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ABSTRACT 
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We diagonalize exactly the O(Nf) H amiltonian relevant to the bound state 

approach to strangeness in the Skyrme model. The hyperfine splittings of strange 

baryons computed within this framework agree well with the experimental values. 
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The Skyrme model works surprisingly well in describing non-strange baryons. 

Various properties of nucleons and deltas have been calculated in the SU(2) col- 

lective coordinate quantization of the spherically symmetric soliton [l]. They 

agree with the observed values to within 30 percent accuracy. Moreover, certain 

model independent relations, based only on rotator quantization, hold to within 

3 percent [l]. A n application of analogous ideas to strange baryons involves 

_ SU(3) 11 t co ec ive coordinates [2]. The effects of quark masses are then included 

in perturbation theory. Unfortunately, this procedure works poorly in predicting 

the mass splittings in the octet and decuplet of baryons [3]. In ref. [4] it was 

suggested that the problem is due to the relatively large mass of the strange 

quark. An approximation scheme was developed where the strange quark was 

treated as heavy rather than light, while the interaction Lagrangian was taken 

to be SU(3) xSU(3) y s mmetric. In this scheme the physically relevant configura- 

tions are small deformations of the SU(2) skyrmion into the strange directions. 

After expanding to second order in the strange fields, the problem reduces to the 

motion of kaons in the background of the hedgehog built out of non-linear excita- 
. . i j . tions of the pion fields. Bound states of kaons and skyrmions are identified with 

the strange baryons; their quantum numbers are the same as those computed in 

the quark model. In ref. [4] t . i was stated that the numerical predictions obtained 

within this framework work well to O(Nf) but fail at 0(1/N,) in the large NC 

-- - expansion. In this paper we present an improved diagonalization of the Hamil- 

tonian relevant to these bound states. We find that, after this improvement, the 

numerical predictions work well both to O(Nz) and to 0(1/N,). It is important 

to stress that the physical picture formulated in ref. [4] does not need revision. 

The basic defficiency of the calculations in ref. [4] involved the treatment 

of the Wess-Zumino term. When expanded around an SU(2) background, this 

term, which is in general topological, becomes an ordinary Lagrangian term which 

couples the baryon number current to the strangeness current. In the hedgehog 

background it performs the crucial function of splitting the states of positive 

and negative strangeness. Inclusion of the W-Z term, which is linear in time 
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derivatives, makes diagonalization of the Hamiltonian somewhat unconventional. 

In ref. [4] the W-Z term was treated as a perturbation. Even for a small coefficient 

in front of the W-Z term it was not entirely clear how reliable the perturbative 

approach was. Also, as pointed out in [5,6], a factor error of 5/2 was made in [4] 

in the expansion of the Wess-Zumino term in kaon fluctuations. In this paper we 

show that an exact treatment of the bound state approach is possible to O(Nf). 

To this order, the model is described by a Lagranigan which is quadratic in fields 

and at most quadratic in time derivatives and is, therefore, exactly soluble. The 

eigenvalues of the complete O(Nz) H amiltonian are easy to find numerically. 

Perhaps the most important consequence of this improved treatment is the effect 

it makes on the calculation of the 0(1/N,) corrections to the masses of hyperons. 

We now find the hyperfine splittings not only to have the correct sign, but also 

to be very close to the experimentally observed values. 

Let us review the basic formalism of the bound state approach to strangeness. 

We-start with the Skyrme model Lagrangian [7] 

&Tk = $tr(a,UtWU) + --&tr[c3,?W, d,UUt]2 + trM(U + u+ - 2) (1) 

where U(Z, t) takes values in SU(3). M is the diagonal matrix whose entries are 
-- 

proportional to the u, d and s quark masses. For simplicity, we set m, = md = 0 

but consider the strange quark mass to be large. The relevant configurations of 

unit baryon number are then the small fluctuations into strange directions about 

the pionic soliton solution. To identify the strange fields correctly, we make the 

ansatz [4] 

u = dE,UKd&r (2) 

where U, = exp(i&)cjxi) and 27~ = exp(i&X,Ka) with j running from 1 

to 3 and a running from 4 to 7. X are the generators of SU(3) normalized to 

3 



Tr(&X[) = 2&l. After expanding (1) to second order in K we get 

where the ellipsis represents a lengthy expression [4] depending on 

and 

K is the standard complex isodoublet: 

(3) 

(6) 

. . 
-The Lagrangian (3) has SU(2) xSU(2) s y mmetry, with the axial subgroup realized 

non-linearly [8]. 

Witten has emphasized that the model is not complete without the Wess- 

Zumino term. He discovered that, in the rotator quantization, this term requires - 

the soliton to be a fermion for an odd NC and a boson for an even NC [9]. In 
-- - 

general, it can only be written as an action term 

iN, 
s ~ wz = -240~2 / 

d5~~~~@7tr(uta,uutavuu~aJw~apuu~a7u). (7) 

Expanding this to second order in K converts it into an ordinary Lagrangian 

term 

L wz= ~B'(K~D,K-(D,K)~K), (8) 
A 

_. where Bb is the baryon number current of the SU(2) soliton configuration. Terms 

of this kind describe the interaction of a charged field with a vector potential. 
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In our case, the charge is strangeness, and the role of the vector potential is 

played by the baryon current. The analogy is incomplete because the bound state 

Lagrangian has no term - B,B~KtK. Clearly, the interaction (8) distinguishes 

between positive and negative’ strangeness and therefore plays a crucial role in 

our approach. 

We have reduced the problem to the motion of kaons in the classical back- 

. ground of the SU(2) soliton. The Lagrangian is quadratic in the quantized kaon 

fields. In ref. [4] it was shown that kaons and skyrmions can form bound states. 

Our goal is to calculate their masses in the large N, expansion. In the semiclassi- 

cal approximation solitons rotate slowly, with velocities of order l/N,. Therefore, 

to find the kaon energy levels to O(Nf) t i is sufficient to treat U, as a static back- 

ground hedgehog 

270(f) = exp(iF. ?F(r)), (9) 

where F(r) is the profile function obtained in ref. [l]. Since the background is 

symmetric under combined spatial and isospin rotations 9 = I’+ i, we can write 
. . i j . the kaon eigenmodes as 

K(r’, t) = k(r, t)JhT,. (10) 

After substituting this into Ls; + Lwz we find the following effective Lagrangian - 

for the radial field k(r, t) (It is convenient to transform to dimensionless variables -- - 
with the mass scale set by eF,.): 

L = 47r 
/ 

drr2 (f(r)~tic+;x(r)(ktic-jtk)-h(r)~kt~~-ktk(m~+V~ff(r; T,L)) 

(11) 

where f(r), h(r), and V..ff(r; T,L) are given in terms of F(r) in the eqn. (3.1) 

of ref. [4] and 

X(r) = -gsin2 FF’. (12) 

The term linear in time derivatives originates in the W-Z term. The Lagrangian 

(11) is analogous to the interaction of a relativistic charged field with a back- 
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ground static, radial electric field. We find that the negative strangeness particles 

are attracted to the origin while the positive are repelled. In ref. [4] it was shown 

that, in the absence of the W-Z term, the lowest bound state has quantum num- 

bers T = l/2, L = 1. As we dial the coefficient of the W-Z term up, the s = -1 

state becomes more tightly bound to the soliton, while the s = 1 state gets 

pushed out eventually into the continuum. This is the essential role of the W-Z 

term in our treatment of strangeness. 

- 

The Lagrangian (11) is quadratic in fields and at most quadratic in time 

derivatives. In general, physical systems described by such Lagrangians can be 

treated exactly. The observation crucial for our purposes is that the quantum 

energy levels of the system are given by the classical eigenfrequencies. We demon- 

strate how this works in our specific example. The variational equation resulting 

from (11) is 

; - d2 
f(r)dtzk + fiX(r)$k + Ok = 0, (13) 

where . . i - 
0 = -$$h(r)rZ$ - rng - V,ff(r; T, L) (14 

is a hermitian operator. Let US expand the field k in terms of its eigenmodes: 

-- 
k(r, t) = x (in(r)eiGntbL + k,(r)emiwnta,) 

n>O 
(15) 

where wn and i;ln are assumed to be positive. By substituting (15) into (13) we 

find that the eigenmodes satisfy 

(f(r)wft + 2X(r)wn + O)k, = 0 (16) 

(f(r)&: - 2X(r)& + O)i, = 0. 
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Using the hermiticity of 0 we derive the following orthogonality relations: 

47r 
J 

drr2kikm(f(r)(wn + wm) + 2X(r)) = 6,,, (18) 

47r 
/ 

drr2~~~,(j(r)(& + G,,.,) - 2X(r)) = 6n,, (19) 

47r 
/ 

drr2k;Zk,(f(r)(wn - Lzl,,.,) + 2X(r)) = 0. (20) 

Upon carrying out canonical quantization we find that the momentum conjugate 

to k is 

n(r, t) = j(r)kt + iX(r)kt. (21) 

Canonical commutation relations between the fields and their conjugate momenta 

and eqns. (18)-(20) imply that the oscillators have the usual algebra 

[an, &I = &m, [bn, bi] = &n-n (22’) 

with the rest of the commutators vanishing. In terms of the creation and anni- 

hilation operators the Hamiltonian reduces to 

- H=E( wna;an + Gnbibn). (23) 
n>O 

This proves that the quantum energy levels are given by the classical eigenfre- 

quencies. The strangeness charge is 

S = c(bLb, - aLan). 
n>O 

(24 

It follows that a, and b, annihilate the modes of strangeness -1 and 1 respec- 

kely. The bound state energy in the s = -1 sector can be found by solving for 

the lowest eigenfrequency of eqn. (16). Th is can easily be done numerically. 
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We find that in the lowestpartial wave (2’ = l/2, L = 1) there is exactly one 

bound state with s = -1. We have determined its energy to be 0.23eF,. This is 

the bound state on the basis of which we construct the A, C and C” baryons. We 

find no bound states corresponding to the exotic baryons with s = 1. The only 

place where these exotics may manifest themselves is the continuous part of the 

spectrum [lo]. Th is interesting application of our approach to strangeness has not 

yet been worked out. A notable feature of our approach is the presence of a bound 

state in the lowest negative parity partial wave (s = -1, T = l/2, L = 0)[4]. This 

state probably corresponds to the observed A(1405) which is indeed below the 

KN threshold. To O(Nt) we find the energy for this state to be 0.50 eF,. 

In collective coordinate quantization strange baryons acquire definite spin 

and isospin quantum numbers through a slow rotation of the soliton together 

with the bound meson: 

uo(f) --) A(t)Uo(+J-l(t), K(p’, t) + A(t)K(r’, t). (25) 

In ref; [4] it was shown that a meson in a bound state orbital behaves effectively as 
. . i j . an object of isospin zero and spin equal to the quantum number T of the orbital. 

Therefore, a meson bound in the T = l/2 channel acquires the quantum numbers 

of a strange quark. The SU(2). ro a or can be quantized either integrally or half- t t - 

integrally. An important constraint is that, for a fixed NC, every time we increase 

- the occupation number of the bound state orbital, the quantization rule for the 

rotator must change to insure that the composite system remains fermionic (for 

NC odd) or bosonic (for NC even). Although from the point of view of the SU(2) 

rotator this quantization rule seems arbitrary, it follows from the existence of 

strange directions and the presence of the W-Z term in SU(3). In particular, this 

rule guarantees that the quantum numbers obtained in the bound state approach 

for a heavy strange quark match the quantum numbers obtained in the SU(3) 

collective coordinate approach for a light strange quark [ll]. 

We may now determine the 0(1/N,) corrections to the spectrum. Using the 

quark model language, they are the hyperfine splittings between the masses of 
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A, C and C*. The relevant terms in the Lagrangian (3) depend on the rotator 

velocities AW1A = i&ra which are of order l/N,: 

where 

6L =-2n(~4~ + & 
J 

d3x xa (26) 

xa =if#M,K + XKtM,K - 2iXEi,,r’,KtDiK+ 

PilFDiKtr(AiP,) - GkKt[P,, Ai]DiK + C.C, 
(27) 

Ma = ; (&a&o + Ji7,1-,&), (28) 

Pa = ;(dD;raKJo - JfT,ra&) 
and Ai is defined in (4). Th e resulting Hamiltonian is [4] 

&-(J: - TV. 
/ 

d3x x’+ ;(/ d3x fl”) 

(29) 

(30) 

where J; is the angular momentum of the rotator. We are going to evaluate 

-the mass splittings generated by (30) to first order in perturbation theory. Our 

calculations show that 

J . d3x Xa = ~~~~~~~~~~~ + . . . (31) 

-- - 
where we have explicitly shown the crucial term which determines the bound 

state splittings. arP are the annihilation operators for the meson in the lowest 

orbital (T = l/2, L = l), with the Greek index labeling the two possible values 

of T,, the effective angular momentum. After a rather involved calculation we 

find that 

$ drk*kw $ f r2 cos2 f - 2($-(r2gsinF) - $sin2Fcos2 f 
c=l- s drGk*k(fw + X) (32) 

where w and k(r) are the bound state eigenvalue and eigenfunction. This formula 

differs from the corresponding formula in ref. [4] because we have now treated 

the bound state dynamics exactly to O(N:). 
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The last term in (30) is quartic in creation and annihilation operators. There- 

fore, its bound state matrix element suffers from operator ordering ambiguities. 

However, in some sense this term is the least important because its contribution 

does not depend on the spin and isospin quantum numbers. It provides the same 

shift for all baryon states of strangeness -1. Using the fact that iut?u is the 

effective angular momentum of the bound meson we derive our mass formula for 

baryons with s = -1: 

M = ~~~ + w + $(CJ(J + I) + (I - @(I + I)) + 6 (33) 

where 6 is some common shift of order l/NC which depends on the operator 

ordering prescription. Numerically, we find c = .60. We can determine the 

experimental value for c by noting that 

After taking the ratio of the above equations we find cezp = .62, in excellent - 

agreement with our calculation. - 

It is important to note that the quark model predicts a similar structure for 

the hyperfine splittings based on the Hamiltonian term 

(36) 

where & is the angular momentum of the k-th quark. Hyperon splittings identical 

to eqns. (34) and (35) are obtained in the quark model if ckl = 1 when k and 1 

refer to light quarks and ckl = c when either k or 1 refers to a heavy quark. It is 

instructive to make a comparison of the values of c in the bound state approach 
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to those in the quark model-as we vary the heavy meson mass. In the SU(3) 

limit mK -+ 0 and the bound state becomes a zero mode (w = 0). In this limit 

eqn. (32) predicts c = 1. The quark model makes the same prediction since all 

the quarks are massless and interact with equal strengths. As we dial the mass 

of the heavy quark up, the variation of c can be estimated in the quark model 

by a one gluon exchange calculation [ 121. 0 ne finds that c is a monotonically 

decreasing function of the heavy quark mass which falls off to zero in the infinite 

mass limit. Our calculations with eqn. (32) indicate that, as we increase ?nK, the 

same qualitative behaviour occurs in the bound state approach to heavy flavors. 

In fact, c remains positive for mK as large as the charmed meson mass, which 

is well outside the region of validity for our approximations. To summarize, the 

behavior of hyperfine splittings we obtain is in excellent agreement with the quark 

model predictions for a wide range of the heavy quark masses. 

There is another interesting comparison to be made. We would like to com- 

pare the bound state approach with the rigid rotator approach of Yabu and Ando 

-[13]. -These authors consider rigid rotation of the hedgehog in the presence of a 

kaon mass term. Although this approach ignores soliton deformation as it fluc- 

tuates into strange directions, it can give us some qualitative idea of the mass 

splittings. In the heavy kaon limit Yabu and Ando find a mass formula analogous 

to ours with the splitting coefficient c given by 
- 

CYA = l- 2 + 0(1/w) 

where 
00 

0 = $ / drsin2 F(r2 + 4sin2 F + 4r2(F’)‘) 
0 

and 

(37) 

(38) 

(39) 

are the moments of inertia from SU(3) collective coordinate quantization and w 
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is the lowest eigenfrequency. We can derive a similar result in our approach. The 

crucial step is to show that a small rigid rotation of the hedgehog in a strange 

direction generates a kaon configuration in the lowest partial wave with the radial 

function given by k(r) - sin(g). Substituting this radial function into (32) we 

find that in the rigid rotator approximation 

c=l- 
R 

2@ -I- Nce2/4w’ 

- 

Therefore, to the order that Yabu and Ando retained, their formula agrees with 

(40). However, the extra term in the denominator of (40) arises naturally from 

the Wess-Zumino term and should not be discarded. It is of the same order in 

the l/NC expansion as the rest of the terms in (40) and is numerically significant. 

If it were ignored, c would have -been found negative, in drastic disagreement 

with the quark model and experiment. The above discussion demonstrates quite 

clearly the importance of the W-Z term in our approach. Further details on 

the relationship between the bound state and rigid rotator approaches are in 

preparation [ 141. i j . 

To compare our calculations with the baryon masses, we set e = 5.45, F, = 

129 MeV. These values are chosen to fit the nucleon and delta masses exactly [l]. _ 

In fitting the masses of strange baryons we treat 6 as an adjustable parameter. 

_. _ We find MC1 = 864 MeV and w = 161 MeV. Our w can be identified with 

the difference between the strange quark and the light quark constituent masses, 

calculated to O(Nz). Let us choose 6 = 90 MeV to fit the A mass to the 

observed value of 1115 MeV. Our mass formula then predicts MC = 1193 MeV 

and MC* = 1370 MeV. The observed values are 1193 MeV and 1382 MeV 

respectively. Therefore, the masses of three baryons of strangeness -1 can be 

fitted almost exactly with one adjustable parameter 6. 

In conclusion, we would like to emphasize that the bound state approach 

works very well in describing the masses of strange baryons. This opens possibil- 

ities for further research. For instance, our approach can be used to investigate 
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further properties of strange baryons, such as magnetic moments and strangeness 

distributions. In fact, it has already been applied to calculations of the effects 

of strangeness on the size [15] and shape [16] of baryons. It has also been used 

in a model where the solitons are stabilized by vector mesons 161. As stated in 

refs. [4] and [17], th e b ound state approach appears to be particularly useful for 

studying the formation of kaon condensates in dense nuclear matter. A method 

for treating dense skyrmion matter was proposed in ref. [18]. Some work on kaon 

condensation in the Skyrme model has already been performed [19]. 

- Acknowledgements: I.K. thanks M. Karliner, M. Weinstein, L. Wilets and espe- 

cially L. Susskind for valuable discussions. 
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