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. . 1: Introduction 

Due in part to the progress made in the compactification of superstrings, the 

study of U (1) chiral b osons [l. has blossomed in the past year [2]. Non-abelian chiral 

bosons have also been studied [2b,3], although much less so than their abelian limits. 

Much work [1,4] h as also been done on the supersymmetric extensions of the U(1) 

theories. Studies of the supersymmetric, non-abelian theory are also present in the 

literature [5]. In this letter, we will present some of the results we have obtained 

for the (1,0) supersymmetric theories. Further details on this work will be publish 

elsewhere [ll]. 

Our non-linear sigma model actions will be presented in the next section. We 

will also derive the self-duality constraint there. Following this, in section III, a 

discussion of the super Kac-Moody invariance and its associated super-currents, 

will be given. Section IV will describe possible couplings to non-abelian gauge 

superfields. The superconformal theory and the coupling to supergravity will be 

presented in section V. This will include the conditions for consistent propagation 

I_ . \ 
_ of the leftons (left moving) and rightons (right moving). Our notation will generally 

-be that of our previous work [4c]. 

During the completion of this work we received a preprint by Gates and Siegel 

[lo] in which some of the results obtained here are discussed. 

II. Lefton And Righton Non-Linear Sigma Models 

The non-linear sigma models for non-supersymmetric leftons and rightons have 

recently been given [2b,3]. In this section, we will present the superspace actions 

for the unidexterous theories. This is done by extending our previous works [4a,4c] 

on the U(1) theories. 
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. .- Following Ref. [6], we define the non-abelian group element superfield, U, which 

satisfies UUt = 1. This matrix superfield can be expressed by U E exp [iO. t]. 

The real superfield, (P(c **, q+), represents a lefton or righton and t represents the 

hermitian generators of the group G. Our super world-sheet has bosonic light-cone 

coordinates of* z (r f 0) and a real Grassmann coordinate, <+. In writing the 

Wess-Zumino(WZ) t erms we ‘will introduce a third coordinate y with 0 5 y 5 1. 

This will allow us to define the superfield, &((T**, <+, y), over the solid ball, by 

6(C7 **, g+, y = 1) = a’(~**, s+) and &(a**, c+, y = 0) = 0. Then the mapping is 

0 E exp [;&. t]. (H ere we assume that the second homotopy group of G is trivial, 

7r2 (G) = 0.) It will also prove useful to define II, E U-l DAU where DA represents a 

supersymmetric, covariant derivative. A similar definition for I?, holds with U --+ U 

and fir, E U-‘&U 
dv ’ 

OuractionswillbeoftheformS(U) = Swzw(U)+Sn(U) = S,(U)+nSwz(U)+ 

S*(U); where n E (no, no) is an integer [6] which in general has different values for 

the lefton and righton sectors. Here SWZW is the Wess-Zumino-Witten action, S, 

is the sigma model action, Swz is the WZ term, and Sh is the Siegel term which 

. .?F-.  leads to the self-duality of U. 

In the (1,0) theory, both the leftons and rightons will have the S, and 5i.v~ 

actions defined as follows: 

So.(U) = -i* 
/ 

d2adg- Tr[l-I+l-L] , (2.la) 

Swz(U) = - i&l d’ad<- /,‘dy Tr[fi,(D+fi-- - a--I?+)] . (2.lb) 

For leftons, we employ the notation U + UL and U -+ 0~. The rightons will be 

adorned with a “R” label. 

The component form of this action at the special coupling (f - $) = 0 has 

the form [5] 

Swzw(U) = SWZW(U) - ie d2aTr[P+ . a--P+] 
J 

(2.2a) 
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where u is a group element of G  and p+ is a Weyl-Majorana fermion in the adjoint 

representation of G. It is defined via: 

u( i u , b+ul = iup+ . (2.2b) 

The variation of the actions (2.la) and (2.lb) with respect to U are the following: 

&(U) = i* 
/ 

d2adc- Tr[U-lGU(d--II+ + D+lL-)] , (2.3a) 

~Swz(U) = $-- d2ud<- Tr[U-16U(8--II+ - D+L-)] , (2.3b) 

For the special coupling (& - e) = 0 the variation of the WZW action takes 

the form 

SSwzw(U) = k& 
J 

d2ad<- Tr(U-1GUr3--ll+] , (2.3~) 

II.1 Non-abelian (1,0) Leftons: 

As a generalization of the abelian leftons superfields, a’“, which a, priori obey 

~3--@” = 0, i.e. fP = @ “(a++,<+), we define a lefton matrix superfield, UL, by 

d-- UL = 0. These group element leftons can be constructed from the former leftons 

- via UL = exp[i@ t]. The chiral nature of the matrix superfields UL is achieved by 

. 
-adding to the Swzw(U~) the following lagrange multiplier (A+--) or Siegel term 

SA(UL) = -+T 
/ 

d2ad$-A+-- Tr[Il--(L)IL-(L)] . P-5) 

The variation of this term with respect to &UL is given by 

wi(UL) = +!r J d2ad<- Tr[UL16ULa-- (A+--II--(L))] . (2.6) 

Using the variations (2.3) and (2.6) t i is straightforward to verify that both SWZ(UL) 

and &(UL) + SA(UL) are invariant under the Siegel transformations 

6TUL = T--a--UL , 

brA+-- = -D+T-- + T--?--A+-- . 
(2.7) 

3 



I 
. .- In addition the action for the non-abelian leftons is invariant under the global super- 

chiral transformations: 

U-AU, - U-+UB-l . (2.8) 

Where A and B are constant matrices and are elements of G. The associated chiral 

super-currents are 

J$, = i($ + z)H+lL) + i$A+--IL-‘L’ , 

JtL) 
---Cl) 

= i($ - $)rI-JL) ) 

(2.9a) 

J!“;‘, = -a($ - z)D+ULUL-’ -i r &A+--B--ULUL-’ , 

JCL) 
--(r) = - i($ + $p--uLuL-l , 

(2.9b) 

where the right current is associated with the first transformation in eqn. (2.8). 

Using the expressions for the variation of the various terms of the action with 

respect to UL, we get the following equation of motion 

(;- ~)D+(UL-'LUL) + (;+:)a--(UL-'D+U,) 

+ +(A+--U,-‘LLU,) = 0 , 

(2.10a) 

The second equation of motion associated with the variation of A+-- is 

(uL-la-AL)2 = 0 , (2.10b) 

This equation of motion, as will be clarified below, is potentially anomalous. To 

solve these equations we take 

. amAL = 0 . (2.1oc) 

From the equation of motion (2.10a) we get the current conservation laws: 

D+ JLL’(:, + 6’--J(L) = 0 . 
+C) 

(2.11) 

The vector and axial supercurrents J (:) = [J(l) * J(r)1 are obviously also conserved. 

Note, however, that now unlike the abelian case [3,4c] the vector current is not 

topologically conserved as the equation of motion (2.10a) must be applied. 
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. .- II.2 Non-abelian (1,0) Rightons: 

Just as for the leftons we now generalize the abelian rightons. The latter are 

superfields that a priori obey D+@ = 6. We define a righton matrix superfield UR 

by D+UR = 0 . This means that the component plus-spinor, /3+ defined in eqn. 

(2.2b), vanishes. The lagrange multiplier (A--++) term takes now the form 

So = -i ld20dS-A--++Tr[~~+cR)n++cR) + ;&II+(R)II+(R)II+(R)] . 

(2.12) 

Notice that the second term is needed to compensate for the Siegel transformation 

of the WZ term. The variation of this Siegel term with respect to UR is 

SS*(U,) = i/ d20d<- Tr[U,‘sUR{~[D+(A--“n!R!) + a++(A--++II!+F))] 

+ izD+(A-- ++IIyhp)}] 
(2.13) 

The full action, S(UR) is invariant under the Siegel transformations 

'hUR = -r++a ++ R u - i iD+‘r++D+Zf~ , 

tSTA--++ = -a--T++ + T++cI++A--++ - QD+T++D+A--++ . 
(2.14) 

-Here again the action is invariant under the chiral transformation of (2.8). The 

associated chiral currents are now 

J$), = -i(&-$$D+URUR-' , r 

J(R) 
--(r) = -i(-&+$ja--URUR-l +(-&- ~)A-m++D+URD+U;l 

- &[A-- ++~++URUR-' - iD+A--++D+URUR-l] , 

J# = +&+$-)UR-~D+UR , 

J(R) 
--(I) 

= ;(--&--~)UR-'a--UR-(-$+ $-)A--++lI~)II~) 

+&A-- ++UR-'~'++UR - i+D+A--++UR-'D+UR] ; 

(2.15) 
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From the variation of the action (2.13) plus (2.3), with respect to UR, we find the 

equation of motion associated with the action S(UR) = So(U,) + ~RSWZ(UR) + 

sA(uR), - 

(k- z)D+(UR-la--U~) + (i+z)a--(Un-lD+U~) 

+ ++[A-- ++U~-'a++llR - ~+(D+A--++)UR-~D+UR] (2.16a) 

+ i(~+~)~+[~--++n!R)n!R)l = 0 

Similarly, the A--++ variation, which again is potentially anomalous, leads to 

-$(UR-lD+UR)(UR-la++U~) + iz(UR-1D+U~)3 =0 . (2.16b) 

To solve these equations we take 

D+UR = 0 . (2.16~) 

In analogy with the leftons, the chiral super-currents of the rightons here too, are 

conserved due to eqn. (2.16a). 

III. Super Kac-Moody Invariance 

. 
It is well known that at the special coupling (ft - 2) = 0 the ordinary 

WZW theory [6], th e c ira non-supersymmetric WZW action [2b,3], and the su- h 1 

persymmetric (1,l) non-chiral WZW action[5] h ave a fixed point where the theory 

is conformal and Kac-Moody invariant. In a complete analogy we will show that 

this property holds for our case as well. Using eqns. (2.3) and (2.6) for the variation 

of the leftons’ action, it is straightforward to verify that at the fixed point, the ac- 

tion is invariant under U + U B-l (o++). Note h owever that unlike the non-chiral 

theory, here the second Kac-Moody invariance U -+ A(cr--)U is absent due to the 

Siegel term eqn. (2.12). A reversed situation appears for the rightons’ action where 
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. .- the second super Kac-Moody transformation generates a symmetry while the first 

does not. 

These properties can berevealed easily also from the chiral super-currents. For 

the leftons at the fixed point, J(L)(,) = 0 and therefore we get the super Kac-Moody 

current 

JtL) = 
+(I) 

iz[II+cL) + A+--II--(L)] (3.1) 

which is anti-holomorphic, namely a-- J$/, = 0. The components of this super 

current are 

J+(l) ‘(L) E J$I = - z[@+ -ix+--&CL-U] 

.(L) 
J++(1) = -iD+Jl”;/,\ = ${[@+/3+ + i(zd3++u + X++--t?d--u) . 

- iX+ --[(u-la--t@+ + a--p+ - P+(u-‘L-u)]} 
(3.2) 

Expressing the super-current as J$i, = Jzip ^ t” one can check that the algebra of 

jyi(“I, is the Kac-Moody algebra with the level equal to no. On the other hand, 

the form of the conservation law of the right current in not changed and hence there 

is no affine symmetry in this sector 

For the righton case at the fixed point, J$J, = 0 and therefore D+ Ji!(,.) = 0 

namely 

J(R) 
--(r) 

= + i~(URw16'--U~ 
(3.3) 

+ A--++UR-'~++UR - ~~D+A--++UR-~D+UR] , 

.(R)a is now a super-Kac-Moody current. The component current J--(,) is holomorphic 

and has the Kac-Moody algebra with the level equal to nR. 
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. .- IV. Coupling To Non-Abelian Gauge Superfields 

Next we want to couple the (1,0) chiral WZW actions at their fixed points to 

non-abelian gauge fields. We present here two possible couplings: the vector and 

the chiral couplings [3]. In the first approach we gauge the vector transformation 

U -+ AUA-l. This is done ,by introducing the gauge superfields I’+ and I’--, 

covariantizing the vector current by replacing ordinary derivatives with covariant 

derivatives DA + DA +~[J?A, 1, and constructing an action whose variation with 

respect to the gauge superfields yields the covariantized vector current [9]. The 

result is the following action 

SLNA(u) = SWZWWL) + SA(UL) + q,)(r,uL) , 

S(,) = i 
/ 

d2udc- Tr[I’+ Jl”lt,, + r--.@,] 

-22 d2ad$- Tr[I’+UL-lr--UL - r+r-- 
/ 

+ A+-- (r--uLr--uL-l - r--r--)] . 

P-1) 

to be added to the lefton action (2.2) and (2.5). To get the corresponding action 

for the rightons, one has to replace (in (4.1)) the indices L with R and add, in- 

stead of the last line, the following expression: ~[A--++(U;lI’+UR - I’+)I’++ + 

@+A--++)z@?+&r+ - iA--++U;lD+URr+r+]. The SA action for the 
- ‘- 

-. - 

rightons is given in eqn. (2.12). 

It follows from the equations of motion derived from these actions, that the 

vector super current is still conserved. However, the axial current gets an anomalous 

divergence 

(4.2) 

where IV- = D+I’---a--I’++i[I’+, I’--] . Th is result is just the supersymmetric 

generalization of the bosonized version of the non-abelian anomaly of chiral fermions 

131. 
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In the chiral coupling, the left and right super-currents are coupled to non- 

abelian gauge superfields for the lefton and righton cases respectively. The corre- 

sponding actions can be derived by supersymmetrization of the action given in Ref. 

[3]. The resulting interaction terms are: 

S(q = i 
/ 

d24: Tr[r+ J(L)(,) + r--J$/,] 

/ 

(4.3) 
+i$ d2ud(- Tr[r+r-- + A+--r--r--] 

for the leftons. Replacing the L indices with R, 1 with r and changing the last term 

+zJd2ad$- T~[r+l?~~ + A--++@‘+I’++ + I?:)], leads to the interaction 

term in the righton’s model. Similar to eqn. (4.2) the divergence of the chiral 

super currents are anomalous. The expresion one gets is just the supersymmetric 

gengeralization of the results given in [3]. 

V. Coupling To Supergravity 

Just as the D=2 superconformal theory is anomalous, the super-Siegel sym- 

_ metry is also potentially anomalous [2,3,4]. For the U(1) theory the anomaly is 

removed by one of two methods. The first requires the stringy prescription of a 

multiplet of chiral bosons. The second requires the addition of a Liouville term to 

the action. The removal of the anomaly fixes the “coupling n constant of the latter 

term just as it singles out a value for the number of leftons or rightons. 

It is known [2b] that for the non-supersymmetric theory, the Polyakov proce- 

dure of adding a Liouville, tree-level, anomalous counter-term to the sigma model 

action, is not well defined. Although it is possible to supersymmetrize this Liouville 

term, it suffers from the same pathology. It is the trace of a Lie-algebra valued 

construct and thus vanishes. So it appears that the O(N) model must quantum 

mechanically conserve Siegel symmetry by some other means. However, two points 
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. .- concerning the Liouville term are worth mentioning. Firstly, if the group element 

contains at least one U(1) factor [3], then the trace no longer vanishes. Of course 

this is defeated if the group; G, is taken to be semi-simple. Secondly, if one al- 

lows the lagrange multiplier to be Lie-algebra valued, then it must be included in 

the trace which is then non-trivial. Such a matrix superfield would be the O(N) 

generalization of the family of U(1) 1 a g range multipliers given in Ref. [4a]. 

Coupling self-dual superfields to supergravity requires more than the naive 

procedure of covariantizing the action leading to the classical conservation of two 

symmetries, supergravity and Siegel. One is not guaranteed consistent removal of 

the pure and mixed anomalies. Less covariantizingmust be done. Indeed, the super- 

Siegel transformation laws are those of a truncated supergravity theory coupled to 

matter [l]. Sensible coupling of supergravity to leftons and rightons is achieved by 

treating the supergravity schizophrenically, when realized on these superfields [4c]. 

The schizophrenic general-supercoordinate transformation laws (with super- 

parameter K**) for the lefton and righton group elements are as given in Eqns. 

- (2.7) and (2.14) but with ‘I’** = -K** and R * L [4c]. We minimallycovariantize 

with respect to these transformations. The realization of the (1,0) supergravity 

algebra on the l/r, and UR is exactly as given in Ref. [4c] for the abelian leftons 

and rightons. The locally supersymmetric and super-dilatation invariant action 

is then the sum S(UL,UR) 1 S,,(UL,UR) + SWZ(UL,UR) where SO(U~,UR) = 

So(U~)+S,(U~) and SWZ(UL,UR)= ~LSWZ(UL)+~RSWZ(UR) with the density 

E-l inserted into the measure and DA + VA. (Our notation is explained in 

Ref. 14~1.) In our discussion we will assume that the group G = Gs x GA, where 

GA is a product of some number, NA = NAL + NAR, of abelian factors from the 

lefton and righton sectors. With this we take Gs to be simple and compact, as 

-. - 
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. .- in Ref. [2b]. Furthermore, we include D space-time coordinates. Then our locally 

supersymmetric and super-dilatation invariant action is 

SCLR = -i+ 
I 

d2ud<--E-1[V+&%--&+Ak 

-i$ 
I 

d2udg-E-’ Tr[N+(L)N--(L) + N+(R)N--(R)] 

-i& d2udg-hm1 
I I 

1 
dy Tr[nLl?I,(L)(V+i--(L) - V.-.-G+(L)) 

0 

+ &i,(R)(v+fi--(R) - v--i+cR))] , 

(5.1) 

where now HA = U -~VAU and the internal &s are U(1) valued. A discussion of the 

first action (for the latter superfields) was given in Ref. [4c]. The super-dilatation 

(with S as its local super-parameter) transformations under which the simple action 

is invariant, are 

l&N+ = w+ 1 &.7&k = Sk* , &II, = 0 , &E = qSE , 

(5.2) 

with similar transformations for the kA. By construction, the abelian and space- 

time coordinate actions are super-Weyl invariant. For the superstring, l2 = -my’. 

Eqn. (5.1) reduces to 

i : 
'%LR = SC + SAL + SAR + SsL + SSR , 

SC = -i* 
I 

d2ud$- E-‘[V+X”V--X%] , 

SAL = -i& I d2ud<-[D+&L . 6’--bL + IL-++D+& a++&] , 

SAR = -i& 
I 

d2ud<-[D+& ‘a--&, + H+--a--& . a--&] , 

SSL = - i& d2ud<- Tr[lI+(L)III_-(L) + H--++II+(L)II++(L)] (5.3) 
/ 

- is/ d2ud<- /,’ dy Tr[i/I,(L)(fiI_-(L)fi+(L) - fi+(L)fiI--(L))] 

+ $& d2udg-H--++Tr[IT+(L)lI+(L)II+(L)] , 
I 
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. .- 
SSR = -is 

I 
d2ud$- Tr[II+(Rh--(R) + H+--l-I--(Rh-I--(R)] 

- iz/ d2ud<--11 dy Tr!fi,(R)(fi--(R)fi+(R) - fi+(R)fi--(R))] . 

This is an exact (to full non-linear order) result. As explained in our earlier work 

[&I, there is a reversal, R ++ L, in the coupling to the gauge superfields. Super- 

gravity only couples to the “physical movers” in the superfields. Now, the UR’S are 

coupled to H+-- exactly as in Eqns. (2.1) and (2.5). 

We now inquire as what other conditions are required for consistent quantum 

superconformal coupling at the fixed point, i.e. we look for anomalies. The left and 

right energy-momentum tensor elements may be read off from Eqn. (5.3). They are 

T+,++cL) = D+X. a++X + D+&L. a++&L + Tr[II+(L)II++(L)] 

+ i+Tr[II+ W,+(L)~+(L)] , 

T--,--CR) = d--X.a.--X + a-.-&R .a--$, + Tr[I’I--(R)lL-(R)] , 

(5.4 

for the fixed point nR = nL = n = g. As is well known [7], the traced terms may 

be written in terms of the super-Kac-Moody currents. Furthermore, the resulting 

expression must be suitably normalized in order to obtain the Virasoro algebra or 

correct OPE’s. The normalization factor is i, where K. = cv + n. The constant, CV, 

is the second Casimir of the adjoint representation defined by facdfbcd E cvPb. 

With dc 3 dim G, generically and G E GSL x GSR denoting the factoring of the 

group G into simple groups, the critical dimension formulae are [7,8] 

2 dGs~ D + NAL + -~ 
31+= n 

+ ;dGa = 10 , 

d&R 
(5.5) 

D + NAR + 1+cvR = 26 . 
n 

The first equation is from the lefton (supersymmetric) sector and the second is 

from the righton (non-supersymmetric) sector. For semi-simple groups, the dG 
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tei-ms become sums over each factor in the group. Solutions of eqn. (5.6) for 

NAL = NAR = O’have been given in Ref. [8]. 

- 
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