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The radiation coherently emitted by a high energy bunched 
‘beam suffering an arbitrarily large disruption in a collision with 

an idealized undisrupted beam is calculated. The near-luminal 
velocity of the beam-such that the emitted radiation moves 
very slowly with respect to the bunch-implies that only a 
small part of the bunch radiates coherently and necessitates 
a careful treatment of the disrupted beam phase space during 
emission. The angular distribution and spectral density are 
presented. It is found that most of the radiation is at wave 
lengths greater than or equal to the bunch length and that the 
total energy lost by the beam due to coherent effects should be 
negligible in high energy - high luminosity linear colliders. 

Energy Loss and Angular Distribution: A sufficiently dense 
bunch may be expected to beamsstrahlenl coherently. A rea- 
sonably exact criterion for and characterization of coherent 
Beamsstrahlung can be obtained by studying the case of a 
strong-beam - weak-beam collision in which a strong beam dis- 

-rupts a weak beam of identical charge distribution but is itself 
(artificially) undisrupted. In the high energy limit the particles 
of the weak beam are then subjected to transverse harmonic 
accelerations which are focusing in both planes. The radiation 
field in the direction n at distance R at time t is2 

dpdrp(r,p;t’) 
(n--v)n~ir-(1-n.v)+ 

(1 - xl+)3 

B=nxE 
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where p(r, p; t ‘) is the bunch’s phase space distribution at the 
_ retarded time t’, v = p/my, and Ci = -ri/fif (i = z, y), rjZ g 

-vrfl. The z-axis is taken as the bunch’s mean direction 
of motion and pi parameterizes the strength of the electro- 
magnetic field due to the strong bunch. Note the inclusion 
in the form of ir, of the leading correction to the paraxial 
approximation-its importance will emerge below. The re- 
tarded time is a function of the phase space variables according 
to t’ = n-r + t - R, and one may envision the integration over 
the latter as moving through the beam with the wave front of 
the accumulating radiation, taking into account the evolution 
of the distribution as the collision progresses. The phase space 
coordinates may be formally regarded as particle dynamical 
variables at time t’ which may then be subjected to a canon- 
ical transformation relating them to their initial values. The 
invariance of the distribution function then allows its replace- 
ment by its value prior to the collision, so that in the special 
case of round bunches with zero emittance 

Ne 
E = R 
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(n - v)n.+ - (1 - n-v)+ 
(1 - n.v)3 (2) - 

where 

in which i = t’ - ti, where ti(a) is the time at which the beam 
begins to be disrupted. For conceptual simplicity we further- 
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more hitherto assume uniform density hard-edged bunches, al- 
though the transition to Gaussian beams is fairly trivial. Hence 
for an initially longitudinally independent cross section 

where h(s) = {,$ zs8 is the step function. Taking the origin of 
time to be the h&ant the heads of the two beams interpene- 
trate, we have t; Z (au, - 2a)/4. It is evident that t’ is a 
more appropriate ‘longitudinal’ variable than a. The relation 

implies that (1 - n.v) di g -(l + n-1;) dt; Z -2dti g dz, 
(in which we use the fact that we expect the angle between the 
radiation and the beam axis to be very small). The latter elim- 
inates all explicit ~0 dependence in (2) and exposes a crucial 
physical point, viz. : twill vary between 0 and t-,,, S @%,, 
but n.v z3 1 - v12/2 FS 1 so that the range in Q,, i.e., the ef- 
fective bunch length over which the beam radiates coherently, 
is very short- 2 O((bo//3)2) of the total bunch length. It is 
also clear that this obtains since, inasmuch as Iv[ --f 1, the 
emitted wave front is nearly co-moving with the bunch and 
hence moves through only a very short portion of it during the 
collision. We define: n = (sin B cos p, sin 0 sin ‘p, cos O), and 
VI = sgn (tani/P) Ivl], the latter period-r function describ- 
ing the betatron oscillations occurring at a 6xed value of ~0. 
The factor in the denominator in (2) then becomes 

(l-n*v) Z f [$ + (0 - V*)2 + 2~V.l(l - CO~(cpo - $0)) 1 (5) 

to leading non-trivial order in B and VI. The radiation field 
originating in an infinitesimal part of the beam will thus be 
strongly peaked (with a width w l/7) at 0 M IVll, cos(p - 
90) = sgn (V,). The numerator vector has two independent 
components (polarizations). The cylindrical symmetry of a 
round homogeneous beam dictates that the polarization lie in 
the &,n plane, and indeed 

(ii x n). [ numerator] LX sin((oo - (0) f(cos(cp0 - cp)) 
which plainly vanishes upon integration over ~0, i.e., radiation 
from particles on one side of the &,n plane cancels that from 
the other. This destructive interference contrasts with the sit- 
uation in which the bunch radiates incoherently-where the 
small-scale inhomogeneities break cy.lindrical symmetry and 
each particle radiates independently, ipso facto proscribing in- _ 
terference. The non-canceling component, in the direction 8, - 
follows from 

IS-[ numerator] = -i;-[ numerator]/ sin e 

co&-,-p)+evL] $lcos$I. (6) 

All the pieces thus assembled, the energy loss per bunch per 
collision can now be calculated: 
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\ 
to leading order in 0, VI, l/7, and ,to all orders in Vl7. For 
application to large linear colliders we are mostly interested, 
as we shall see, in the limit lVll7 + 00, i.e., where the typi- 
cal particle deflection angle > the opening angle with respect 
to the particle’s velocity into which most of the radiation is 
emitted. In this case 

q-14vI [(7-2 + (e+ v,)2)(7-2 + (e- vl)2)]-3/2 

= e(e2 + 7-2/4)-3/2sgn (VJ 6(e - IVll) (8) 

exhibiting an infinitely strong peak in the angular distribution 
from a single particle at its instantaneous deflection angle-lead- 
ing to a sharp cutoff in the total angular distribution, and the 
formula for the total energy loss 

-AE r 16&od 
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Neal P P --- P2 6U,UL )I 2 ema]le e5 11 - (e/em,z)2]2 
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where B,,, E fi lsin moa/pl u~/p, and which is valid for 

lsin~u,/PlollP z+ l/7. It is also instructive to see the 
opposite extreme, i.e., where Vl7 --) 0, in which from (7) 
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=J!?jiC(E$L)2$(*sin2JE$%)2 (lo) 
V&i- for lsin mu,/pl al/P < l/7. 

Spectral Density: The equations above already incorporate the 
fact that the pulse of radiation accompanying a single high 
energy collision has an essentially square form oc h(t - R) x 

q&G - t + R), implying that E(w) c( 2 sin mu,w/w, 
independent of 6 for 0 < 1, and hence that the spectral energy 
density 

-dE s %sin2 @usw 
r fiu,w2 

dw [-AE(in(7))]. 01) 

from the very much shorter and less-obvious scale over which 
the bunch radiates coherently. 

Discussion: The focusing strength of the ‘strong’ beam is 
explicitly3 (taking r, = e2/m,) 

. 1 2; 
-= 
P2 (12) 

assuming that it is identical to the weak beam. It is useful to 
note in particular that then 

where D, the “disruption” parameter: M (5.6xnumber of be- 
tatron oscillations)2, and to recall that therefore 

IV-IA= 1~~1 - O(lsin dG+FQl al/LIP) = o(emaz/d). 
Typical values can be conveniently scaled from ‘nominal’ SLC 
parameters 

al/P = 1.06.10-3, 0 = .91 
which assume 

al = 1.3pm, ob=lmm, N = 5~10'", 7 z 105. 
It is probably easiest to understand (9) by considering its ratio 
with respect to the result obtained assuming incoherence4 

- 

-AE,,,, = F (s)lN1’(l+&sin~). ; 

114) 
For nominal values of the disruption parameter 

For the SLC ln(* * -) g 4.04, and the ratio g .042-and ev- 
idently would most likely get smaller as the parameters are 
pushed in the directions desired for large linear colliders (bar- 
ring the extremely unlikely possibility that the number of par- 
ticles in a bunch could be increased like the 4’h power of the 
energy). (For very large D, (15) should be multiplied by 2, and 
of course there are comparable corrections for r2 2 P2m,/ulh 
due to the suppression of high energy photons in the incoherent 
spectral density.) It thus seems clear that there is no pernicious 
coherent enhancement of the radiation loss rate. For ‘suffi- 
ciently large’ N the physical interpretation of (15) is plain-a 
value < 1 indicates the presence of destructive interference 
such that the actual radiation loss is smaller than its ‘inco- 
herent part’ (note that (7) ’ p m rinciple includes the incoherent 
contribution-plus ‘cross’ terms). The E - field due to a partic- 
ular particle flips sign as the particle crosses the beam axis (cf. 
(6) ), engendering considerable destructive interference (from 
different particles) which increases with D (more axis cross- 
ings). However, the present calculation makes the fundamental 
approximation of treating the bunch as a continuum-an ide- 
alization that certainly breaks down if the effective coherently- 
radiating bunch length, which we have seen to be a very small 
fraction of the total, turns out in reality to contain less than 
one particle. The fact that even for fairly small values of the 
disruption parameter, such that little destructive interference 
can be taking place, the value of the ratio is 6 1, indicates that 
within the parameter range of interest the latter situation in- 
deed is the case and the formulae given here actually overstate 
the amount of coherent radiation. 

Thus 90.3% of the energy is found at wavelengths 1 &&J#, 
well in accordance with most intuition but notably different 
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