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One of the most interesting topics of recent research in string theory has been 

the study of the relationship between renormalization group (RG) and string 

dynamics. A discovery which triggered interest in this subject was made in the 

course of the study of string propagation in the classical backgrounds correspond- 

ing to condensates of the massless string modes [ 11. To insure consistent string 

propagation in such backgrounds one must insist on the conformal invariance of 

the underlying two-dimensional theory, i.e. the p-functions corresponding to all 

the couplings of the two-dimensional non-linear sigma model must vanish. In 

all the examples considered to date it was found that the equations resulting 

from setting all the ,&functions to zero are equivalent to variational equations 

for a spacetime functional, the effective action [1,2]. More precisely, if ,Bi is the 

p-function corresponding to the coupling gi, then 

to the order in the derivative expansion that could be reached by explicit cal- 

culations. Eqn. (1) indicates that the RG flow is actually a gradient flow [3]. 

The string effective action I which generates the flow can be used to obtain all 

on-shell scattering amplitudes for the massless string modes. 

Recently the study of renormalization group trajectories has been extended 

to include massive modes [4,5], and, in some papers, all string modes 161. It has 

been conjectured that in all these cases the renormalization group flow of the two- 

dimensional field theory describing the string propagation in background fields 

is a gradient flow. The functional of all couplings I which generates the RG flow 

could perhaps be used as the tree level action in some formulation of the string 

field theory [4,6]. We should also mention the weaker form of the conjecture 

on the relationship between the RG and strings. It states that the solutions 

of the RG fixed point equations are identical to the solutions of the variational 

equations for some spacetime effective action. This appears to be possible even 

if eqn. (1) is not satisfied. Therefore this conjecture is weaker than the one that 

postulates the existence of the gradient flow. 

2 



In- this paper we present a calculation of the- P-function for the tachyon back- 

ground in the bosonic open string theory. The methods we use are somewhat 

different from the ones used in previous literature. In ref. [4,5] the ,&functions 

were calculated as expansions in powers of the tachyon couplings which satisfy 

the linearized on-shell condition. The only backgrounds accessible to such cal- 

culations are the ones that can be built by assembling a collection of physical 

tachyons. Therefore it appears that in ref. [4,5] the P-function was only com- 

puted at the fixed point, i.e. where it must vanish. The calculation was used to 

construct solutions to the string equations of motion. The goal of this paper is 

to construct expressions for P-functions which are valid away from the RG fixed 

point. Such a calculation is needed to demonstrate that the RG flow exists. In 

principle, the expressions we construct are explicit enough to check if the RG 

flow is a gradient flow. In practice, however, it appears very hard to construct 

Z’ii and I explicitly and thereby prove the existence of the gradient flow. Instead, 

we can prove rather easily that the weaker conjecture is true. We show that the 

solutions of the RG fixed point equations can be used to generate the open string 

scattering amplitudes. 

- 

.- 

As mentioned above, all the original studies of the string P-functions have 

been performed for massless backgrounds and in the explicitly covariant back- 

ground field method. Following ref. [4] we find it simplest to include the couplings 

which for on-shell momenta correspond to open string tachyons. We will then 

compute the ,&functions in powers of the background. Our procedure will be the 

following. First we assume the most general RG equations for some set of cou- 

plings and integrate these equations to see what kind of flow they -imply. After 

this is done, we restrict our attention to the particular example of open strings 

in the tachyon background. By studying the RG flow in this model we prove the 

existence of non-singular /?-functions away from the perturbative critical point 

and in fact construct explicit expressions for these p-functions. 

Let us start by writing down the most general RG equations for a set of 
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couplings gi: 
. 

P” = g = Xigi + ai.kgjgk + 7iklgjgkgl + . . . (2) 
Xi are the anomalous dimensions, and there is no summation in the first term on 

the RHS (we assume that the anomalous dimension matrix has been diagonal- 

ized). If we put the infrared scale at t = 0, let us solve for gi(t) in terms of gi(0). 

To the lowest order, 

gi(t) = exp(Xit)g’(O) (3) 

To study the next order, we put 

- gi(t) = exp(&t)gi(o) + aik (t)gj(o)gk (0) (4 

Substituting (4) into (2), we find 

- i ajk = ck!ik exp(&t) exp(Xjt) + x;aik (5) 

subject to the initial condition aik(0) = 0. The solution is 

aik(t) = (e(Xi+Xk)t - exit) $k 

xj $ Xk - xi 

Let us do one more order explicitly. 

gi(t) = eXitgi(0) + (e(Xi+Xh)t - eXit) x a;k 

j 

+ Xk _ x 
i 

d(0)gk(O) +~~,,(t)gj(0)gk(o)gl(O) 

(7) 

Substituting this into (2) we find the solution 

- 

b)kl(t)gi(o)gk(o)gl(o) = exit( x .yA 
;m 2 

*_ x 
i 

- ‘$kl) 
1 

3 m xj + Ak + xl - xi 

+( 
2a;.,cr;Zi. 

+ eyikl)e(Xj+Xa+XIP 1 

Xk + xl - Am 3 xj + Ak + xl - xi 

24,a;ZI 

- (Xj+Xmm&)(Xk+X1-Xm) 
e(Xj+Xm)t gi(0)gk (O)g’(O) 

(8) 

we have kept gj(0)gk(O)gl(O) t o remind that the lower indices are explicitly sym- 
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i 
metrized-in all the equations. However, quite .obviously, there is no symmetry 

. between the upper index and the lower indices. This is an inherent property of 

the /?-functions we derive. We are missing a definition of how to raise and lower 

indices. If such operations are defined then the gradient flow exists. 

The above calculations demonstrate that the RG equations (2) imply a defi- 

nite relationship between the renormalized couplings gi(t) and the bare couplings 

~~(0). The presence of the ‘energy denominators’ in the above equations makes 

their appearance similar to quantum mechanical amplitudes calculated in per- 

turbation theory. We will show in the subsequent discussion that the quantum 

mechanical system implied by the RG equations is nothing but the first quantized 

string theory. 
- 

Let us now restrict ourselves to the specific example of open strings propa- 

gating in the tachyon background [4]: 

+CO 
s=L 

47rrcr’ J dxdy r]abdaxpdbXr + 
J J 

$ d26k T(k) exp(ik . X) (9) 
ys-0 -00 

26-momenta kp serve as the indices labeling the couplings T(k). We need to 

determine the relationship between the renormalized and bare couplings of the 

two-dimensional field theory. For that purpose we introduce the explicit cut-off 

a into the 2-d field theory and calculate the two-dimensional effective action [7,4] 

using the background field method. Let us expand Xp around some classical 

background X:(x, y) which satisfies the equations of motion and varies slowly 

compared to the cut-off scale: X p = Xr + Yp. The effective action is 

&jf(XO) = -logs, 
.- 

W(Xo) =exp(-Sc(Xo)) /[DY] exp(-& 1 dxdy vabdaYp8bYp- 

Y>O 

Jr0 

-1 s 
$ d26k T(k) exp(ik * X0) exp(ik . Y)) 

-00 

(10) 



i 
In calculating W(Xo) all the contractions are computed in terms of the propagator 

. on the boundary which has a built-in cut-off: 

(Y(xl)Y(x2)) = -2log(lxl - x21 + a) (11) 

where we have set o’ = 1. This appears to be a particularly convenient way of 

introducing cut-off into our 2-d field theory. 

W(Xc) can be can be conveniently calculated by expanding the exponential 

in powers of T(k). F or example, the first non-trivial term is 

- 
- lw$ / dk T(k) exp(ik.Xo) (exp(ik . Y)) = - imdz J dk aka-‘T(k) exp(ik.XO) 

-00 -00 
(12) 

Therefore, to this order 

W(Xo) - exp(-So(Xo))(l - / dx / dk T(k) exp(ik . X0)) 

It follows that 

(13) 

Sejf(XO> = So(Xo) + / s dx dk 5?(k) exp(ik . X0) + . . . (14 

The ellipsis in the above equation stands for non-local terms in the effective 

action, i.e. the terms that cannot be written as a single integral over the x 

axis. In the expansion of the logarithm such terms arise naturally as the higher 

powers of the local terms. To find the relation between the renormalized and 

bare couplings we need to focus on the local terms only. We will disregard the 

existence of non-local terms which are present in any calculation of the effective 

action. Eqn. (12) states that f(k) is the renormalized coupling given in terms 

of the bare coupling by 

5!‘(k) = ak2-‘T(k) (15) 

to the lowest order in perturbation theory. If we identify l/a with exp(t), then 

the cut-off is removed in the limit t + 00. Comparing (15) with (3), we conclude 

that 1 - k2 is the anomalous dimension. 
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Our further calculations essentially repeat the above. The second order term 
. in the expansion of W(Xo) is 

T? / $+6kl T(kl)/ 26 d Jc2 T(h) exp(ih - X0(x1) + ik2 . x0(x2)) 
-00 -00 

(exp(ikl - Y(a)) exp(ih - Y(x2))) 
(16) 

If Xo varies slowly, we can expand 

X0(x2) = X0(x1) + (x2 - x1)X&) + * * * 07) 

If we are interested in renormalization of couplings of the form exp(ik . X0(x)), 

we can disregard the terms involving derivatives acting on Xc. Therefore, for our 

purposes we can replace exp(ikr .Xc(xr) +ika-X0(x2)) by exp(i(kr + k2) -Xo(xl)). 

This makes evaluation of (16) easy. The necessary integral is 

21 

akT+k,a-2 

s 
dx2 (~1 - ~2 + a)zkl’kz = -a(kl+k2)2-l 

1 

2h - k2 + I (18) 
-00 

We observe that the cut-off a scales out of all the integrals. This is a con- 

venient feature of all our calculations. We also note that the integral converges 

only if 2kl . k2 + 1 < 0. Repeating all the arguments needed to derive (15), we 

find the modified relation between the bare and renormalized couplings: 

f(k) = ak2-1 (T(k) + / d26k1 / d26k2 if,‘f”~~(;$-26(k1 + k2 - k)) (19) 

In comparing this with (6) th e reader may wonder about what happened to the 

extra term which should depend on a as a-x1-x2 = ak:+kz-2. The answer is the 

following. Since the only physically relevant quantity is the ratio of the infrared 

and the ultraviolet cut-offs, removing the infrared cut-off is equivalent to sending 
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t + 00. The integral (18) converges (i.e., the infrared cut-off can be removed) 

only if 2kl . k2 + 1 < 0, which implies X1 + X2 < X. This means that, as t + 00, 

the first term in (6) is negligible compared to the second term. We define the p- 

functions by analytic continuation from the region of phase space where only the 

term - exp(Xit) in the expression for the renormalized couplings as a function 

of the bare couplings is important. Although this choice does not allow for a 

comparison of the subdivergences, it is particularly convenient for calculations 

with our cut-off propagator. Comparing with (6), we observe that 

2kl . k2 + 1 = X1 + X2 - x (20) 
- 

The correct ‘energy denominator’ emerges from our explicit off shell calculation! 

We identify the off shell p-function: 

&ilk2 = -h2% + k2 - k) (21) 

It is clear that, in general, the off shell continuation of the beta functions depends 

on the particular prescription for cutting off the two-dimensional field theory. Our 

prescription makes (Yilk2 look particularly simple. As we proceed to show, the 

next order contribution is not as simple but can nevertheless be calculated in 

closed form. The next term in the expansion of W(Xo) is 

q+l/dx2~dx3/ 
& dkz dks T(h)T(b)T(ks) exp(ikr . Xc(xr)+ 

ikz’Xo(xz)J ik3 rio(x3)) (exp(ikl - Y (xl)) exp(ik2 . Y(x2)) exp(ik3 . Y (x3))) 

(22) 

The requisite integral reduces to 

0000 

-ak2-1 

JJ 
dxdy(x + l)A(y + Qc(x + y + I)~ (23) 

0 0 

where we have set 2kl . k2 = A, 2kl . k3 = B, 2k2. k3 = C. (23) can be evaluated 
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to yield - 

-ak2-1 

(2+A+B+C)(l+B+C) 
3F2(l,-1-B-C,-C;-I-A-B-C,-B-C;l) 

eak2-l 

( 
1 1 

=2+A+B+C l+B+C 
+ 

l+B+A 
+... > 

(24 
where the ellipsis stands for the terms which have poles at B + C = 0, B + A = 0, 

etc. The above expression is understood to be completely symmetrized in the 

indices 1, 2, and 3 (or equivalently in A, B, and C). In comparing it with (8), let 

us observe the following. Once again, we have chosen the region of phase space 

where only the term - exp(Xit) is important. Comparing the overall energy 

denominator, we find agreement: 

2+A+B+C=Xj+Xk+Xl--i (25) 

We are now ready to read off the next order term in the expansion of the p- 

function: 

J dkl dka dks T(kl)T(k2)T(k3)y;lk2ks = 
J 

dkl dk2 dks T(kl)T(ka)T(ks) 

6(kl+ka+ks-k) 
l+B+C 

(2 - 3F2(l, -1 - B - C, -C; -1 - A - B - C, -B - C; 1)) 

It is quite easy to show that the pole term & cancels in the above equation. 

The resulting expression for 7 is free of singularities in some region surrounding 

the locus of points specified by the equation ki = kz = ki = k2 = 1. We have 

succeeded in defining the P-function for tachyon backgrounds which do not satisfy 

the linearized on shell condition. However, as we can easily see by expanding the 

hypergeometric function 3F2 in (24), 7 has a sequence of poles at finite distances 

from the tachyon mass shell. This is due to the fact that the set of couplings we 

have taken into account is not complete. If we get far enough from the tachyon 

mass shell, we run into the poles due to all the other string states which have 

not been subtracted by our procedure. 

- 

-. . 
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i 
As we mentioned before, $kl is not symmetric between the upper and lower 

indices. If one succeeds in finding Gij such that pi has fully symmetric coefficients 

in the expansion in powers of the couplings (2), then a perturbative construction 

of the flow potential I is obvious. On the other hand, explicit construction of 

this metric in the space of coupling constants appears to be quite a complicated 

task. Therefore it is hard to prove that the RG flow is a gradient flow. Instead, 

we set out to prove the weaker version of equivalence between the RG and string 

dynamics. We will show now that solving the pi = 0 equation perturbatively 

generates the correct scattering amplitudes of string theory. 

P” = W + afkgigk + 7jklgigkgl + . . . = o (26) T 

To the lowest order, the equation is Xigi = 0. Therefore, the solution gs satisfies 

the linearized on-shell condition. After writing gi = g6 + gi and substituting into 

726) , we find 

(27) 

The diagram which summarizes the above equation is shown in fig. 1 . The 

presence of the on-shell couplings go in (27) sets two of the three legs of the cx 

on shell explicitly. To pick out the propagator pole corresponding to the upper 

index, l/xi, we set the leg i on shell too. The residue of the pole is the scattering 

amplitude for three on shell tachyons. Recalling eqn. (21) we conclude that this 

amplitude is 1 with our normalization. The calculation to the next order provides 

a non-trivial check of our procedure. We find 

where 

. . 
$k&&%l = -D;kl + x 

( . 

(28) 

The result is shown schematically in fig. 2 . The coefficient Dikl has been com- 

10 



puted-.above in terms of the hypergeometric function: 

Dilkzka = 
6(h + h + k3 - k) 

l+B+C 
3F2(1,-l-B-C,-C;-l-A-B-C,-B-C~1) 

(30) 
Therefore, the four-tachyon scattering amplitude is given by 

2afjmaE) 
Dfjkl) + A, - 

2afjmaE) 

Am + Xj - Xi (31) 

- 

with all the indices put on shell. Because Xi = Xi = 0 the last two terms cancel. 

This is exactly what had to happen for consistency of our calculations. In order 

to obtain the ,&function from the ‘off-shell amplitude’ Diikll, we subtracted the 

poles. On the other hand, to get back to the correct scattering amplitude, we 

need to add the one-particle reducible graphs back in. Adding and subtracting 

the poles leaves us with Dfjkll with all the indices on shell. Making use of the on 

shell condition for each external leg we can reduce (30) to 

l + ; + $-I- B - c, -C; -B - C; 1) = -B(l - 2k3. k, 1 + 2k2 . k3) (32) 

_- 

After symmetrizing this in 1, 2, and 3, we indeed recover the amplitude for scat- 

tering of four on shell tachyons with momenta ICI, k2, k3, and -k. This proves 

that, to the order we have considered explicitly, the solutions of the RG fixed 

point equations generate the scattering amplitudes of the open string theory. 

Extension of our calculations to the higher orders of perturbation theory does 

not pose any conceptual problems. The coefficients in the expansion of the p- 

functions in powers of renormalized couplings are free of singularities in some 

region surrounding the fixed point. At the fixed point they become 1PI ampli- 

tudes for on shell tachyons. In order to recover the full scattering amplitudes, 

we need to add the one-particle reducible graphs in which tachyons are being 

exchanged. Solving the RG fixed point equations effectively implements this 

procedure. 
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i Let us conclude by discussing some of the problems to which the methods of 

this paper could be applied. Extension of our calculations to the closed string 

tachyon backgrounds [5] should proceed in an analogous fashion. Although we 

do not anticipate having closed form expressions for the off shell p-functions, 

it should be straightforward to prove that they have no singularities in a finite 

region surrounding the fixed point. 

. Our method can also be applied to the p-functions for the massless back- 

grounds. An interesting question to consider there is how the choice of the world 

sheet regulator affects the gauge in which the resulting spacetime equations turn 

out to be. Finally, we can attempt a calculation of the loop-corrected p-functions 

[8] along the lines of this paper. For example, adding the partition functions for 

the spherical and toroidal world sheets produces a modified relation between the 

renormalized and bare couplings. Matching it with the solutions of the loop- 

corrected RG equations may provide us with an unambiguous way to determine 

the quantum corrections to the string p-functions. 

- 

After this paper was written we received a preprint by Sathiapalan [9] which 

addresses off shell p-functions in a somewhat different context. 
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i FIGURE CAPTI-ONS 
. 

1. The three-tachyon amplitude. 

2. The four-tachyon amplitude is the sum of a contact graph and a tachyon 

exchange graph. 

_- 
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