT, k& after T TICKS in an event with the 
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I same labels and same normalization is [f(kT, k&)]/[f(k, k’)]. This is one if k’ = k and k& = kT. However, 
when k’ # k, a littie algebra allows us to write this ratio as 

If 

1F 
2(Ak - AkT) 

(k’ - k) 

4AkAkr 
(k’ - k)2 
4AkAkT ’ 
(k’ - k)2 

If the second measurement has the same velocity resolution A@ as the first, since T > 0, we have that 
AkT < Bk. Thus, if we start with some specified spread of events corresponding to laboratory boundary 
conditions and tick away, the fraction of conuected events we need consider diiinishes. If we now ask 
for the correlated probability of finding the value p’, starting from the value p for the sharp resolution 
approximation (i.e ., ignoring terms smaller than l/T or proportional to l/T and smaller), this is one 
if /3 = fl’, and bounded by fl/T otherwise. That is, we have shown that in our theory a free particle 
propagates with constant velocity with overwhelming probability-our version of Newton’s first law, and 
Descartes’ principle of inertia. 

Were it not for the f, the propagator in a continuum theory would simply be a b-function. In our 
theory, we have already established relativistic Upoint particle” scattering kinematics for discrete and 
finite vertices connecting finite strings. We also showed that the order in which we specify position 
and velocity introduces a sign that depends on which velocity is greater, which in turn depends on 
the choice of positive direction in our laboratory coordinate system and, hence, in terms of the general 
description on whether the state is incoming or outgoing. In order to preserve this critical distinction 
in our propagator and keep away from the undefined (and undefinable for us) expression con&./O, we 
write the propagator as 

where q is a positive constant less than T. The normalization of the propagator depends on the nor- 
malization of states, and is best explored in a more technical context, such as the relativistic’Faddeev 
equations for a finite particle number scattering theory in the momentum space continuum approxima- 
tion, being developed elsewhere [9-121. 

14. A TEMPORARY HALT 

Each paper I have written for ANPA Proceedings has had to stop at an unsatisfactory point for 
me, and I fear for any reader who has persisted to the end. In the past, I have clobbered together 
a synopsis- fortunately, often prophetic-of where we might be headed. This time I wish to put the 
burden on the reader. I ask some questions which I believe might be answered by pursuing the lines 
already laid down. I am working on all of them, and would appreciate some company! 

Queries, - 

We take ti, c and G as measured by current scale inuariant techniques, and define our dimensional 
units of mass [M], length [L] and time [T] by 

[M] E (p2 ; [Jq f & ; [T] E v . 

It is taken as understood in our work~that a fundamental theory such as ours must compute everything 
else as pure numbers in terms of ratios to these units, and provide rules of correspondence consistent 
with the current practice of physics that will enable us to say how successful we have been in making 
such calculations. 
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I Query I: 
To what extent do you agree or disagree with this statement ? What arguments would you advance 

in support of it? What experimental or logical evidence would convince you that this is a bad starting 
point for a fundamental theory? 

It is often thought by people who have followed the ANPA program that we have, by now, predicted 
up to a factor of [l f 0(1/137)], the following physical consequences, where the symbols have their usual 
significance: 

Query 2: 

[M] = (212’ + 136) mp ; $ = 137 = 22 - 1 + 23 - 1 + 2’ - 1 . 

What arguments would you advance to support this conclusion ? What experimental or logical 
evidence would convince you that these results are wrong or misleading? 
Query 3: 

Can you explain why you believe in, or do not believe in, the Parker-Rhodes formula for the proton 
electron. mass ratio 

mP - 1377r -- 
me 

Query 4: 
Using the recent results establishing momentum conservation, can you 

(a) calculate the “center-of-massn correction to the Bohr formula (m, + me/(1 + m,/mp)], and 
(b) see if a consistent discrete calculation provides a new route to the Parker-Rhodes formula? 

Query 5: 
Can you, by using the relativistic discrete theory including angular momentum and “elliptical orbits,” 

obtain the Bohr-Sommerfeld fine structure splitting for the hydrogen spectrum and, by using-instead- 
the spin degree of freedom, show that this is consistent with the Dirac calculation of the same quantity? 
Query 6: 

By treating the (1)~~ label (Le., the unique label in the full, 4-level2 12’+136 bit string representation 
of the hierarchy which interacts with everything) as the Newtonian =quantumn in the same way that 
the coulomb “quantumn is treated in the previous exercises, can you solve the Kepler problem? 
Query 7: 

Can you show that our theory predicts the gravitational red shift for light emitted from any massive 
object? 
Query 8: 

Can you show that Newtonian gravitation in our theory predicts only half the observed deflection 
of apparent stellar positions by the sun ? Can you extend the gravitational theory to provide spin-2 
gravitons, in addition to the Newtonian term, and show that one can then get the experimental result? 
Query’9: 

By using spin-2 ‘gravitons in the Kepler problem (see Query 6)-in analogy to the Dirac version 
of the Bohr-Sommerfeld problem (dee Query 5)-tan you calculate the precession ‘of the perihelion of 
Mercury? 
Query IO: 

Can you show that the mass of the neutral pion is approximately 274 times the electron mass (137 
electron-positron pairs), and calculate the binding energy? 
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I Query 11: - 
Is the identification of (2 127+136)2 as an estimate of the baryon number (and charged lepton number) 

of the universe, which seems. natural in the context of program universe, a necessary consequence of 
theories of the type we are constructing? 
Query 12: 

Is the fact that particles currently known can only be identified with reasonable assurance at /eve/ 3, 
that all such particles are “visible” (interact electromagnetically, either directly or indirectly) and that, 
from the statistical point of view, labels that close on the first two levels will be 127/10 times more 
prevalent, an indication that there should be roughly ten times as much “dark” as “visible” matter in 
the universe? Realize that although these labels are not identified, they, like any label in the scheme, 
must interact gravitationally. 
Query 13: 

Does the success of the Noyes-Dyson argument for the mass of the neutral pion (see Query 10) take 
us far enough to calculate the 2-gamma decay lifetime of this particle (0.87 x lo-l6 seconds)? 
Query 14: 

How-do we calculate the mass of the W and the Zo? If we can do this, the z* -no and neutron-proton 
mass splittings should follow. 
Query 15: 

Can we calculate some approximation to the “ghon condensate” which allows Namyslowski to get 
“running massesn for quarks and gluons ? If so, most of strong interact physics should follow, in due 
course. 
Query 16: 

Are there quantum geons? 
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