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Summary 

In this paper, optimal control theory is applied to the 
design of decentralized sensor systems. Lagrange inequality 
multipliers are used to determine the optimal design param- 
eters. Several models of possible response functions are fully 
discussed as examples of our technique. 

1. Introduction and Definition of the Problem 

There are many situations in science and engineering in 
which information is gathered from a variety of sensors and 
must be abstracted or summarized for future processing in or- 
der to comply with communication, storage, or processing con- 
straints. The simplest example is the case in which a binary 
decision must be made based upon information sources that 
are constrained to transmit a binary signal. Examples include 
data from devices monitoring the performance of a power net- 
work, data from an array of elementary particle detectors, the 
coordination of radar or infrared signals, and so on. 

In general, the communication restrictions may be lifted 
with some increase in cost; thus the examples under discussion 
represent a special case. As we shall see, even this simple case 
(two alternative states, two possible actions, two-fold signals, 
and two detectors) presents challenging problems of analysis. 
Discussions have been given by Srinivasan for more than two 
detectors* and with applications to a specific choice of the de- 
tector characteristics.2 

Discussion of a case with distributed action is given by Ten- 
ney and Sandell.3 A discussion for specific (series) topologies 
is given by Ekchian and Tenneyl.’ Related problems have been 
discussed by Chair and Varshney,5 by Reibman and Nolte,6 
and by Sadjadi.’ 

Quite generally, the performance of an entire network is 
summarized by four probabilities p,(y,H), of which only two 
are independent. (Here, H = I&, HI represents two hypothesis 
about the world and y = y~,yl represents two possible actions 
or determinations. This notation will be made more precise 
shortly.) 

Several problems may be formulated, including 
(i) min pr(yl, HO) subject to P,(YO, HI) I ~0,. 

(ii) min P~(Yo,HI) subject to P,(YI,Ho) 5~7. 

(iii) min AP,(YI,Ho) + BP,(YO,&). 

The first and second problems correspond to setting ac- 
ceptable error rates; the third arises when there is a tradeoff 
between the two types of error. The coefficients A, B may be 
positive or negative. 

The physical characteristics of an individual detector 
constrain the achievable values of p,(yl, &) and p,(yo, Hi). 
The design of a network is then a selection from among a -dis- 
Crete set of topologies, with each topology tuned to give its 
best possible performance. The tuning is a constrained opti- 
mization, with the constraints determined by the achievable 
values of P,(YI,Ho) and P,(Yo,HI). 

*Work supported by the Department of Energy, contract 
DE-AC03-76SFOO515. 

tsupported in part by the Office of Naval Research, contract 
NOO014-87-C-0695. 

Our work has many points of contact with previous work. 
We utilize a Lagrangian formulation to deal with the 
optimization problem involving equality and inequality con- 
straints. Three problems are presented in detail, involving the 
cases of exponential response functions, special sums of expo- 
nentials, and block functions. We trace the behavior of the 
system tuning and the optimal cost as a function of the detec- 
tor discrimination. 

This paper is the first of a series whose goal is to clarify 
the relations between topics in distributed detection, optimal 
control, and experimental design, thereby leading to a more 
intuitive or ‘physical” understanding of the problems of dis- 
tributed detection and sensing. 

1.1 General Introduction 

There are two possible states (of the world) HO and HI. 
The prior probabilities of these two states are po and pl, where 

PO = Prior(H0) 

Pl = Prior(K) . 
0) 

There are two possible courses of action (“measures”) denoted 
bymoandml. 

The assumed cost function is C(m, H), where 

C(mo,Ho) = uo C(mo,Hl) = ui + Woi 
C(ml,Ho) = uo + wo C(ml,Hl) = ~1 . 

(2) 

The expectation value of the cost function is to be minimized 
over the various design parameters, those in the response func- 
tions and those in the probability functions. As will become 
clear later in our discussion, the separate cost parameters ug 
and u1 do not matter when the expected cost is minimized; 
the minimum depends only on a ratio involving the differences 
in the cost for a given Hi, namely ~110 and ~101. 

The essential point is that for the case of only two possible 
states of the world, the preferred action is determined by a 
single real number, determined by the posterior odds for the 
Hj. This is true because, using linear cost theory, the informa- 
tion in Eq. (2) is summarized by the intersection point of two 
straight lines; one describes the cost of action mo as a function 
of po while the other describes the cost of action ml. 

1.2 Properties of the Integrator 

For our model we choose a fusion structure in which signals 
are processed locally at each detector, with messages fed to a 
single integrator 

A-+CtB. 

The problem is to design an integrator C and tune the 
sensors (A, B). Each of the two sensors detects some signal 
(y) and sends the central integrator a signal ui. In general, 
these signals need not be binary. The integrator then chooses 
action mo or ml, and this choice is determined by the fusion 
rules. The rules for both the sensors and the integrator are to 
be chosen so that the expected cost is minimized. 

The integrator’s actions are completely described by a 
matrix (with two adjustable parameters) that describes the 
probability of choosing measure mo, given the signals u; 
from detector i = a, b. This matrix will be denoted by 
p(%lu.,ud, where 
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and this then implies for A, 
p(mo(O,O) = 1 p(molO,l) = 9 
~(moll,o) = d P(moll,l) = cl 

(3) 

or, in an alternative matrix notation, 
Ub = 0 ub = 1 

The probability of choosing ml must be the complement, 
element by element, 

p(mlIu3 = 1 -~(mlu3 . (5) 
We exclude the possibility of a third course of action. The 
design parameters g and d are to be lixed by the optimization; 
they define the rule to follow when the two detectors disagree. 
If the two detectors are identical, then we expect that d = g 
and that they will be 0 or 1 depending on the costs and the 
details of the sensitivities of the detectors. 

1.3 Definition of the Detectors 

Now consider the detectors in more detail. Each detector, 
labeled a or b, produces a single “meter reading” y;, (i = a, b), 
in response to the state of nature. The probabilities, pa(y, H), 
that the value of the reading is y for the state of the environ- 
ment H for each detector is 

Detector+ a 
pd(!/; HO) fo”(Y) f!(Y) 
pd(Y; fh) f!(Y) f;(Y) . 

The quantity y must now be converted to a yes or no signal 
(u = 0 or u = 1). 

The effect of the decision process at each detector may be 
summarized completely by a table giving the decision strategy 
or probability of response pi(u; H) for each of the detectors. 
For detector a: 

Ho HI 

~o(ua;H) = (6) 

while for detector b: 
Ho Hl 

Pb(ub;H) = z; 1 ; b 
1-B 

> l-b B ’ 

1.4 Design Parameters 

Therefore, the full set of parameters to be determined by 
optimization is 

g,d a,A,b,B . 
The first two describe the operation of the ‘integrator” that 
processes the two signals u’ of the sensor stations to form the 
output decision m. The last four describe the operation of 
the “sensors” - they take the detected signals, apply their 
respective detection criteria, and form their individual output 
signals ti. 

1.5 Properties of the Detectors 

A generalized detector uses the rule: if the signal y is in the 
region R, then the signal uc is sent to the integrator. Similarly, 
if the signal is in the complement of R, i.e., if yri?, then ui 
is sent. 

If the external state is indeed HO, then the response func- 
tion of the- detector is fo(y), but if it is HI, the detector re- 
sponds with fl(y) [see the table below Eq. (5)]. 

For any choice of R, the detection probability [see Eq. (S)] 
is 

a= 
J 

dyfoO(y) 3 (8) 
R 

A= 
/ 

dy fi’(y) . (9) 
R 

Similar relations hold for b and B. If the response functions 
have interlaced maxima, then the region R (and fi) may be 
disconnected. 

As R expands, clearly R contracts. For any fixed value of 
a there is a maximum and a minimum possible value for A. 
If the response functions fo(y). and fl(y) overlap, which is the 
general and expected case, then these limits on the value of A 
have important consequences. 

The possible values A for a fixed value of a, are traversed 
as the region R is varied. It is clear that to make A as large as 
possible for a given value of a, R  should contain those points 
whose contribution to A would be ss small ss possible (i.e., the 
ratio fi/ fo small) while the complement contains those points 
with large values of this ratio. This is the familiar likelihood 
ratio threshold rule. 

If a goes to 1, then A goes to zero. Also, if A is 1, then a 
must vanish. This follows trivially from the unit normalization 
of the response functions. 

Finally, note that an ideal detector with perfect discrimi- 
nation has response functions that satisfy fo(y) x fi (y) = 0 for 
all y. In this case, the values of a and A are independent. We 
will return to this limiting case shortly. 

2. The Cost Function 

The expected value of the cost function is 

(C) = C C(m;,Hj)Prior(Hj)p(milHj) 9 
id 

(10) 

where p(mlH) is directly expressed in terms of the detector 
properties, and we assume that the signals received by the 
detectors are stochastically independent: 

p(miIHj) = c P(milUo,Ub)P(U.lHj)P(UblHj) 1 (11) 
U.,Ub 

Using the explicit form of the cost matrix, Eq. (2), (10) can be 
expressed as 

(C) = w01 p(molH1) PI + wo p(mllHo)po + UOPO +,ul PI . 
(12) 

Additive constants do not matter in the minimization; the 
last two terms are fixed, and are the cost for an ideal system. 
For such a system with perfect discrimination, the off-diagonal 
probabilities p(mo(H1) and p(mlIHo) both vanish since A = 
1 - a. The cost must be a minimum: 

(c),i, = uOpO + u1 PI * (13) 
The quantity that we want to minimize is the additional cost 
due to imperfections in the system; this has the form 

(6c) = (c)-(c)min 
04 

= ~01 p(mlH1) PI + WIO p(m (Ho) PO . 

Note that the position of the minimum will depend on the 
ratio 

WlO PO w=-, (15) 
WOl Pl 

which is the relative expected cost of being wrong if the state 
of the environment is HO (and responding with ml) compared 
to the cost of being wrong if it is H1 (and responding with mc). 
The magnitude of the minimum cost will depend multiplica- 
tively on the factor wcr pl. 

It is convenient to rewrite the cost function as 
J = (6C) /(WOl PI) , (16) 

or 
J = p(moIH1) + W[l- p(moIHo)] . (17) 

The minimization of the expected value of the cost is equivalent 
to minimizing J. 

2 



Some interesting limits on J can now be determined. The 
perfect detector has J = 0. It is amusing to note that a detec- 
tor that is always wrong has J = 1 + W. (One would then use 
such a detector “backward.“) A more interesting case follows 
from noting that if W  is sufficiently small, i.e., the cost wrc (of 
erroneously choosing ml) is small, then a good strategy is to al- 
ways choose ml. This implies that p(naolHl) = p(vno(Ho) = 0, 
and J = W  (and g = d = 0). If, on the other hand, W  is 
larger than 1, then one wants to always choose mo; in this 
limit,-J = 1 (and g = d = 1). The final cost for thii limit- 
ing case may be expressed in terms of the step function 6(z) 
(l?(Z) = 1,z > o,e(z) = 0,z < 0) 

J mos = we(1 - W) + O(W - 1) 
g = d f t?(W - 1) . 08) 

This result arises in another way. If the response functions are 
the same, fo(y) = fl(y), then no discrimination is possible, 
and we find A = 1 - a. Using this relation in the probabilities, 
we find the above result by choosing the obvious optimum. 

The general optimization problem consists of choosing the 
design parameters so the expected cost lies as far below J,,,,,= 
as possible and as close to the ideal case, J = 0, as possible. 
We now turn to a general discussion of the problem of finding 
extrema when the constraints define a connected subset of the 
real line for each variable. 

3. General Minimization with Inequalities 

Using the form of the probabilities defined in Eqs. (6) and 
(7), one finds the explicit expressions 

p(molHl) = 1 - P(mllHl) , 

and 

= (l-A)(l-B)+g(l-A)B+dA(l-B), 
(19) 

p(molHo) = I- p(mllHo) , 

= ab+ga(l-b)+d(l-a)b. (20) 

Using Eqs. (19) and (20), the minimization problem can be 
m-cast explicitly as 

J = W+[S+gT+dd], (21) 
where 

S = (1 - A)(1 -B) - Wab 
T = (l- A)B- Wa(l-b) (22) 
U = A(1 -B) - W(l- a)b , 

and all the variables must satisfy inequality constraints. A 
complete mathematical treatment for problems of this type 
can be found in the excellent book by Hestenesa A reference 
that discusses such variational problems in a language perhaps 
more familiar to physicists and engineers is available.g 

: 

To minimize J, in the case that the variables g and d occur 
linearly in J, but have a restricted range from zero to one, it 
is convenient to form the variational functional Jvar, where 

J “0, = J - yg(l -g) - 6d(l - d) . (23) 
The optimum will be a saddle point in (7,6) versus (g, d). In 
this case J is a linear function of g and d, hence the extrema will 
occur at the endpoints. The Lagrange inequality multipliers 
7 and 6 must be zero if their associated variable g or d is 
inside the allowed range, and non-negative if they are on the 
boundary.g As usual, the derivative with respect to g must 
vanish at the minimum and this yields the condition 

0 = T-7(1 -2g) . (24 
This takes the place of paired Kuhn-Tucker conditions for 
g > 0 and g 5 1. If T is nonzero, which is the typical case, then 
the minimum must be on the boundary (7 cannot be zero). If 
T is positive, then g vanishes; if negative, then g is unity. A 

similar argument holds for d and U. The result can be ex- 
pressed as 

g = e(-T) 
d = e(4) , (25) 

and the minimum of J,,,,, becomes 
J,,, = W  + [S + Te(-T) + U e(-U)] . (26) 

Note that if T or U vanish, there is no uncertainty in the 
minimum of J, even though g and d are not determined. 

The variables left to consider are a, A, and b, B. Each of 
these variables has a restricted range, so inequality multipliers 
will again be used. As was noted before, the possible values 
of A are limited by the form of the response function and the 
value of a. This can be expressed as the statement that for any 
choice of the region R, with a given by (S), one must have 

&in(a) 5 44 5 Lo.(a) . (27) 
Of course, similar restrictions apply to B. 

Theze inequalities can be treated as above. Write the vari- 
ational functional in the form 

J VW = Jm-F-f, (28) 
where 
F E QA (A - Amin)(Amoz - A) + BB (B - Bmi,)(Bmaz - B) 3 

(29) 
and 

f = aa(l-a)+pb(l-b). (30) 
Again, the Lagrange inequality multipliers aA, DE, Q  and 0 
must be zero if their associated variable is inside the allowed 
range and non-negative if they are on the boundary. 

Now the variation with respect to A yields 

2aA(A-Abor) = -z, 

where Abcrr E (Ami, + A-=)/S. 

(31) 

It is a straightforward task, though somewhat tedious, to 
discuss the general case. First note that the above equation 
becomes 

2r*A(A-~,,,) = +(1-B)+BB(-T)-(1-B)B(-8). (32) 
Since the right-hand side is never negative, CIA cannot vanish, 
and hence A must be at its boundary. Since oA must also be 
non-negative, it follows that A must be above Ab,,,. Repeating 
the same argument for B we find that 

A = Amar(a) , 
B = IL&) . 

(33) 

These are computable functions of a and b given the response 
functions of the detectors. They correspond to the so-called 
Receiver Operating Characteristic used in several of the pa- 
pers cited above. We shall term these functions the DOC, or 
Detector Operating Characteristic, and they will play a funda- 
mental role in our analysis. 

The next stage is to vary a and b within their allowed range 
to achieve the overall minimum. One can anticipate that there 
may be symmetric (a = b) and nonsymmetric minima; which 
particular one is the global minima must be determined from 
a more detailed examination using the explicit forms for the 
response functions. This will be carried out in the explicit 
examples discussed in the next section. First let us discuss the 
boundary behavior in a and b. 

Double boundary: The boundary region in which both vari- 
ables are at their limits consists of four terms. They will be 
denoted by L(a,b), where a and b can take on the values zero 
or one. 

For this case, A = B = 1, and J,,, = W  for all W. L(O,O): 
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L(l,O) and L(O,l): For these cases, A = OB = 1, or the re- 
verse, and [S = 0 = U, T = 1 - W  and g = g(W - l)] 

Jm = W+(l-W)B(W-l), (34) 
the Jmaz discussed earlier. 

For this limit, A = B = 0, L(l,l): 
J,,, = 1. (35) 

Therefore, the minimum of J, on this double boundary is al- 
ways given by Eq. (34) which amounts to setting the detectors 
to always signal oppositely. Now let us turn to the single vari- 
able boundaries. 

Single boundary: This boundary region is symmetric in both 
variables and hence we need only treat the case in which b is 
at its limits while a is in the interior. The reversed situation 
will yield the same minima. These will be denoted as: 

L(a,O): For this case, B = 1, and S = U = 0. The quantity 
-is zero, with 

J, = W  + Tg(-T) 
T = l-A-Wa. (36) 

As noted, A should be equal to its maximum value for a fixed 
value of a in order to achieve the minimum value of T, as was 
shown earlier. The limit cases of a = 0 and a = 1 are on 
the double boundary. Any minimum for a in the interior must 
satisfy 

(37) 
= 0. 

Since A,,, (a) is a decreasing function of a, there will in general 
be a solution in this region if W  is in an appropriate range. This 
could yield a smaller minimum than that given by the double 
boundary result, Eq. (34); however,for this caze, we have g = 1 
and d is not determined, but its value does not matter since 
U = 0 and one can arbitrarily choose d = 1 also. 

L(a,l): For this situation, B = 0 = T and S = 1 - A - Wa, 
with = 1 - W  - S. If U  is positive, then J,,, = 1, while if 
it is negative, then Jm = W  + S. Both these cases have arisen 
before; and there are no new minima of J,,,. 

Interior: In the interior region, the inequality multipliers must 
vanish and the standard variational equations become symmet- 
ric in form. One can safely assume that there will be minima 
in this region, but whether any is the global minimum requires 
detailed study. Note that generally there will be (local) minima 
with T(and/or U) both positive and negative with the corre- 
sponding limiting values of g (and d). Since this is a standard 
well-discussed variational problem, further general treatment 
here is not necessary. Let us now turn to a exhaustive discus- 
sion of some explicit examples. 

4. Exponential Response Functions 

Consider a detector with response functions given by 
fo = nX exp{-n)ly} 
fi = X exp{-)ry} . (38) 

We will assume that n is greater than one without any loss 
of generality, so that the likelihood ratio (fi/fo) is less than 
one for y 5 z, where XL = (Lnn)/(n - 1). Using the above 
argument, to achieve the extrema of A for these monotonic 
response functions, the region R must be either the range below 
or the range above some point z whose value will be determined 
by the optimization processlo 

Therefore, it is easy to see that there are two csses to 
discuss: 

Case I Case I1 

R OlYlZ ZlYlf= 
fi ZiYl~ OSY5Z 

a 1 - exp{ -nXz} exp{ -nXz} 
A exP(-Xz) 1 - exp{ -X2} 
A (1 - a)+ 1 - a’/” . 

Thus, A must lie in the region 
1 - a’/” 5 A < (1 - a)l/, , (39) 

and its position in this interval is determined by the particular 
choice of the region R. Similar relations hold for b and B. 

As an example, consider the case n = 2, and then the 
feasible region for A as a function of a is labeled F in the 
graph shown in Fig. 1. 

0 
2-88 5’351A 1 

Fig. 1. The allowed region of A is plotted for 
n = 2 as a function of a and labeled F. 

Figure 2 shows the graph for the value n = 4. 

0 

2-68 5952A? 

Fig. 2. Same as Fig. 1 but with n = 4. 
We see that ss n increases, the allowed region increases to 

eventually include all values of A between zero and one. 

A.1 Ezplicit Minimization 

Using the general results derived in the previous chapter, 
we have A and B at their maximum allowed values: 

A = (1 - a)‘in 

B = (1 - b)‘l” . 
(40) 



Varying J,,, with respect to a and b and introducing inequality 
multipliers Q  and S to keep these variables between zero and 
one, we find the conditions 

na(l- 2a) = A’-“(1 - B) - nWb 
np(l - 26) = B’-“(1 - A) - nWa (41) 

whose solution should contain all relevant minima. Let us ex- 
amine the boundary and interior minima in that order. Recall 
that-n-> 1 in the following discussion, and we have assumed 
for the moment that T and U are positive. This will be proven 
shortly for our solutions. 
Boundary: The double boundary region has been discussed in 
general and the result is a minimum of the form (a = 0, b = 1 
ora=l,b=O) 

J,,, = W+(l-W)8(1-W) = Jmclz. (42) 

L(a,O): For this single boundary problem, the task is to find 
theminimum of T, where T = 1 - A,,, - Wa. The result is 
with p = l/(n - 1) 

Ao = (-&Jp 
@=l-2. (43) 

For A0 to be less than one, nW 2 1. The value of T at this 
minimum is negative, and 

J,,,(Bnd) = 1- T Ao . 

If nW is slightly larger than one, nW = 1 + c, then it is easy 
to see that to lowest order 

e2 
J,(Bnd) m  J,,,,,= - - . 

2(n - 1) (45) 

For this case, B = 0 = T and U = 1 -W -S. If U  is L(a,l): 
negative, then the minimum of J,,, is 1. If it is positive, then 
S must be minimized, and this is just the problem discussed 
above. 

In summary, J,,, has a minimum on the boundary given by 
Eq. (42) or Eq. (44), depending on the value of nW. 

Interior: In the interior region, the inequality multipliers CY 
and S must vanish and Eos. (41) become symmetric in form. 
Thus there is a symmetric solution with a- = b and A = B. 
Unsymmetric solutions will be searched for later. In the sym- 
metric case, the equation for the optimal probability A is 

nWA”-‘(1 -A”) = (1 -A) , (46) 
which does not have an analytic solution for general n. The 
limiting behavior of the solution is easily extracted. For large 
W, A approaches zero, and a approaches one with the behavior 
[recall that p = l/(n - l)] 

/ l \P 

/ . \ l+P (47) 
a=l- L -+.... 

t ) nW 
This is similar to one of the boundary solutions. The minimum 
of J in this limit has the form 

J u l-2nA+... . 
n-l (48) 

Let us now discuss small values of W. Note that as W  
decreases, a decreases. The value of W  where a vanishes is 

W(a = 0) = l/n2 . (49) 
For values of W  smaller than this value, there is no interior 
symmetric solution. At this critical value, S = 0. Finally, note 
that for this symmetric solution, T = U, and using the above 
equations, 

T = (n- 1)WaA” , (50) 

which is positive definite. Therefore, the T and U terms do 
not contribute to this minimum because g = d = 0. 

Using the equation for A, we find at the minimum 
J,,,(Int) = W  + (1 - A)2 - W(l - A,)’ . (51) 

This is smaller than the minimum arising from the boundary. 
To see this, study the difference of Eq. (44) and Eq. (51) 

for sufficiently large W  (so that the former exists). If W  is 
eliminated between Eqs. (46) and (43), the result is 

A0 = A++, (52) 

which shows that A0 = Ao(A) 2 A. The difference becomes 

Jm(Bnd) - J,(Int) = [l - (1 - A)2] - (:)A:-” 

[I - (1 - A”)2] - GAO . 
(53) 

For large W  this difference approaches zero as (n - l)/(n2W). 
For all values of nW larger than one it is a simple matter to 
show that it is positive (a numerical proof is easiest). 

Some sample numerical results are: 
n=2 n=4 

n2W a J-W a J-W 

o-1 0.00 -0.000 0.00 -0.00 
1.0 0.00 -0.ooo 0.00 -0.00 
1.1 0.120 -0.ooo1 0.082 -0.0000 
1.2 0.218 -0.0009 0.150 -0.ooo1 
1.3 0.299 -0.0026 0.210 -0.0003 
1.4 0.367 -0.0054 0.261 -0.ooo7 
1.6 0.475 -0.0144 0.346 -0.0018 
1.8 0.556 -0.0278 0.413 -0.0036 
2.0 0.618 -0.9451 0.467 -0.0061 
3.0 0.791 -0.175 0.636 -0.0260 
4.0 0.866 -0.348 0.725 -0.091 
6.0 0.930 -0.757 0.815 -0.131 
8.0 0.957 -1.203 0.862 -0.219 

10.0 0.971 -1.669 0.890 -0.315 
12.0 0.979 -2.144 0.909 -0.417 
16.0 0.987 -3.117 0.933 -0.629 

Recall that g = d = 0 for this global minimum. Therefore, 
if either detector signals 1, one should make the choice ml for 
any value of W. 

Perhaps it is more understandable to present this data in 
another format: 

n=2 n=4 
W  a J Jl Jm.x a J Jl Jmz 

0.25 0.250 0.250 1.0 0.725 0.195 .78 
0.4 0.475 0.386 .97 0.827 0.252 .63 
0.5 0.618 0.455 .91 0.862 0.281 .56 
0.75 0.791 0.575 .77 0.909 0.333 .44 
1.0 0.866 0.652 .65 0.933 0.371 .37 
1.5 0.930 0.743 .74 0.957 0.423 .42 
2.0 0.957 0.797 .80 0.969 0.459 .46 
2.5 0.971 0.831 .83 0.976 0.486 .49 
3.0 0.979 0.856 .86 0.980 0.508 .51 
4.0 0.987 0.883 .88 0.986 0.541 .54 
5.0 0.992 0.909 .91 0.989 0.567 .57 
6.0 0.994 0.923 .92 0.991 0.586 .59 
8.0 0.997 0.941 .94 0.994 0.616 .62 

10.0 0.998 0.952 .95 0.995 0.639 .64 

The column labeled J/ Jm,,= gives the ratio of the minimum 
J to the quantity J,,,,,= defined in (18). Again, for this global 
minimum, g = d = 0. 
.I..8 Global Minimum 

As a check that the symmetric minimum is indeed the 
global minimum, we have evaluated J throughout the allowed 
region of the six variables g,d and a, A, b, B. We could 
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find no point where J 
minimum given above. 

was below the value at the symmetric 

Note that a~ a function of W  E wlo po/wolp1, the largest 
fractional imorovement in cost is achievable when W  = 1. This 
is precisely the case in which the prior choice of action is a 
matter of indifference, that is, 

uoPo+ulPl+wolPl = uoPo+wloPo+ulPl. (54) 
Th.is js intuitively reasonable, as one expects the information 
from the sensor to be the most valuable in this case. 

6. Invariant Imbeddlng 

We now consider a detector whose response functions allow 
superior discrimination between the two possible states of the 
environment and contains the previous example as a special 
case. The general form that allows a smooth limit back to the 
previous model is 

fo = nX exp{-nXy} _ 

r1 = n y;’ =A exp{-XY} [l - z ~P{-nXYIl * (55) 

For values of z near 1 this allows the improved separation be- 
tween fc and fr since the former is large at y = 0 while the 
latter is small there. On the other hand, for z equal to zero, 
this is the model of the previous section. 

It will again be assumed that n is greater than 1, and 
proceeding as before we find: 

Case I Case II 
R OlU<Z Z<Y<W 
R zlll<= OlU<Z 

a 1 - exp{ -nXz} exp{ -nXz} 
A 1 

n+l-2 exp{ -X2} 

x [n + 1 - z exp{-nXz}] 
l-,+i-, exp{-Xz) 
x (n + 1 - z exp{-nXz}] 

A (1 - .)1/n [1+ n +“1”- .] 1 - a+ [1+ -$&&I 

Thus, A must lie in the region 

1 - alin 1-t 
z(l - a) 

n+l-z 1 <A<(l--a)‘/” l+n+zf--z 
[ 1 . 

(56) 
Its position in this interval is determined by the particular 
choice of the region R. Similar relations hold for 6 and B. 
Note that the alLwed region of A increases a~ z increases from 
zero to one. 

To provide maximum contrast with the previous model we 
will present data for the value z = 1. For this case, the interior 
symmetric minimum exists for all W  values. An interesting 
new behavior iz found in this model for amall enough W  and 
n; the minimum cost occurz for g = d = 0, as before, but as 
W  increases, these design parameters flip to g = d = 1. The 
value of a at the minimum jumps discontinuously. 

n=2 n=4 
W  a J Jl Jmaz a J Jf Jmaz 

0.1 0.46 0.088 .88 0.70 0.068 .68 
0.2 0.58 0.160 .80 0.80 0.111 .56 
0.25 0.63 0.191 .764 0.82 0.128 .51 
0.26 0.64 0.197 .758 0.828 0.131 .504 
0.27 0.24 0.203 .752 0.832 0.134 .4Q6 
0.3 O.iS 0.22 .733 0.84 0.143 .48 
0.5 0.35 0.31 .62 0.89 0.191 .38 
1.0 0.50 0.47 .47 0.94 0.268 .27 
1.5 0.60 0.56 .56 0.96 0.316 .32 
2.0 0.68 0.63 .63 0.97 0.35 .35 
4.0 0.79 0.77 .77 0.985 0.44 .44 
6.0 0.85 0.83 .83 0.990 0.49 .49 
8.0 0.88 0.87 .87 0.993 0.52 .52 

10.0 0.90 0.89 .89 0.994 0.55 .55 

The columns are the same as in the previous table. Note that 
the parameters for the minimum (for n = 2) shows a definite 
jump 88 W  paaaea through the value = 0.265. At thii point, 
the optimum valuee of g and d change from zero to one; in fact, 
we 6nd that g = d = e(W - Wo), where W O  rv 0.265. 

On the other hand, for n = 4, the quantities T and U are 
always positive, zo that g = d = 0. There doea not appear to 
be a dizcontinuity in a. 

At the discontinuity, the Fast varies smoothly. This is in- 
tuitively reasonable, since cozt iz, ultimately, determined by 
the position of some tangent hyperplane, along a normal to 
the feasible region, which is connected. However, the jump 
in dezign parameters could have zeriouz consequences because 
a small variation in the (frequently subjective) data summa- 
rized by the parameter W  could require a complete change of 
the system parameters g and d. This phenomena has impor- 
tant implications for the design of constant false alarm rate 
zystemz, which will be discussed elsewhere.” 

6. A Step Function Example 

We now consider a detector whose response functions, in 
a certain limit, allow a clean dizcrimination between the two 
possible states of the environment. In that limit, A 4 1 does 
not force a to zero. We will azzume simple bquare” response 
functions for ease of presentation. The response functions are 
chosen to be zero for y > 3 and, of course, normalized. 

Proceeding as before we find for Case I, 0 < y < z: 
For the range O<z<l 15212 21253 

fo(z) 
(l- xo) z 

0 
fl(Z) 0 (1 - Xl) 

a (1 - Xo)z 1 +x0(2 - 2) 1 
A 1 1 - Xl(Z - 1) (1 - X1)(3 - 2) . 
A similar table can be evaluated for Case II, z < y < 3. If 
either X0 or X1 vanish, then this describes an ideal detector 
system. 

We need the value of A,,, for a fixed value of a which is 

A - 1 - $(a - 1+ &)6(a - 1+ X0) ) mar. - (57) 

while the minimum value is 

Amin = $(X0 - 0)0(X0 - a) . (58) 

The feasible region for A as a function of a , labeled F in 
the graph (Fig. 3), is bounded by straight lines: 

In the limit that either Xc or Xi vanishes, the allowed region 
for A covers the unit square. 

It iz a simple matter to analyze this problem for the mini- 
mum J corresponding to the maximum allowed A and B values 
az given above. Consider the cazez: 

1. A = B = 1, and a = 6 = (1 - X0). For these values, T 
and lJ are negative and J = WXo’. 

2. A = B = (1 - Xl) and a = b = 1. For this case T and U 
are now positive and J = X1’. 

Thus the final result can be expressed as 
J = min[WXo’ , Xl’] 

g = d = B(X12 -X0’ W) 

a = b = 1-XoB(X12 -Xo2W) 
(59) 

A = B = l-XlB(Xo2W-X12). 
The limit of perfect discrimination, Xc and/or Xr going to zero, 
can be easily discussed from the above results. 
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a detailed explanation of the critical value at which this jump 
occurz. The third model studied also has such a discontinuity, 
and permitted a continuous transition to the state of complete 
information (perfect discrimination). In this caze, the cost de- 
pends on the degree of ambiguity in a quadratic manner. 

A F 

1 

I I I 

0 
2-88 5952A3 

Fig. 3. The allowed region F for the parameter 
A as a function of a using the discrete three-step 
model. 

The proof that the above minimum is indeed a global min- 
imum follows simply by letting a and 6 deviate from the above 
values while keeping A and B as close to their optimum values 
as allowed by the constraint. For W  small enough we have: 

a = 6 = 1 -X0(1 +z) 
A=B=l (60) 

(S + T + U),,,;,, = -W (1 - Xo2) . 
It now follows for any positive s that 

(S+T+U)-(S+T+U),;, = W  X~~[(l+s)~-l] 2 0. (61) 
For a and b larger than their optimum values, the constraints 
on A and B come into play and 

a = b = 1 -X&-t) 
A = B = l-&c (62) 

and we find 
(S+T+U)-(S+T+U),i, = 

241(1 - Xl) + (Xl2 - W&2) [l - (1 - a)21 (63) 
20 

if (Xi2 - WXo2) is positive (and if c is positive, of course). 

When W  grows so that (Xi2 - WXo2) becomes negative, 
one should repeat the above procedure around the values a = 
b = 1 and A = B = 1 - Xi to prove the global nature of the 
minimum in this region. Alternatively, one may argue that the 
feasible region is defined, in this case, by hyperplanes, so that 
the minimum must occur at a vertex, as given above. 

7. Summary 

We find that the problem of optimal design, with fusion 
and detector tuning, is difficult but tractable. Our simple ex- 
amples yield some insight into how the best achievable cost 
varies between its bounds and how that beet cost depends on 
the prior distribution and the cost function itself. 

By utilizing the technique of invariant imbedding, that is 
by considering a general class of response functions that con- 
tain the exponential response model as a particular caze, we 
can trace a discontinuous change in design parameters, even 
though the optimum cost varies smoothly. We cannot yet give 

Finally, in all cazez, we found that the beet coat is achieved 
with a symmetric choice of parameterz for the individual detec- 
tor-z. We do not yet have a general characterization of response 
functions for which this is always the caze regardless of costs 
and prior probabilities. 

The problem conzidered here is not only of theoretical in- 
terest, but has many practical applications ranging from opti- 
mal design of complex particle detector systems to the design 
of seismic and warning systemz. 

Acknowledgements 

One of the authors (PBK) acknowledges with thanks the 
hospitality of the Department of Operations Research, Weath- 
erheading School of Management, Case-Western Rezerve Uni- 
versity, and its chairmen Arnold Reisman and Hamilton Em- 
mons. We both thank Dr. Rabindar Madan of the Office of 
Naval Research for calling this problem to our attention. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

REFERENCES 

R. Srinivazan, Distributed Radar Detection Theory, IEEE 
Proc. F (GB) 133, Vol. 1, pp. 55-60 (1986). See also, 
R. Srinivaaan, Signal Processing (Netherlands) 11, 
Vol. 4, pp. 319-327 (1986). 

R. Srinivasan, P. Sharma and V. Malik, Distributed De- 
tection of Swerling Targets, IEEE Proc. (GB) 133, Vol. 7, 
pp. 624-629 (1986). 

R. R. Tenney and N. R. Sandell, Dcteetion With Dis- 
tributed Sensors, IEEE Transactions on Aerospace and 
Electronic Systems 17, Vol. 4, pp. 501-509 (1981), and 
17, Vol. 5, p. 736 (1981). 

L. K. Ekchian and R. R. Tenney, Recursive Solution of 
Distributed Detection/Communication Problems, Proc. of 
the 1983 American Control Conference, Vol. 3, San Fran- 
cisco, CA, pp. 1338-1339. 

Z. Chair and P. K. Varzhney, Optimal Data Fusion in 
Multiple Detector Systems, IEEE Transactions on Aero- 
space and Electronic Systems 22, Vol. 1, pp. 98-101 
(1986). 

A. R. Reibman and L. W. Nolte, Optimal Detection and 
Performance of Distributed Sensor Systems, IEEE Trans- 
actions on Aerospace and Electronic Systems 23, Vol. 1, 
pp. 24-30 (1987). 

F. A. Sadjadi, Hypothesis Testing in a Distributed En- 
vironment, IEEE Transactions on Aerospace and Elec- 
tronic Systems 22, Vol. 2, pp. 134-137 (1986). 

M. R. Hestenes, Calculus of Variations and Optimal Con- 
trol Theory (New York, Wiley, 1966). 

M. Einhorn and R. Blankenbecler, Bounds on Scattering 
Amplitudes, Annals of Physics 07, 480 (1971). 

The key point here ia that the likelihood ratio is a mono- 
tonic function of z, so R is an interval including one 
endpoint. 

M. Cherikh, Design Discontinuitics in Distributed Sen- 
uors: Implications for CFAR Systems, in preparation. 

7 


