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Recent applications of discrete light cone quantization (DLCQ) by Pauli and 

Brodsky ’ to scalar QED in l+l dimensions, by Eller, Pauli and Brodsky (EPB) 2 
. - 

. _ to the Schwinger model (l+l vector QED) and by Harindranath and Vary3 to 

44 theory in l+l dimensions have demonstrated the usefulness of DLCQ for de- 

termining the mass spectrum and wave functions of l+l theories. The success 

of DLCQ for these theories provides the hope of solving 3+1 theories in the near 

future. However, one feature common to these works and which must be under- 

stood before 3+1 theories can be tackled are the l/lc+ and l/(rC+)2 singularities 

that arise from l/2+ and l/(ia + 2. A nice introduction to this problem and ) 

light cone gauge in general is provided by Leibbrandt:’ 
- 

This paper is concerned with the problem of these singularities in the context 

of DLCQ. First, the principal value method of handling l/(rC+)” used by EPB is 

described. Then, a number of deficiencies with this method are considered, and 

finally, a few possible solutions are described. I will try to follow the notation of 

EPB throughout. 

1. The Principal Value Method 

QED in l+l dimensions is considered by EPB. Using light cone coordinates, 

one finds that the only independent field in this theory is ++. The fields A- and 

$- can by determined in terms of ++ if one can find an appropriate definition 

of the operators l/is+ and l/(ia+)2. EPB define these as 

cm 

41(x-) = &9(x-) = dy-6(x- - y-)g(y-) + A (14 

42(x-) = (,,:),SW) = -f 
/ 

dy-lx- - y- Ig(y-) + Bx- + CT. (1.2) 
-00 
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EPB set the x- independent functions A, B, C to be zero. The c(x) function is 

defined to be -1 for x > 0 and +l for x < 0. For the case g(x-) = e-3k+z-, 
: - 

. - they insert the regulator eSKlz--v- I, IC --) 0, and derive 

00 

qqx-) = f 
/ 

dy-E(x- _ y-)e-nlz--y-le-$k+v- 

-00 

00 

i 
= -e --ik+z- 

4 / 
du ~(-~)e-~lule-~k+u 

-00 

1 = -e-;k+z- k+/2 
2 (k+/2)2 + tc2 
1 = -e-~k+z- 2 I 

and 
00 

42(x-) = -f ~- dy-Ix- - y-le--nIz--Y-le-fk+V- 

/ 
- --oo 

00 

= -ie-;k+z- 

8 / 
du lule- nlule-;k+u 

-00 

(1.3) 

(1.4 
-e++z- (k+/2>” - n2 1 = 
4 ((k+/2)” + n2)2 
1 = -e-$k+z- 

2 (k+ :2ic)2 + (k+ 12in)2 I ’ 

One recognizes the last lines of (1.3) and (1.4) as the principal value prescriptions 

for l/k+ and l/(ks)2. 

This method has a few problems. First of all, one notes that the k+ t 0 

limit of the PV regulated l/(k+)“, 

’ 1 
(k+ + ;K), + (k+ - in)n 1 ’ (l-5) 

is zero for odd n and infinite for even n. This is somewhat suspicious. Let us 

make this argument rigorous. 



One knows that the sum of the three light cone perturbation theory (LCPTh) 

graphs shown in Figure 1 add to give the usual lowest order Feynman rule am- 
.- - 

. - plitude for e-e- scattering, 

(1.6) 

where qFR = Ii - If = kf - ki. One notes that as q+ -+ 0, this answer remains 

finite for ql # 0. 

On the other hand, the first light cone graph is 

Tjf) = e2~(lf)~~~(Zi)fl(kf)rYu(ki)~ 
K 

(1.7) 

and the sum of the second and third is 

_ 
T(2+3) = e221(Zf)7~u(Zi)fi(kf)7vu(ki) fi 

1 

where q’L = (q+, q-, ~1) = (0,2,01), and q: and (q+)i are defined to be the 

above 41 and 42 with the factors of e-vq 2 ’ + - removed. 

Since the sum of the three graphs (1.6) is finite as q+ --) 0 (ql # 0), it must 

be that either Tji) and Tjf+3) are both finite or are both infinite in this limit. 

From this it then follows that q$ and (q+)$ and therefore q5i and 42, also must 

satisfy this condition. This is inconsistent with the above definition of $i and 42 

for which 41 = 0 and 42 = -l/n2 at q+ = 0. 

Finally, one can in general set A, B, C in the definition of l/W and l/(ia+)2 

to be any functions that are independent of x-. The above method does not give 

a clear prescription on how to handle this. It will turn out, as one might expect, 

that the values of A, B, C are determined by the boundary conditions one places 

on $1 and 42. 
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2. Green Functions and Boundary Conditions 

Let -us now attempt a more thorough formulation of the problem. First, 
. 

consider the case n = 1. The solution to 

ic3+q51(x-) = g(x-), -C < X- < C 

is given by 

41(x-) = j dy-G(x-, y%(f) 
-c 

where G(x-, y-) satisfies 

P-1) 

(2.2) 

id+G(x-,y-) = 6(x- - y-). (2.3) 

In general, G(x-, y-) contains a number of terms that are solutions to the homo- 

geneous differential equation. In this case, the one homogeneous term is A(y-), 

an arbitrary x- independent function. This extra term is fixed by imposing 

boundary conditions on the problem. 

For the problem at hand, the Green function is 

G(x-, y-) = $(x- - y-) + A(y-). 

Let us impose the boundary condition 

h(c) = -M-c) 

(24 

(2.5) 

on C&(X-). This can be met if one imposes an analagous condition on G(x-, y-), 

G(c, y-) = -G(-c, y-). P-6) 

5 



To satisfy this problem, one easily derives 

. 
: - A(y-) = 0 G(x-, y-) = ;E.(x- - Y-) 

C 

c#q(x-) = f 
/ 

dy-+- - y-)g(y-). 
(2.7) 

-c 

One recognizes this as the EPB prescription (1.1) . If one had instead asked for 

the boundary condition 

41(c) = 0 

(2.8) 

G(c,Y-) = 0, 

one finds 

A(y-) = f G(x-, y-) = +(y- - x-) 

(2-g) 

Now consider a boundary value problem for n = 2. The problem 

42(x-) = ’ WG(x-,y-)g(y-), 
/ 

-c < x- < c 
(2.10) 

-c 
(ia+)“c(x-, y-) = 6(x- - y-) 

has the general solution 

Gw,Y-) = -:1x- -y-l + B(y-) + qy-)x-. (2.11) 

Imposing the boundary conditions 

42(c) = -42(-c), S+&(c) = -ia+& 
(2.12) 

G(c, Y-) = -G(-c, Y-), it3+G(c, y-) = -id+G(-c, y-) 
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fixes B(y-) and C(y-) and gives a final answer of 

i 
- G(x-, y-) = +- - y-l + f .- 

. 
C 

= -A 
J 

dz-E(x- - Z-)E(z- -Y-l 
-c 

gS2(x-) = -$ i dy- j dz-e(x- - y-)c(y- - z-)g(z-). 

(2.13) 

-c -c 

One notes that this Green function differs from the EPB prescription (1.2) by the 

term g. It turns out that the boundary conditions satisfied by the EPB Green 

function are the somewhat peculiar set 

hk) - ;a+d2(c) = -42(-c) - ia+d2(-c), 
i3+q52(c) = -a+42(-e). (2.14) 

A collection of Green functions and their corresponding boundary conditions for 

n = 1,2 is given in the Appendix.’ 

3. Regulated Green Functions for e-ik+z- 

Let us now focus on the specific choice g(x-) = e-3k+z-. qS1 = (l/iW) 

e-$k+z- and 42 = (l/id+)2e-$ + k %- both contain singularities at k+ = 0 that 

need to be regulated. We do this by following a method similar to that used 

by EPB. Define regulated Green functions for l/&3+ and l/(ia+)2 by including 

damping factors e+lz--y-l , K + 0. For example, the regulated Green function 

for the problem 

ia+& = e--3k+z-, -C < X- < c, 41(C) = -+l(-c) (3.1) 
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is 

i G(x-, y-) = fe(x- _ y-)e-IcIz--Y-I . (3.2) 
. 

In the situation c + 00, it is understood that the limit rc --+ 0 is taken after 

the limit c --+ 00. The answer for q5i for arbitrary c using this regulated Green 

function is 

41(~-) = _ t( Ic -ik+ [e-fk+z- - emn(c+z-)eik+c] 

1 

(3 3) 
. 

+ 
tc+;k+ 

-e--$k+z- + e --n(c--z-)e-;k+c . 

This result satisfies 41(c) = -$1(-c) after setting n = 0. Now consider c + 00. 

In the region lx-1 < c, the factors e--n(c*z-) go to zero, reproducing the EPB 

answer 

- 41(x-) = ae-tk+z- k+/2 
(k+/2)2 + ,2 ’ lx-I < ‘* 

For Ix-1 = c, the answer is 

dl fc) = -i!4 e-;k+c, x- = c 
n- fk+ 

41(-c) = .f’tk+e+*+‘, x- = -c. 
2 

P-5) 

Let us look at one example for n = 2, 

(ii3+)2t$2(x-) = e-iik+z-, -c < X- < c 

42(c) = -42(-c), ia+& = -icY+&(-c). 
(3.6) 

The regulated Green function for this problem is given by 

G(x-,z-) = -’ 16 
J 

,jy-,$x- _ y-)c(y- - z-)e-~IZ--y-le--nly--z-I . (3.7) 

-c 
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The answer for &(x-) using this Green function after taking c + oo is 

. 
k+/2 : 2 

(k+/2)2 + /c2 I ’ 
lx-1 < c. (34 

The results (3.4) and (3.8) for 41 and 952 are zero for k+ = 0. This is consistent 

with the requirement described at the end of Chapter 1 that 41 and 42 be both 

finite or both infinite as k+ + 0, and differs from the EPB answer. The results 

for’g(x-) = e-ikfz- for various regulated Green functions in the c + 00 limit 

are given in the Appendix. 

4. Concluding Remarks 

The principal value method of calculating $1 = (l/ia+)e-ik’z- and 42 = 

(l/ia+)2e-$k+z- used by EPB is found to be deficient. As described in Chapter 

1, 41 and 42 must be both finite or both infinite as k+ + 0 so that the Feynman 

amplitude for e-e- scattering remain finite. 

A method of calculating 41 and 42 using regulated Green functions has been 

demonstrated. In this method, the arbitrary functions A, B, C described by EPB 

are fixed by boundary conditions and are, in general, not zero. Using the set of 

conditions 

41(c) = -$1(-c) 

(4.1) 
42(c) = -42(-c), id+&(c) = -ia+& 

provides answers for (l/ia+)e-ik’z- and (l/id+)2e-~k+z- that are consistent 

with the condition that they both be finite or infinite as k+ + 0. In fact, with this 

definition, they are both zero. This method can easily be extended to arbirary 
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n, 

: - (ia+)nq5n(x-) = g(x-) 

. (ia+)mqL(c) = - (ia+)“&( m = O,l,. . . ,n - 1 

&(x-) = (;)"jdy; jdy;..+y,c(x- - y,)...e(y;-, -y,)g(yJ. 
-c -c -c 

P-2) 

Using this definition with g(x-) = e-ik+z- and c -+ 00, 

-ik+=- _ 
472(X-) = (ia$ne 2 

n 

- 
(k+)f: d/c2 1 e-$+z- 

’ P-3) 

Although a physical motivation for the boundary conditions (4.1) has not been 

provided (ideally, the correct boundary conditions should be determined by some 

physical argument), it has been shown that it is possible to construct Green 

functions that obey the finiteness condition described above. 

- 

Using the EPB prescription (1.3) and (1.4) to define l/S+ and (l/S+)” in 

l+l dimensional QED forces one to only consider charge-zero Fock states because 

the light-cone energy has a singularity oc &(k+ = O)Q(Q + 2A) oc -$Q(Q + 26) 

(see eq. (2.18) and the discussion following eq. (3.3) in Ref. 2). With the new 

definition (4.3) for which 41 and $2 are both zero for k+ = 0, this singularity 

is removed and the light-cone energy for l+l QED is finite for all values of 

the charge. This opens the possibility of considering charged states using the 

formalism of discrete light cone quantization. 

Furthermore, if one applies DLCQ to 3+1 QED, one finds that the corre- 

_- sponding term proportional to &(k+ = 0) d oes not vanish for Q = 0. However, 

this term is identically zero if one uses the definition (4.3) for 42, and thus re- 

.-- 

moves this singularity from the 3+1 dimensional QED light-cone energy. 

10 



One final remark concerning the difference between the EPB definition of ~$2 

and the definition (4.2): they differ by a constant term g (see eq. (2.13)). This 

. _ added term only adds a constant term to the field A- and as a result, has no 

effect on on the physical field FpV (see eq. (2.2) of Ref. 2). 
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APPENDIX 

The following are a collection of i) Green functions, ii) their corresponding 

boundary conditions, and iii) the result for g(x-) = e-3k+z- using a regulated 

version of i) with c = 00. 

1. n=l 

(4 

04 

(4 

G(x-, y-) = ;,(x- - y-) 

41(c) = -41(-c) 

41(x-) = (k+:++4n2 e-ik+z- 

G(x-, y-) = +(y- - x-) 

h(c) = 0 

41(x-) = &e-ik+2- 

G(x-, y-) = F(x-, y-) 

k- > 0 : 4(-c) = 0, k- < 0 : 4(c) = 0 

41(x-) = l k++2inegn(k-) 
e-;k+z- 

2. n=2 
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(4 

. 

(b) 

(4 

(4 

(4 

G(x-,y-) = -:1x- - y-l + ; 

= -&j-:, dz-r(x- - z-)E(z- - y-) 

L(c) = -4(-c), ia+& = -id+qb2(‘-c) 

42(X-) = [ (k+;;i+4K2]2 e-ik+z- 

G(x-,y-) = -+- -y-l + 5 - &x-y- 

42(c) = 0, q&(-c) = 0 

42(X-) = [ (k+)k;t+4r;2] 2 e-ik+z- 

G(x-,y-) = -$x- -y-l + fcx- -y-) 

= -+J:cdz-l(y- - Z-)e(z- - x-) 

42(c) = 0, id+&(c) = 0 

952(X-) = [A] 2 e-ik+z- 

G(x-, y-) = -iIx- - y-l 

42(c) - 33+42(c) = -42(-c) - ia+&( a+qs2(c) = -a+42(-4. 

+2(x-) = (k+j2-4n2 e-;k+z- 
k+ 2+4n2 2 

G(x-, y-) = O(k-) [-fix- - y-l - +(x- - y-)] 

+ 6(-k-) [-i/x- - y-l + +(x- - y-)] 

= J-:, dz-F(x- - z-)F(z- - y-) 

k- > 0 : 42(-c) = 0, itl+#2(-c) = 0 

k- < 0 : 42(c) = 0, id+&(c) = 0 

d2(x-) = [ 1 
k+-k2inagn(k-) 

1’ e-;k+z- 

The last Green function in the two sections above are from a paper by S. 

Mandelstamf For these two cases, the function F(x-, y-) is given by. 

F(x-, y-) = ; [B(k-)8(x- - y-) - 8(-k-)O(y- - x-)] . 
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FIGURE CAPTIONS 
- 

1) Graphs for e-e- scattering. The graph on the left is the usual Feynman 
_ 

rule graph and the three graphs on the right arise from LCPTh. 
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Fig. 1 


