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Introduction 

In this paper we examine the radiative corrections to very narrow resonances 

such as the $J and T particles: We focus on the determination of their mass M, 

their total width l?, and their partial width to electrons I’:. Our objective is to 

review experimental results that were obtained in analyses with incorrect radiative 

corrections. Our analysis shows in fact that the errors incurred are up to three 
. 

times bigger than the uncertainties quoted for the current world averages [l]. 

In Section 1, we present the prescription for radiative corrections used in our 

analysis. We briefly discuss why this treatment is a significant improvement over 

that used in most of the previous analyses of T/J and ‘YL resonance data. In Sec- 

tion 2, we discuss in detail our method for correcting existing data, the effects of 

different algorithms on the extraction of the resonance parameters, and the effects 

of other possibly relevant differences between experiments. In Section 3, we use 

our prescription to refit the 1c, and r resonances, and extract new values for the 

resonance parameters in a way that is independent of the experimental conditions. 

Section 4 is dedicated to a discussion of the results, comparison with other results, 

and conclusions. 

1. Initial State Radiative Corrections to Narrow Resonances 

In e+e- collisions, the nominal collision energy, ,/% = 2E, is set by E, the 

energy of the incident beams. The actual c.m. energy available for the annihilation 

is reduced by Bremsstrahlung to dm, w h ere kE is the total energy of the 

emitted photons. The observed cross section, aObs(s) at the nominal energy &, 
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can be written as a convolution of the Born cross section au(s(l 

dimensionless sampling function f (k, s) [a], 

us = 
s 

f(k+o(s(l - k)) dk . 

In the vicinity of a quarkonium resonance we have 

2 

00 = ononres + apeak cs _ i2fi + s r2 7 

k)) and a 

(1) 

(2) 

where M is the mass and I’ is the total width of the resonance. It is well known 

that f(k, ) d s is ominated by inital state effects [3]. Effects of final state radiation 

on the cross section are usually ignored at the fraction of a percent level. 

We employ the following expression for f (k, s), based on the results of Kuraev 

and Fadin [4], truncated to first order in the hard photon terms, and to second 

order in the vertex terms: 

f&s) = (1 + &,)(l + I() B@(l + 61 + 62) - P(l- $1 , (3) 

where ,L? is the electron equivalent radiator thickness, 

B=$(log-$l) . 
e 

(4) 

The 6, terms arise from the leading parts of the vertex correction diagrams of 

order n, I< is the K-factor, and S,, is due to the photon vacuum polarization. 

These terms are all reproduced in the Appendix. We note that for the hadronic 

contribution to the vacuum polarization, Sh, we use values based on a calculation 
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by Berends and Komen [5], namely Sh = l.lf0.5% at fi M 3 GeV, and 3.4fl.O% 

at J;F M 10 GeV. The quoted uncertainties are our estimates. The uncertainty in 

Sh turns out to dominate the error in our calculations. 

In the past, most experimenters have fit the narrow resonances of the 1c, and 

T families using a different expression for f (k, s), based on the classic work of 

Jackson and Scharre [6], 

f’(k,s) = &o&(k) + Pkp-l - P(1 - s, , Stat = Sl + “6, + I-- . (5) 

Here S(k) is the Dirac function. This expression was obtained from a first order 

perturbative calculation with the inclusion of exponentiation of soft photons. 

There are essential differences between the distribution functions f (k, s) and 

f’( k, s). The differences occur in second order in CY. First, in the formulation by 

Jackson and Scharre, the photon vacuum polarization SLp is approximated by the 

electron loop Se only, excluding contributions from hadrons, muons, and -r leptons, 

Sh, S,, and S,. Secondly, the vertex correction (1 + 6,) should multiply the Bremss- 

trahlung term k p-l, at least to first order, and hence should enter as an overall 

multiplicative factor to this term, as in Eq. (3). Thirdly, the vacuum polarization 

should also enter as an overall multiplicative constant. The factorization of the 

virtual terms arises naturally from those semi-classical formalisms which are based 

on factorization principles [7, 81. This factorization of the virtual corrections can 

be checked to first order by doing an explicit second order calculation. A second 

order calculation [9] does not, however, determine unambiguously that the S2 term 

factorizes, though it is a natural choice and it agrees with the Bloch-Nordsieck 

theorem [lo]. In the definition of f’(k,s), th e virtual corrections were not properly 
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separated and the S(k) t erm gives a finite probability for the electron and positron 

to annihilate without soft photon emission, in direct disagreement with the Bloch- 

Nordsieck theorem. This locally distorts the cross section by a fraction M 10% at 

fi = 3 GeV, and x 14% at 4 = 10 GeV. 

The convolution integral of a Breit-Wigner resonance cross section with f (k, s) 

can be solved analytically. We use the expression given in the Appendix, which 

was derived by Cahn [l l] for the 2’ resonance. We have added the photon vacuum 

polarization and 62 terms. Since the energy spread of the incident beams, a~, is 

much greater than the resonance width, r, it dominates the shape of the visible 

resonance. We account for the energy spread by further convoluting the cross 

section with a gaussian resolution function of width a~. The convolution is done 

by numerical integration. We believe that the error associated with our use of 

Eq. (3) is about l%, coming mostly in normalization uncertainties associated with 

vacuum polarization. 

2. Distortion of the Resonance Shape and Analysis Method 

A resonance is described by its mass, M, and two of the following three pa- 

rameters: the total width, r, the cross section integral A, and the cross section at 

the peak, Speak. These three parameters are related by the equation 

apeak - (6) 

The observed width and maximum cross section are strongly influenced by the 

energy resolution flE and differ from the resonance parameters r and apeak by 

orders of magnitude. 
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In the following, we consider specifically the resonance cross section for the 

channel e+e- + hadrons. The area under the resonance, A, is related to the 

measured partial width to electrons, I’EZp, and the branching ratio for this process, 

in our case Bhad, by 

67T2 exp - re 
Fhad 

apeak = M2 Bhad , with Bhad = - r * (7) 

Under the assumption, which has been experimentally verified [l], that the 

total width is the sum of the partial widths to hadrons and charged lepton pairs, 

and that the leptonic widths are all equal, we have 

r = rz; + dyp, and mB, + Bhad = 1 . (8) 

Here m stands for the number of partial widths into lepton pairs, m = 2 for 

charmonium and m = 3 for bottomonium states. The leptonic branching ratios 

are determined experimentally, and therefore the relations above can be used to 

measure the quantities r and I’zxp. 

We note explicitly the nature of I’Exp, defined in Eq. (8), and draw the distinc- 

tion with the quantity of theoretical interest [12], I’:. The physical coupling of the 

resonance to leptons through one photon is l?Exp, which is obtained from the data 

by making all radiative corrections except vacuum polarization corrections. This 

is the quantity which, divided by the measured branching ratio, gives the total 

width. The value of I’:, on the other hand, is drawn from the data by making all 

radiative corrections including vacuum polarization. Thus I’: reflects the coupling 

strength at tree level only. The quantity rhad, which couples to the resonance 
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mostly through three gluons, does not have QED vacuum polarization corrections, 

and in this case r;yd = I;,,. 

. 

Historically, experimenters. have generally included some level of vacuum po- 

larization in their corrections, and have therefore implicitly extracted I’:. For the 

remainder of our discussion we follow this precedent, though at the end we include 

values for r:Xp in summary tables. The relationship between the two quantities is 

r Zxp = (1 + 6,,)rf . (9) 

Since radiative effects in the final states are negligible, the branching ratios 

do not depend on radiative corrections. Thus differences in the formulation of the 

radiative corrections will cause changes in two parameters, the integral A and the 

’ partial width Fe. They will scale proportionally, with a factor that depends on the 

branching ratio for the particular channel under study. If one studies simultane- 

ously the resonance cross sections into hadrons, muon pairs, and electron pairs, the 

three integrals will change by the same fraction, giving approximately the same 

change to I’:, while the ratio between the three integrals (which determines the 

branching ratios) remains unchanged. Differences in the formulation of the func- 

tions f (k, s) and f’(k, s) affect the resonance mass very little, at the level of one 

part in 105. 

The difference between our treatment of the radiative corrections and the for- 

mulation by Jackson and Scharre is illustrated in Fig. 1. We plot the difference 

between the cross section for the r(9460) calculated with f (k, s) and f’(k, s) us- 

ing the same input parameters. The cross section is overestimated by f’(k,s) on 
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and below the resonance, and is underestimated above the resonance. We illus- 

trate both the case where the vacuum polarization in f’(lc, s) includes all terms, 

S& = se + 6, + 6, + 6 h, and where it is reduced to the electron loop, S& = S,. 

This latter case is the formulation that most previous experiments had used to fit 

narrow resonances. The use of the electron loop alone in the vacuum polarization 

reduces the difference in the predicted cross section at the peak resulting from the 

. 
incorrect treatment of the virtual terms in f’(lc, s). 

Because the discrepancy between the two radiative correction schemes varies 

across the resonance, one must take into consideration the distribution of data 

points. Experiments collect most of their luminosity on the peak. When the 

data are fit, the x2 weights the points on the peak strongly, so that shifts in 

the free parameters arising from the differences between f(lc, s) and f’(lc, s) will 

be influenced most strongly by the discrepancy between the two functions in the 

vicinity of the resonance peak. This is further enhanced by fluctuations in the non- 

resonant cross section that can obscure the structure of the radiative tail of the 

resonance. Since f’(lc, ) s consistently overestimates the resonance area, fits based 

on this function compensate by underestimating I’:. In addition, f’( Ic, s) suppresses 

the radiative tail and thereby leads to an overestimate of the non-resonant cross 

section, which is also a free parameter of the fit. The magnitudes of the shifts in 

the parameters obtained by the fit to the resonance will depend on details that will 

vary from experiment to experiment, such as the ratio of resonant to non-resonant 

cross section (R/NR), th e amount of integrated luminosity taken on the peak, and 

the energy spread of the machine. 

At the T(9460), for example, we have R/NR M 5 and the radiative tail of 
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the resonance is almost undetectable. The fitted values of I’: consequently reflect 

the large discrepancy in predictions of the peak height by the functions f( Ic, s) 

and f’(lc,s). Q uantitatively, the fractional differences in the fitted values of I’:, 

AciE 7 are almost equal to the fractional differences in the peak cross sections 

predicted by f(lc, ) s and f’(lc, s). Any increase in the machine energy spread, 

IYE, further enhances this effect as it further obscures the radiative tail. At the 

J/+(3097), h w ere the machine energy spread is smaller, the radiative enhancement 

to the tail of the resonance is clearly observable, and the fit is more sensitive to 

the underestimate of the cross section at the resonance tail by f’(k, s). The total 

correction to the resonance integral or I’: is significantly smaller than the difference 

in the peak heights. 

The fractional difference in the total cross section (resonant plus non-resonant) 

for the T(9460) calculated using f(lc, s) and f’(lc, s) with the same input parameters 

is shown in Fig. 2. As in Fig. 1 f’( Ic, s) is calculated both for S& = S, + S, + 6, + bh 

and S& = S,. Limits on the total change in I’: from fitting with f(lc, s) and f’(k, s) 

can be derived directly from Fig. 2. The largest shift in I’: occurs if data points are 

taken only where the discrepancy is maximal (on the peak) and where it is minimal 

(about 20 MeV above). In th is somewhat contrived scenario, the data above the 

resonance fix the non-resonant cross section, and the points on resonance determine 

I’:. Fig. 2 illustrates that the shift in I’: caused by using f’(lc, s) instead of f(k, s) 

to fit the data is 12% or S%, depending on whether the full or the reduced vacuum 

polarization is included in f’(k, s). I n real experiments where the data points are 

more evenly distributed in energy, the changes to I’: will always be less than quoted 

above. 

9 



To correctly reproduce the complicated interplay of the fit parameters and to 

study the dependence and correlations among them, we resort to a technique of 

simulating the data obtained by various experiments to measure the $ and T reso- 

nances. We generate data points by calculating the cross section at a given energy 

fi using our definition f(lc, s) and errors proportional to .\/aaag. Subsequently, 

the generated data points are fit by functions based on both f(lc,s) and f’(lc,s). 

. We study the changes to the fitted resonance parameters using the hadronic cross 

sections only. 

For a compact presentation of the results in the following section we find it 

convenient to introduce the ratio 

C= &Jt 
61 + &J, + 62 + I( ’ 

WY 

with &tot as defined in Eq. (5). H ence, C takes into account the inconsistent 

treatment of the vacuum polarization terms in the literature, as described above. 

The denominator is the correction to the soft Bremsstrahlung term (i.e. the first 

term) in f(lc, ) h s w en we assume the virtual terms are small. In the denominator, 

we take S,, = S, + S, + S, + bh, while the value of S&, implicitly contained in Stat 

may be reduced to S, as in the Jackson and Scharre ansatz. Using this ansatz we 

obtain C = 0.85 and C = 0.70 at 3.1 GeV and 10 GeV, respectively. Using full 

vacuum polarization in Stat we obtain C = 1.03. Since S2 is not included in &,,t, 

the ratio C is never quite equal to one. 

In addition to our analysis of simulated resonance cross sections, we have also 

refit original Mark I data [13] on the $(3097) and $(3685) resonances to determine 

which of the two calculations of the radiative effects fit the data best. We analyze 
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hadronic cross sections only and fix the leptonic branching ratio. For the $(3097) 

we obtain x2 per degree of freedom of 27.3/22 and 30.9/22 using f(k, s) and f’(k, s), 

respectively. For the $(3685) th e corresponding results are 10.4/10 and 12.4/10. 

The two fitting functions yield different values for the parameters, but nearly the 

same values of x 2. Thus, the similiar quality of the fits ensures that the extracted 

errors on the parameters are correct for both fits. Based on the existing data alone 

a discrimination between f(k, s) and f’(k, ) s cannot be made. We arrive at the 

same conclusion in the course of our analysis of simulated data. 

3. Analysis of Simulated Data 

In this section, we show how we apply corrections to published experimen- 

tal results on the parameters of narrow resonances based on fits to our simulated 

data. We deliberately consider only experiments listed in the 1986 Review of Par- 

ticle Properties [l]. In changing values of the resonance parameters we strictly 

use information contained in the original experimental [14-181 and theoretical 

[6, 19, 201 papers. 

In order to correct measurements based on data we cannot access and which 

have been corrected with Eq. (5), we use the simulated data as described in the 

previous section. We generate cross section data as a function of energy according 

to Eq. (1) and Eq. (3), with experimental parameters such as energy resolution 

equal to those of the published papers. We then fit the data to the convoluted cross 

sections obtained using the functions f(k, s) and f’(k, s). The four free parameters 

of the fit are A4 and I, the mass and the total width of the resonance, the beam 
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energy spread, a~, and the non-resonant cross section, unonres. Thus, B,, the 

branching ratio into electrons, is fixed at the world average value [l]. 

In correcting published values of the resonance parameters, we take account of 

the fact that experiments differ from one another in several significant ways: 

. 

1. Note that e+e- storage rings differ in their energy resolution. In the 3 GeV 

range, SPEAR, ADONE, and DORIS h ave roughly the same resolution, 0~ M 

1 MeV. Around 10 GeV, CESR and VEPP IV have an energy resolution of 

OE x 4 MeV , while DORIS has 0~ M 8 MeV. In a comparison between our 

procedure and other radiative correction procedures, a change in aE from 

4 MeV to 8 MeV increases the correction to I’: by 0.5% (C = 1). We take 

this effect into account. Figure 3 shows the dependence of the I’: correction 

on the ratio C, for 0~ = 4 MeV and 0~ = 8 MeV. 

2. In different experiments, the percentages p of the total luminosity collected 

on the resonance peak, as compared to below or above the peak, can vary 

substantially. To understand the effect of this difference in the distribution 

of the data on the measurement of the mass and width, we have generated, 

for a given a~, two data sets, one with a fraction p M 0.3 and the other 

with p x 0.7 of the luminosity assigned to the peak of the resonance. For 

this purpose the peak region is defined as M f 2a,q. For the experiments 

considered, the accumulated data are distributed within these limits. The 

correction to the partial width I”& for C = 1, increases by 1% when we vary 

the fraction p from 0.3 to 0.7. For every experiment under study, we evaluate 

the fraction p and then obtain the specific correction by interpolation between 

the results for p = 0.3 and p = 0.7. The error associated with this procedure 
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is estimated to be less than 0.5%. Figure 4 shows the dependence of the I’: 

correction on the ratio C, for samples with p = 0.3 and p = 0.7. 

. 

3. Most of the measurements on the 1c, and T resonances have been radiatively 

corrected based on the prescription by Jackson and Scharre [6]. For these, 

we typically derive changes in I’: of 2% at the T(9460) by fits to simulated 

data. One experiment, unfortunately, added the full and correct vacuum 

polarization to f’(lc, s), and this resulted in a large correction to I’: of M 

9%. Two other experiments derived resonance parameters using algorithms 

[19, 201 which are identical to ours, except for the vacuum polarization and 

the S2 terms. 

In summary, the fact that the changes to the resonance parameters vary from 

experiment to experiment is almost completely due to the differences in the radia- 

tive corrections that the various experimenters applied. The energy resolution and 

the statistical spread of the data have only a small effect on the variation between 

experiments. 

If the fitting formula factorizes the virtual terms as in f(lc, s), then missing 

vacuum polarization terms only enter as a correction to the normalization. This 

means that the fit predicts the mass correctly, but it underestimates the area under 

the resonance by a fraction approximately equal to Sh + S, + S, + 62. 

If the fitting formula separates real and virtual terms as in f’(lc, s), the problem 

is more complicated. The dependence of the correction on the ratio C is best found 

by fits to simulated data. When full vacuum polarization is used, i.e. C M 1.03- 

1.04, we find a systematic increase in the mass, the non-resonant cross section, and 
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the beam energy spread, and a decrease in the leptonic width. This is consistent 

with Fig. 1, and was also observed in simulated data at the 2’ resonance [a], where 

C = 1. When the virtual terms in f’(lc,s) are set to zero, which is equivalent to 

setting Stat = 0 in Eq. (lo), then C = 0 and f(lc,s) and f’(lc,s) are identical 

in shape (the hard term is not significant), but their normalizations differ by a 

factor 1 + Sr + S2 + 6,, + I(. Th is will produce no change in the mass, but will 
. 

increase the leptonic width. Intermediate values of C will generate corrections to 

the leptonic width and mass as displayed in Figs. 5 and 6. The shift in the mass 

AA4 is normalized to the energy resolution a~, because we find empirically that 

for a fixed ratio C the mass shift is proportional to a~. This behavior is attributed 

to the fact that the equivalent radiator thickness p is the same at the T,LJ and T 

to within lo%, and because f(rC,s) h as a very similar shape for the two resonance 

families. Notice also that above C = 0.8, AM/ a~ remains constant. These curves 

can be used to correct experimental results which are not listed here. 

Table 1 lists the values of the the masses and widths of the $ and T resonances 

from experiments referenced in the 1986 Review of Particle Properties [l]. Both 

previously measured and refitted values are given. We would like to point out that 

our method is one of simulation; it shows fluctuations of typically 2-3% in the 

fitted parameters when cross sections are assigned errors that are comparable to 

those in published experiments. Likewise, fits performed on the real data from a 

given experiment can deviate from our values at the few percent level. The overall 

error of our method, based on much smaller point to point errors, is conservatively 

estimated to be 1%. It is to be added in quadrature to the theoretical error 

discussed in Section 1. 
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Using the corrections to I’:, we have derived the corrections to I taking into 

account the error on the branching ratio. We decouple the measurement of I: 

and r by consistently using the world average branching ratio [al], and not the 

particular value as measured by a given experiment. It can be easily shown that 

I?: and B, can have both independent and correlated sources of systematics within 

the same experiment, and our method tends to eliminate such possible correlation. 

New and more precise measurements of the leptonic branching ratios could induce 

significant changes in the values of the total widths. 

Table 2 contains the summary of our results, presented in the form of new 

world averages for the resonance parameters that change significantly with our 

new analysis. Quantities which do not change the world average by at least 50% of 

a standard deviation are not listed, although we have included the leptonic widths 

for all five narrow resonances. We have only included in the analysis resonances 

which are below the threshold for open flavor production. The corrections to 

resonance parameters above this threshold resemble the corrections discussed for 

the 2’ [a], and are small. This is true even for the T(4S), which has a shape that 

has been measured with far higher precision than any other open flavor resonance. 

In this case, the corrections to all three resonance parameters are less than 50% of 

the overall experimental error. 

4. Conclusions and Discussion 

In conclusion, we have applied an improved prescription for QED radiative 

corrections to narrow resonance production in e+e- annihilation. The estimated 

uncertainty of 1% in the 3-10 GeV region of center of mass energy is dominated 
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by the understanding of the hadron part of the photon vacuum polarization [22]. 

The methodology used here for the re-fitting of 4 and ‘I+ states takes into account ’ 

differences in the data of the various experiments. The observed-shifts of the mass, 

total width, and electron partial width of these resonances are small, but when 

we combine the new values for all experiments and form new world averages, the 

changes are significant. The values of several quantities change as a result of our 

reevaluation of the radiative corrections by up to three standard deviations. The 

implications of the reanalysis of 1c, and Y’ states for quarkonium potential models 

have been discussed elsewhere [23, 241. 

Recently two other papers [23, 241 h ave dealt with the subject of radiative 

corrections to narrow resonances. Both use a formulation that is consistent with 

Eq. (3). However, Buchmfiller and Cooper [24] rescale the results for the Y states 

using only the peaks of the resonances, thereby obtaining changes to world averages 

which are slightly larger than ours. The correction method of Konigsmann [23] 

gives results for the ‘r resonances which are nearly identical to those of Ref. (24). 

However, his results for the + states differ substantially from ours, and we believe 

that this is because our method of simulating cross section data correctly accounts 

for the various nontrivial effects arising from a resonance fit. As discussed in 

Section 2, the J/T) and $’ resonance data are more sensitive to these effects than 

are the T data. 

We would like to thank L. Trentadue for useful discussions, and S. Cooper for 

helpful suggestions. 
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APPENDIX A 

We use in our analysis the form of the distribution function f(k, s) from Eq. (3) 

which has been convoluted [see Eq. (l)] analytically with a Breit-Wigner according 

to Cahn [ll]. We add, however, the 62 and 6,, terms given below. We then 

convolute this result, g(s), with a gaussian energy resolution function. 

. 
r2 g(s) = Ul(l + 61 + tqr2 + M2 

[ 
~aP-zqcos 8, p> - 2-lp 

1+P qcos 8,l + P) 1 
-al@-- 2 [ tan-l 

2A4 
- - r tan-l 2Pf 

- 
44 r 1 7 

where 

Ref. (4) yields the result: 

Ul = q&(1 + &I,)(1 + q - 

61=$3 , 

The K-factor is defined as (o is the fine structure constant) 

(A-2) 

The vacuum polarization term is given by the sum of the loops over leptons and 

hadrons, 

&, = 61 + bh , with 61 = 6, + 6, + 6, . (A-5) 
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The vacuum polarization contribution of charged leptons of mass m; is 

The quantities a, cos 0, and @(cos 0, ,8) are defined as follows: 

a2 = M2(4M2 - ij2 + r2(s/iW)2 . 
r2+w , 

cos(J = -M2(4M2 - 1) + r2wf2> . 
ap + ~2) 7 

qcos 8, p> = 
7rp sin( (1 - p)O) 

sin7rbsin8 ’ 

(A.61 

(A-7) 

(A4 

(A.9) 
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TABLE CAPTIONS 

1: Summary of the corrections to the parameters of $I and Y resonances, listed 

by experiment. 

2: New world averages for those resonance parameters which change by more 

than 50% of a standard deviation. Also given are the percentage change in 

. the experimental quantities, and the statistical significance of the change in 

units of overall experimental error. 
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FIGURE CAPTIONS 

1) The difference between the cross section for the Y’ (9460) calculated with 

f(lc, s) from Eq. (3) and with f’(lc, s) from Eq. (5) using the same input 

parameters. The solid line represents the difference for the full vacuum po- 

larization terms in f’(lc, s), while the broken line gives the difference for only 

the electron contribution the vacuum polarization. Ratio C is defined later 

in the text. 

2) A comparison of the calculated hadronic cross section near the Y’(9460) reso- 

nance. The curves represent the fractional difference between the calculations 

using f(lc, s) in Eq. (3) and f’(lc, s) in Eq. (5) with the same input parame- 

ters. The solid line represents the difference for the full vacuum polarization 

terms in f’(lc, s), while the broken line gives the difference for only the elec- 

tron contribution the vacuum polarization. Ratio C is defined later in the 

text. 

3) Dependence of the f’i correction on the ratio C at the T(9460), for UE = 

8 MeV (diamonds) and 0~ = 4 MeV (crosses). 

4) The correction AI’~/I’~ as a function of the ratio C at the r(9460) for data 

samples with p = 0.3 (diamonds) and p = 0.7 (crosses) for 0~ = 4 MeV. 

5) Corrections to I’: versus C for the five narrow resonances of the I+!I and ‘Y 

families. The corrections to the r( 10023), are roughly equal for a~ = 8 MeV 

and for fJE = 4 MeV. 

6) Corrections to the mass M as a function of the ratio C. AM is given in units 

of the machine resolution UE. 
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Table 1 

Quantity Reference New value New value Old value 

re, J/$(3097) 

Fe, J/+(3097) 

Fe, J/+(3097) 

4.8 keV 

4.6 keV 

4.6 keV 

4.4 keV 

2.1 keV 

2.0 keV 

1.33 keV 

1.08 keV 

1.23 keV 

1.13 keV 

1.15 keV 

1.30 keV 

0.39 keV 

0.56 keV 

0.58 keV 

0.56 keV 

0.52 keV 

0.39 keV 

0.42 keV 

Esposito 1 4.5 keV 1 4.7 keV 

Brandelik 1 4.5 keV 1 4.6 keV 

re, $0685) 

Fe, $(3685) 

re, T(9460) 

re, r(9460) 

re, T(9460) 

re, T(9460) 

re, T(9460) 

re, T(9460) 

re, Y(10023) 

Fe, r(10023) 

Bock 1.10 keV I 1.18 keV 

Giles 1.42 keV 1.53 keV 

Fe, Y(10023) Albrecht 1 0.60 keV 1 .65 keV 

re, r(10023) 

Fe, r( 10023) 

re, T( 10355) 

re, T( 10355) 

M, Y(9460) 

M, Y(9460) 

Tuts 1 0.58 keV ) .62 keV 

Giles 1 0.46 keV I .49 keV 

Artamonov 9460.5 MeV I - 9460.6 MeV 

Mac Kay 19459.87 Me4 - 9459.97 MeV 
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Quantity 

r:, +PW 

r:, Y(9460) 

I’;, Y(10023) 

r:, Y(10355) 

r yp, J/$(3097) 

r zzp, +(3685) 

r Ezp, Y(9460) 

r Ezp, Y (10023) 

r yp, Y (10355) 

r, Y(9460) 

r, Y (10023) 

M, Y(9460) 

Table 2 

New world 

average 

4.57f 0.51 keV 

4.77% 0.51 keV 

9459.93f0.19 Me\ 

4.53f 0.35 keV 1 -4.0 % 1 0.5 CT 

2.05 f 0.21 keV 0 0 

1.279 f 0.050 keV 4.5 % 1.1 CT 

0.569 f 0.033 keV 6.0 % 1.0 CT 

0.423 f 0.031 keV 5.2 % 0.7 u 

4.72f 0.35 keV 1 $0.4 % 1 0.1 0 

0.455 f 0.031 ke \11 13.2 % ) 1.7 CT 

48.5 f 3.2 keV 12.6 % 1.7 CY 

34.2 f 7.3 keV 14.0 % 0.6 u 

1 0.001 % ( 0.5 0 
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