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In a recent Physical Review Letters, Floreanini and Jackiwl) suggest an action suitable 

for the quantization of a two-dimensional chiral boson. Several years ago W. Seigel pro- 

posed an apparently unrelated action for the same system. In this comment we point out 

a connection between these two approaches. 
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The classical Lagrangian density for a left-moving chiral scalar, as introduced by Siegel 
. 1) , is 

L = a-qu,~ + xp-qq2 , (1) 

where the Lagrange multiplier X(z, t), transforms as the ++ component of a second rank 

tensor. Classically, one finds, upon varying 4 and A, the following equations of motion 

a-p+4 + xa-qq = 0 a-+=0 , (2) 

with the solution (as desired) & = d(~+). The Hamiltonian density is 

u, = ;&I + Xq5’)2 + ;(l - x)(c$‘)2 . (3) 

The vanishing of the canonical momentum conjugate to A, II,(Z), is a first class con- 

straint; for consistency, we demand that this constraint be preserved in time, so that ir = 

q(z) = {IIx(z),I&} = 0. Th is gives the additional constraint 22 = i(&)2(II - ,‘), = 0 

which is also first class. However, the second class constraint x2(z) = II(z) - 4’(z) = 0 is 

classically equivalent to 22 and is just the canonical transcription of a-4 = 0. The quanti- 

zation of the system using Faddeev-Popov and BRST methods was previously considerd.3j41 

This approach led to some puzzling features: Only a pair of chiral bosons could be 

consistently quantized41 and the necessary additional Liouville term could not be cou- 

pled to gravity 51. Moreover, recently it was argued61 that this approach is inappli- 

cable for the Lagrangian (1) because the first class constraint is a square of a second 

class one. It is not clear to us at this stage whether this last statement is justified. 

In any event, we use here the alternative approach of adopting the second class con- 

straint x2. Following Dirac’s quantization procedure7), we add now a third constraint 

x3(z) = X(z) - f(z) with an arbitrary function f(z). Now all the constraints are second 

class. The non-zero matrix elements of the constraints’ algebra*) Q(z, y) = {xi(~), xi(y)} 

are C22 = -26’(2 - y), Cl3 = -c31 = -6(z- y). w e now use the Dirac brackets to pass 

to the quantum theory via the usual definition of the commutator of two operators J’, G: 
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[F(z), G(y)] _ ;{F(s), G(y)}*. This leads to the following operator algebra 

k+MY)] = -$(x - Y) - (4 

Since the constraints are now true operator identities, we are free to evaluate the Hamil- 

tonian (3) on the constraint surface, giving 

w = H2(z) = a (H(x) + 4’(x))” , (5) 

The theory is now explicitely independent of X(z). 

We proceed now to the path integral quantization. For a Hamiltonian system with 

first and second class constraints, path integral quantization was discussed in Ref. [9]. 

Applying the general formalism to our case yields the generating functional 

z lJl = 
J 

[@I [dd [dA] P-M 6(x1)~(x2)~(x3) 

Det [C&h Y)] exp {i/d2x(Hcj+n,i-llc-.Jq%)} ’ 

(6) 

where xi(; = 1,2,3) were defined above, and Xc is the canonical Hamiltonian (3) (a 

normalization by Z[O]- 1 is implied in (6)). Using the delta-functionals, and noting that 

Det[C] is a field-independent constant, one obtains 

This Lagrangian, L’, coincides with the local form of the Lagrangian given in ref. [l]. The 

classical equation of motion for this Lagrangian, with J = 0, is k~3-4 = 0 which has the 

general solution ~3-4 = g(t). H owever, the functional integral (6) or (7) is not specified i 

completely until we include boundary conditions; thus, by requiring ~9-4 = 0 at the spatial 

boundaries, we set g = 0 and recover the correct classical equation. 

We would like to thank Y.Frishman for discussions. One of us J.S would like to thank 

R. Nepomechie for discussions and for pointing out the relation between the two approaches 

and R. Jackiw for urging us to publish this comment. 
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