TWO SOLUTIONS FOR DAMPING RING EXTRACTION KICKER FOR ELISA*

Allen Odian

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305

General Specifications

1. $\theta_{\text {KIOK }}=2 \times 10^{-3}$ radians
2. $P_{\text {max }}=2.2 \mathrm{GeV} / \mathrm{c}$
3. Aperture Width: $w=100 \mathrm{~mm}=0.1 \mathrm{~m}$

Aperture Gap: $g=30 \mathrm{~mm}=0.03 \mathrm{~m}$
4. $T_{\text {Pulse }}$ Spacing $=27 \mathrm{~ns}$

Formulas:
$l=$ Magnet Length (meters)
$B=$ Magnetic Field (tesla)
$\rho=$ Radius of Curvature (meters)

$$
\theta_{\mathrm{KICK}}=\frac{l}{\rho} \quad, \quad P=0.3 B \rho
$$

Therefore,

$$
\theta=\frac{0.3 B l}{P} \text { or } B l=\frac{P \theta}{0.3}
$$

Substituting the required P and θ gives

$$
B l=1.47 \times 10^{-2} \text { Tesla Meters }
$$

[^0]
Ferrite Magnet (Fianders Solution)

Figure 1
Formulas:

$$
\begin{aligned}
B & =\frac{\mu_{0} I}{g\left(1+\frac{n}{\mu_{f}}\right)} \quad, \quad B l=\frac{\mu_{0} I l}{g\left(1+\frac{n}{\mu}\right)} \\
L & =\frac{w}{g} \frac{\mu_{0} l}{\left(1+\frac{n}{\mu}\right)}
\end{aligned}
$$

For the geometry shown above

$$
n \approx \frac{g+2 \pi\left(\frac{w+g}{2}\right)}{g}=1+\pi+\pi \frac{w}{g}
$$

$$
n \approx 14 \text { for } w=100 \mathrm{~mm}, g=30 \mathrm{~mm}
$$

Putting the required $B l=1.47 \times 10^{-2} T \mathrm{~m}$ into the formula for $B l$ gets $I l$

$$
I l=\frac{g B l\left(1+\frac{n}{\mu}\right)}{\mu_{0}}
$$

Picking $\mu \approx 70$ for K6A (TDK)

$$
I l=4.2 \times 10^{2} \text { ampere meters }
$$

The choice of I and l comes from the time structure of the beam. If $T_{\text {Total }}$ is the separation of the bunches,

$$
\begin{aligned}
T_{\text {Total }} & \geq T_{\text {Transit }}+\Im_{\text {Rise }}+\Im_{\text {Fall }} \simeq T_{\text {Transit }}+2 \Im_{\text {Rise }}=T_{\text {Max }} \\
T_{\text {Transit }} & =\frac{L(l)}{Z} \\
\Im_{\text {Rise }} & =K_{1} I+K_{2}
\end{aligned}
$$

The optimum solution is when

$$
T_{\text {Transit }}=\frac{T_{\mathrm{Max}}}{2}=2 \Im_{\mathrm{Rise}}
$$

This will determine l and I.
As the $I l$ of a magnet will be less than the required $I l=4.2 \times 10^{2} \mathrm{Am}$, several magnets in the series will be needed, each driven with its own pulser.

Now $T_{\text {Transit }}=\frac{L(l)}{Z}$, so that large Z allows a large l for the same transit time. The magnet is connected to the pulser by coaxial cables so that the highest convenient Z for the magnet is 50Ω.

Fixing $T_{\text {Max }}=25$ ns leads to

$$
\begin{aligned}
T_{\text {Transit }} & =\frac{T_{\mathrm{Max}}}{2}=12.5 \mathrm{~ns}=\frac{L}{50} \\
L & =625 \text { n Henries }=\frac{w}{g} \frac{\mu_{0} l}{\left(1+\frac{n}{l}\right)}
\end{aligned}
$$

$l_{\max }=0.18$ meters for a magnet

Best thyratrons (EEV) have $T_{\text {Rise }} 10-90 \%$ of $200 \mathrm{Amps} / \mathrm{ns}$.

To convert this into a $\Im_{\text {Rise }}$

$$
\begin{aligned}
& \Im_{\text {Rise }} \simeq\left(\frac{1.8 I}{200}+2\right) \mathrm{ns} \\
& 2 \Im_{\text {Rise }}=12.5 \mathrm{~ns} \\
& \Im_{\text {Rise }}-2=4.25 \mathrm{~ns}=9 \times 10^{-3} I
\end{aligned}
$$

$$
I=470 \mathrm{amps}
$$

The number of magnets required is

$$
\frac{4.2 \times 10^{2}}{470 \times 0.18}=5 \text { magnets }
$$

For each magnet to have an impedence of 50Ω, there must be a capacity such that $\sqrt{\frac{L}{C}}=50$ or $C=\frac{L}{2500}$. As $L=625 \mathrm{nH}, C=250 \mathrm{pf}$. The natural capacity (Ferrite only) is (assuming $\epsilon_{\text {Ferrite }}=10$) $\simeq 80$ pf. Therefore about 170 pf must be added. If this is added using a liquid dielectric between the outer ground and a set of spaced radial fins, a low inductance no corona magnet can be constructed. Ethelene glycol or water can be used.

1-88

Figure 2

The voltage on the magnet is $\mathrm{V}=470 \times 50=23,500 \mathrm{~V}$ requiring a pulser with 47 KV on it. Alternatively, a Blumlein pulser can be used with $23,500 \mathrm{~V}$. The rise time may be slower as more current is required, so perhaps two thyratrons in parallel are required.

No Ferrite Solution

For a traveling wave, an " H " magnet design is better.

Figure 3
$1+\frac{n}{\mu}$ for this design is about 15 , instead of 1.2 in the ferrite case. Thus $I l$ must be $\frac{15}{1.2}$ times as large or 12.5 times the 420 amp meters needed previously. We need 5250 amp meters of magnet. The magnet must be driven symmetrically with a positive and negative pulse (from a transformer). As the transit time does not count, $\Im_{\text {Rise }}=12.5 \mathrm{~ns}$. This permits currents of $\approx \pm 900 \mathrm{amp}$ and hence a length of about 6 m for the magnet. The voltage is about $\pm 45 \mathrm{KV}$ on 50Ω. Depending on the turns ratio, the primary must be driven with rather high currents requiring the pulser to have many thyratrons in parallel.

To achieve high pulse to pulse stability, a second kicker whose kick angle is $\frac{\theta_{2}}{\theta_{1}}=\sqrt{\frac{\beta_{1}}{\beta_{2}}}$ is placed downstream at a betatron phase advance of π or 2π radians. This second kicker cancels variations in the first kicker.

[^0]: *Work supported by the Department of Energy, contract DE-AC03-76SF00515.
 Presented at the Workshop on B-Meson Factory, Courmayeur, Italy, December 14-18, 1987

