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ABSTRACT 

We report a first attempt at model-building using the fermionic for- 

mulation of string theories directly in four dimensions. An example is 

presented of a supersymmetric flipped SU(5) x U(1) model with three 

generations and an adjustable hidden sector gauge group. The simplest 

version of the model contains most of the Yukawa couplings required by 

phenomenology, but not all those needed to give quark flavor mixing, 

or tree-level masses for all right-handed neutrinos. These defects may 

be remedied in a more general version of the model. _ 
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: - It is ROW well appreciated that the two key ingredients in formulating a 

consistent string theory are conformal invariance and modular invariance. The 

former condition fixes the number of degrees of freedom on the world-sheet. It 

can be satisfied in any number of dimensions d 5 26 (10 for a supersymmetric 

left- or right-moving sector) if the space-time coordinates X, : ~1 = 0, 1, . . . , 

d - 1 are supplemented by internal degrees of freedom contributing 26 - d 

(15 - 3d/2) to th e central charge of the Virasoro algebra. Modular invariance 

then imposes non-trivial constraints on the boundary conditions for these internal 

degrees of freedom which ensure that counting errors are not made when higher- 

genus string topologies are summed. It is known that the number of solutions 

to these modular invariance conditions is restricted, particularly if the number 

of space-time dimensions d is close to the critical number 26 (or 10). In par- 

ticular, in d = 10 there are only two modular invariant heterotic string theories 

with N = 1 space-time supersymmetry, based on the gauge groups SO(32) and 

& x d?l$j [I]. 

The choice of gauge group for string theories formulated directly in d = 4 

dimensions is much more extensive, and is imperfectly understood as yet. An 

interesting subclass of models is offered by supersymmetric compactifications of 

the E&3 x El heterotic string. Early attention was focused on Calabi-Yau manifold 

compactifications [2], but has subsequently been extended to other manifolds 

[3] and to orbifold compactifications [4]. The most systematic approach to this 

ambiguity in the four-dimensional gauge group would be to use one of the general 

formulations of string theories directly in d = 4, using either bosonic [5] or 

fermionic [6-9] variables to describe the internal degrees of freedom. 

The range of choice in four-dimensional theories is embarrassingly gener- 

ous, and no systematic enumeration of models has yet emerged. The alterna- 

tive strategy, followed here, is to start from the bottom up, looking for mod- 

els which contain phenomenologically favored ingredients such as the Standard 

Model or a plausible Grand Unified Theory (GUT). Already examples are known 
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- 

i : - of Calabi-Yau [lo] and orbifold [11] compactifications which yield SU(3)c x 
. 

- 

SU(2)L x U(lp : n 2 2 gauge groups. In this paper we look for models contain- 

ing the flipped supersymmetric SU(5) x U(1) GUT whose virtues were recently 

extolled [12,13]: natural doublet-triplet mass splitting, a see-saw mechanism for 

neutrino masses, no cosmologically embarrassing phase transitions [14], etc. Of 

particular importance is the fact that this model does not need any adjoint Higgs 

representations. No string model with adjoint chiral superfields can be obtained 

in the fermionic formulation [9], and this may well be a general property. Other 

GUTS require adjoint Higgses to break the initial GUT symmetry and/or realize 

doublet-triplet mass splitting naturally. Therefore, SU(5) x U(1) is uniquely fa- 

vored as a GUT group, as has already been stressed in the more limited context 

of manifold compactification [ 131, 

In this paper, our tool for obtaining this uniquely simple GUT is the fermionic 

formulation of four-dimensional strings, as developed in refs. [8,9]. We exhibit a 

choice of boundary conditions for the world-sheet fermions which yields imme- 

diately an observable [SU(5) x’U(1) ] x U( 1)3 gauge group as well as an d la 

carte hidden sector gauge group. The model contains three generations of quarks 

and leptons, additional l0, 10, 5 and 5 representations of SU(5) which could 

be Higgs fields, and a number of SU(5) x U(l)- invariant fields as advocated in 

ref. [12]. Vacuum expectation values of scalar fields break one of the surplus 

U(l)3 gauge generators via the conventional Higgs mechanism, and another is 

anomalous. The fermionic formulation also tells us what Yukawa couplings are 

present, and we find all the ones we want except some of those giving quark flavor 

mixing and masses for some conjugate neutrinos. These defects may be avoided 

by a small modification of the simplest consistent choice of fermionic boundary 
C 

__ conditions which introduces some additional 10 + 10 and 5 + 5 representations. - 
While developing our model, we strive to illustrate some general principles of 

fermionic model-building which may aid subsequent, more inspired, efforts. 



i i - We start with a brief review of the main characteristics of four-dimensional 

heterotic string theories in the fermionic formulation [8,9]. In the light-cone 

gauge, in addition to the two transverse bosonic coordinates Xp and their 

left-moving superpartners @‘(z), the fermionic content is [6] 44 right-moving 

and 18 left-moving fermions dA(z) : A = 1, 2, . . . , 44 and xi(z), yi(z), wi(z) : 

i = 1, 2, . . . , 6, respectively. World-sheet supersymmetry is nonlinearly realized 

among the latter via the supercurrent 

TF(z) = $p&Xp+~ xiyiwi . (1) 
i=l 

A four-dimensional string model is defined by specifying a set B of boundary 

conditions for all the world-sheet fermions, constrained by making the world- 

sheet supercurrent (1) periodic (space-time fermions) or antiperiodic (space-time 

.-bosons). When all the boundary conditions are diagonalized simultaneously in 

some general complex basis {f), the elements of H are vectors a! such that every 

complex fermion f picks up a phase 

f -b -e iT4f) f : a(f) E (-1,1] , (2) 

when parallel transported around the string. In this case, E forms a group 

under addition (mod 2)) and can therefore be generated by some basis B E 

{h, bz, . . . . bN}. It has been shown [8,9] that to every element cy of B there 

corresponds a sector U, in the string Hilbert space X, and to every basis element 

bi of B a fermion number projection: 

__ 
u=$ fi s=l [eirbieF=& c* (l)] Na , 

LYE9 . 
(3) 



: - where -F is the vector of all fermion numbers defined: F(f) = 1 = -F(f*), the 
. dot product is Lorentzian (left minus right), 6, is the space-time fermion parity 

a 
and the phases c 

0 bi 
are constrained by multiloop modular invariance. 

In order for this paper to be self-contained, we now give the explicit form of 

the constraints on the basis B and on the phases c for generic rational boundary 

conditions [9].* 

Basis l3 

al) We choose B to be canonical, i.e., any linear combination Ci mi bi = 0 

iff mi = 0 (mod Ni) f or some integers Ni (for example, Ni = 2 when the 

fermions are periodic or antiperiodic), and the vector 1 E B. 

~2) For any pair bi, bi of basis elements, one has+ Nijbi - bj = 0 (mod 4) where 

Nij is the least common multiple of Ni and Nj, and Nib: = 0 (mod 8) if 

Ni is even. 

~23) The number of real fermions which are simultaneously periodic under four 

boundary conditions bl, b2, b3, bq is even. 

Phases c 

bl) We choose the c($ for i < j such that they are simultaneously 

&. X (Nj” root of unity) and 6bj X exp{iz bi . bj} X (Nib root of unity). 

b2) The remaining phases are calculated using the properties 

__ 

* We consider here neither some exceptional cases, nor the nontrivial realizations of world- 
sheet supersymmetry discussed in ref. [9]. 

t The Lorentzian dot-product counts each real fermion with a factor l/2. 
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o! a 
C 0 = 

CY 
- exp {i: ‘02} c 

0 1' 

a 
0 

= exp(iia.p} c* 
P 

c P 0 , 
a (4) 

Physical states from the sector U, are obtained by acting on the vacuum 

IO), with bosonic or fermionic oscillators with frequencies [1 + a(f)]/2 

([1 - o( f)]/2 for f *) and applying the fermion number projections, eq. (3). 

The mass formula is 

where a~ (cry) is the left (right) part of the vector cy and the VL(VR) are 

frequencies. When some fermions are periodic, the vacuum is a spinor in 

order to represent the Clifford algebra of the corresponding zero modes. For 

each periodic complex fermion f there are two degenerate vacua ]+) , ] -), 

annihilated by the zero modes fo and f;, and with fermion numbers F(f) = 

0, 1, respectively. 

__ 

Before starting to build a model, we note a simple but very crucial relation 

between the world-sheet fermion numbers F(f) and the U(1) charges Q(f) with 

respect to the unbroken Cartan generators of the four-dimensional gauge group, 

which are in one-to-one correspondence with the U(1) currents f’ f for each 

complex fermion f: 

Q(f) = $ + F(f) - (6) 

The charges Q(f) can be shown to be identical with the momenta of the corre- 

sponding compactified scalars in the bosonic formulation [ 151. The representation 
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i =- (6) showsthat & is identical with the world-sheet fermion numbers F for states 
. in a Neveu-Schwarz sector (CI! = 0), and is (F + l/2) for states in a Ramond 

sector (cu = 1); note that the charges of the I&t> spinor vacua are &l/2. 

The model we seek in this four-dimensional fermionic string formalism is 

the supersymmetric flipped SU(5) GUT of ref. [12]. It contains the following 

chiral matter superfields: Three generations of matter fields F. = (IO, l/2), 

fi = (5, -3/2), and ei = (1, S/2); Higgses H = (l0, l/2) , R = (10, -l/2), 

h = (5, -1), and 6 = (5,l); and four singlets +e,i = (I, 0) of SU(5) x U(1). 

The superpotential of the model is [12] 

w = XIFFh + X2Ff& + X&‘h + X4HHh 

- -- (7) 

where the Yukawa couplings xr 2 3 6 7 s are matrices in generation space. , , * 9 I One 

:component each of the H and H acquire large v.e.v.‘s breaking SU(5) x U(1) + 

SU(3)c x SU(~)LX U(l)y, and SU(~)LX U(l)y + U(l)em via v.e.v.‘s of 

components of the h and 5. Uniquely among all the GUTS known to us, 

there is no adjoint or larger self-conjugate Higgs representation. The model 

is also attractive because it solves naturally the Higgs doublet-triplet mass- 

splitting problem, has a see-saw neutrino mass spectrum, and avoids rapid proton 

decay [12]. 

Our string model is generated by the following basis with eight elements: 

B = (1, S, bl, . . . , bg, a} where 

s E (1,“‘) 1,o ,..., o), 

$323 

(84 

bl E ( 1 , *--, 1, 0 

l+v, x1s2,y3,. . , y6, g6 

, . . . , 0; 1, . . . , 1, 0, . . . , 0) , (8b) 

b2 z ( 1 , -**, 1, 0 , . . . , 0; 1, . . . , 1, , 
y’,2, 

) (84 
$cc, x3,4, w5,Qj5,6 $J -1 ,...,5, 42 
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i : - b3 --s - ( 1 , ..', 1, 0 , 
. 'IcIy x5,6, SyEy.. , w4,iiP 

. . ..o.:g, . . . . l,O, . . ..o) , (84 
-1 II, ,...,5, 43 

b4 E ( 1 , e-s, 1, 0 ) . . ..o. 1, . . . . 
p, x192, yG w4,5, 9495 

l,O, . . ..o) , (84 
-1 

II, 
,...,5, ql 

bs E ( 1, . . ..l. 0 9 **a, 0; 1, . . . . 1, 
wG, 

0, . . ..O) ,(8f) 

+P, x3,4, y2,6, g28 ti -1 ,..., 5, 42, 4 -1, . ..4 

a=( 1 , -a*, 1, 0 (W 

x1,...,4 ,Y 1 9Y -1 w2, Q2Y4 , g4w5, Q5 - -1 ti ,..., 5, $,2,3 

_- 

In the notation used above, all the left-movers @‘, xi, y’ wi, as well as twelve 

right-movers #, &ji are real fermions, while the remaining right-movers ql* ee.9 5, q1p2s3 
:and 619---98 are complex, and the semicolons separate real and complex fermions. 

A few preliminary comments are in order. (a) The presence of the vectors S, bl 

and b2 guarantees N = 1 space-time supersymmetry [8]. (b) The restricted 

set of basis elements { 1, S, bl, b2, b3) a one would yield an SO(l0) x SO(6)3 1 

observable gauge group, together with 3 x 2 copies of massless chiral fields in 

(u&4, 1, 1) + (I!!,& 1, 1) representations [one for each SO(6)] and an & hid- 

den gauge group. (c) The basis elements b4, bs and Q break SO(6)3 to U(l)3 and 

SO(l0) to SU(5) x U(1) . Th e reduction in the rank is achieved by using the real 

fermions yi, yi, wi and &, and is the maximum possible in this approach, whilst 

the unitary group appears thanks to the complex fermions T$~P ***p5 in Q. The 

choice of l/2 for their boundary conditions is the only one whose o-projection 

leaves in the massless physical spectrum the full spinor of SO(lO), as will become 

clear below. (d) By choosing appropriately the vector 4 in eq. (8g) describing 

twists of r$ly ***p8 which are consistent with condition (a2) above, it is possible 

to guarantee that the only massless states transforming nontrivially under the 

observable gauge group are those from the sectors S, bl, b2, b3, bq (space-time 

fermions) and 0, bl + S, b2 + S, b3 + S, bq + S (space-time bosons). The partic- 

_ 

c 
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i : - ular form-of 4 determines at the same time the final form of the hidden gauge 
. group. The conditions (a2) impose the following constraints on the vector 4. 

Defining Na to be the smallest integer for which Nacv = 0 (mod 2), simple in- 

spection of the vector cy, eq. (8g), h s ows that Na! = 4n, where n is an integer 

depending on 4. One must impose (i) n(A2) = 0 (mod 2), corresponding to 

N, a2 = 0 (mod 8) and (ii) n4.B = 0 ( mod 1), corresponding to Naba Q. bg = 0 

(mod 4), where & E (1, 1, 1, 1; 0, 0, 0, 0) for $“‘*‘4 and &5”*‘18, respectively. 

One must in addition choose 4 so as to guarantee that no extra massless states 

transforming nontrivially under the observable gauge group are introduced. 

A possible choice of the phases c is 

c(iI.) = c(z) = c(t) =c(:) = -l(i#j;i,j=l,...,S) . 

(94 
The first relation ensures the same chirality for all the SO(10) spinors, while the 

%thers are a matter of consistent choice. Using property (b2) above, one finds 

+1 fori#3,5, 

-i for i = 3 , 

and determines other phases not needed here. 

Pb) 

It is straightforward to derive the massless spectrum of the model (8). In 

the Neveu-Schwarz sector (0) one has the graviton, dilaton and two-index anti- 

symmetric tensor states: II, f,2 8 X[ IO),, the gauge bosons and some matter fields 

transforming only under the hidden gauge group [whose specific form depends 

on the choice of 4 in eq. (8g)], w ic we will not write explicitly here. One also h h 

has: 

-- (a) The gauge bosons of the observable gauge group SU(5) x U(1) x U(l)3 : 

$ri2 @,2 #j2 IO), with a, b = 1, . . . , 5 and $r,2 ~4~ $F2 IO), with* cr = 

1, 2, 3 which we denote by U(l),. 

* The first U(1) factor is the combination @ 1,2 C, $~,,~~~, IO),. The other U(1) charges 

are -model-dependent, and may be altered by other choices of the vector a. 

P 
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. 
(b) Three candidate Higgses ha, 5, : xi/z 4:;; tiF;z lo),-, and xflf 4:/Z “F/S IO), 

with i = 1, 2 or 3, 4 with a? = 1 or 2, respectively, and x’ l/2 4;;2 ii:,2 lo)0 

and xfi2 6fi2 fifi2 IO), with i = 5, 6. Thus, their quantum numbers are+ 

hl = (5, -1)~l,o,o h = (hJh,o,o 
ha = (5, -l)o,-I,O 62 = ($,l)o,l,o , (10) 

h = (5, -l)o,o,l E3 = (3,1)0,0,-l , 

in a self-explanatory notation. 

(4 Six SU(5) x U(l) singlets xf12 9ip/2 4f,2 IO>,, xf12 iiFi2 $i2 lo>, (a # P) 

with i = 1, 2 or 3, 4 when CY, p = 2, 3 or 1, 3, respectively, and 

xf12 4:,2 q$, IO),, xf12 iii;2 gt,2 IO), with i = 5,6. Thus their quantum 

numbers are: 

$‘23 = (l,o)O,l,l $23 = (l,O)O,-1,-l 

413 = (LO)l,O,l 413 = (1,0)-1,0,-l 9 

412 = (W)l,-1,o 412 = (v)-l,l,O 9 

I (11) 

(d) The sectors b, with cx = 1, 2, 3 produce out of the corresponding vacua IO), 

three families of quarks and leptons which transform as spinors of O(16). 

After making the various fermion projections and decomposing with respect 

to the final gauge group, they are seen to transform as 

MI = W/2,0,0 3 M2 = Mo,1/2,0 3 443 = Mo,o,-1/2 3 (12) 

where each Mi E Fi+A+t!i = (l0, l/2) -I- (h, -3/z) -k (1, 5/z) is a Complete 

Weyl spinor of SO(l0). 

t Note that the four U(1) h g c ar es are related to the following world-sheet U(1) currents: 
C”,=, $,* y5” and qa* qa with (y. = 1, 2, 3. 
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- 

= - (e) The sector b4 gives rise to the Higgses HI and I?r: 

. 
HI = (109 v41/2,0,0, Hl = (10, -l/2)-1/2,ql). (13) 

Let us also mention the following massive states in the bq sector. They 

are produced by acting on the various spinor components of IO), with 

the oscillators xf12, 44i2 or q$+2 with i = 3,4 or 5, 6 when CY = 2 or 3, 

respectively: 

HI2 = (109wL1/2,1,0 If12 = (10, -1/2)1,2,-1,o 
- 

Hl3 = (10, m-1/2,0,-1 a3 = (10, -1/2)1,2,o,1 I ’ (14) 

These will play an important role in the doublet-triplet mass-splitting. 

Using the above spectrum and quantum numbers, we now describe some of 

the properties of the model and compare them with the desired properties of the 

corresponding field theory model [ 121, eq. (7). 

_- 

(a) The HI, I?1 scalars, eq.( 13)) are candidate Higgs fields. If they acquire 

v.e.v.‘s, they break SU(5) x U(1) spontaneously to the Standard Model SU(3)c x 

SWLX W)y * At the same time, they break U(1)3 to U(1)2. The pres- 

ence of HlHl hl + BrBr&l superpotential couplings, which are allowed by the 

U(1) charges, eqs. (10,13), and derived on general grounds in ref. [16], would 

then realize the elegant doublet-triplet mass-splitting mechanism of ref. [12] by 

giving a large mass to the triplet components of hl, 711. The massive states 

62, J&2, HIS, &, eq. (14), h ave HlHl2h2+HlH127/2 and HlH13h3+Rlff‘&3 

superpotential couplings which would likewise provide through mixing large mass- 

es of order M&&Mp 2 1013 GeV for th e rip e components of h2,3 and h2,3.* t . 1 t 

* As in ref. 17, these compensate for the effects of light Higgs doublets in the renormalization 
group-equations, so that acceptable values of sin2 Bw, etc., are obtained. 
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,:.- (b) The h,, L, scalars, eq.(lO), are candidates to be the Higgses of the Stan- 

. dard Model. They correspond to flat directions of the effective scalar potential 

at the string tree level, and in the presence of soft supersymmetry breaking they 

would acquire nonzero v.e.v.‘s which would break SU(3)c x Sum x U(l)Y to 

SU(3)c x U(l) em at the weak scale. Among the desired superpotential cou- 

plings of the form MiMih, those which are allowed by the U(1) charges are 

(g!, 1/2)a (EL l/&Yh a and (I, 5/2)a ($, -3/2)a h, which would provide masses 

to the charge -l/3 quarks and leptons. Thus far, a big defect of the model is that 

the couplings which could give masses to the charge +2/3 quarks and conjugate 

neutrinos are forbidden by the extra U(1) charges. This difficulty is partially 
- resolved by the next observation. 

(c) The three extra U(1) ‘s are anomalous [ 181. It has been shown [ 191 that 

consistency of the string theory implies that string loop corrections generate D- 
breaking of such an anomalous U(1). The latter can lead to large v.e.v.‘s of order 

tip, but does not in our case lead to the spontaneous breaking of space-time 

supersymmetry close to the Planck scale. In our case, it is the combination 

U(1) r + U(l), - U(l), which is broken by this mechanism. If this were the only 

combination of U(l)% to be broken, still no charge +2/3 quark masses would 

be generated. However, since the expected v.e.v.‘s for Hr and Rr break sponta- 

neously U( 1) r, the only U( 1) remaining down to low energies is U( 1) z + U( 1)s. In 

principal, this residual U(1) allows- the following superpotential couplings of the 

matter fields: MIMIhI, MzMzh2, MzMzhl, MsM3h3 and MlMlL1, MzM&, 

__ 

- 
M&&h, MdKh These would be sufficient to give nonzero masses to all 

the charge +2/3 quarks. However, they would only give Cabibbo-Kobayashi- 

Maskawa mixing between two generations. It would be natural to conjecture 

that the odd one out may be identified as a first approximation with the (t,b) 

quarks. In practice, using only nonrenormalizable couplings involving the singlet 

fields introduced above, all the above Yukawa couplings except those coupling 

M2 and M3 are generated, and there is no Cabibbo-Kobayashi-Makawamixing 

at all. Moreover, the residual U(l)2 + U(l)3 d oes not allow large masses for all 
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. 
the conjugate neutrinos at the tree level. In principle, one could generate v.e.v.‘s 

for other scalars with nonzero residual U(1) charges which would remove these 

last remaining phenomenological defects. Indeed, one could modify slightly the 

above model, eqs. (8), to become more realistic, at the price of the appearance 

of extra Higgses. For example, if one modifies the vector bs, eq. (se), by making 

4 -1,...,4 antiperiodic, one would obtain an extra (IO, l/2) + (10, -l/2) pair as well 

as extra 5’s and 5’s. Their extra superpotential couplings could in turn lead more 

directly to a realistic mass matrix. 

- 

We have reported in this paper on a first attempt at model-building with 

the fermionic formulation of four-dimensional strings [8,9]. We arrived at a 

supersymmetric flipped SU(5) GUT [12] which is distinguished by its natural 

doublet-triplet mass-splitting mechanism, its see-saw neutrino mass matrix and 

the absence of any adjoint (or higher) Higgs representations. We have found a 

fermionic string theory which almost reproduces the desired model, modulo ques- 

tions about the charge +2/3 quark masses, the conjugate neutrino masses, U(1) 

anomalies and the scale of sup&symmetry breaking. As we have argued above, 

some of these difficulties may resolve each other. One possible line of future re- 

search would be to tune up the model presented here. Another would be to look 

for other phenomenologically appealing models in the fermionic formulation of 

four-dimensional strings. However, even if a very attractive string theory were 

found, there would still be the problem of divining how and why Nature chose 

that particular string theory. 

-- 
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