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A BSTRA CT 
We present a discussion of our microstatistical formalism for mul- 
titime quantum measurements. We show that this formalism is 
capable of dealing with time in quantum mechanics in a rigorous 
way, and enables one to precisely state and derive time-energy 
uncertainty relations. Another application to the problem of the 
quantum limit of accuracy of position measurements in the context 
of gravitational wave detection is briefly discussed. 

1 INTRODUCTION 
The general problem of treating incomplete information occurs at 

the fundamental level of quantum measurements in an unavoidable manner. The 
measurement of the state of a microscopic system in general requires a determi- 
nation of the N2 - 1 elements of its density matrix, N being the dimensionality 
of the Hilbert space of the states of the system. Now in general N is infinite, im- 
plying that an exhaustive measurement is in principle impossible. Stated simply, 
measurements performed on the most irreducible systems in nature are neces- 
sarily incomplete; see our previous contribution to these proceedings for further 
discussion and for quantitative examples. 

- The maximum entropy principle (MEP) p rovides a natural solution to the above 
problem. Indeed, given a properly formulated measure of entropy, the solution 
is formally identical to that of the standard problem, well known in statistical 
mechanics (Jaynes, 1957), f o maximizing entropy subject to a set of constraints. 
Precisely such an entropy for quantum measurements was proposed by Deutsch 
(1983) and developed by one of us (Partovi, 1983). Proposing a mazimum 1~n- 
certainty principle (MUP) as the quantum version of MEP, we developed the 
statistical mechanics of microscopic systems (Blankenbecler and Partovi, 1985, 
and these proceedings). It will be convenient for the following development to 
summarize this formalism here. 

The state of a quantum system is in general specified by a density matrix, p^, 
which is a self-adjoint operator whose eigenvalues are a discrete set of probabili- 
ties; i.e., they lie between zero and one and add up to unity. A measurement of 
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the state of the system in general entails the measurement of a number of ob- 
servables of that system (e.g., energy, position, spin), say iV, by producing a 
large number of copies of the system under identical conditions, and subjecting a 
sufficiently large fraction of these to interaction with the measuring devices D”. 
In general each D” breaks up the range of possible values of A” (i.e., the spec- 
trum of A”) into a number of bins, CY~, and measures the frequencies P y with 
which the values of the observable A” are found to lie in the bin c$‘. For each 
bin ct$ one can introduce a projection operator ??y, so that in symbols one has 

We are now in a position to state the generic microstatistical problem and its 
solution: Given that measurements have yielded a set of P ;” and that no other 
information is known about the system, how is p^ to be determined? The an- 
swer is: maximize the ensemble entropy --tr pen p^ subject to the constraints ex- 
pressed in (1 .l). The solution is 

p=Z-ler;p - [ 1 lE xp?y ) v,i (1.2) 

*where 

Notice the similarity to the analogous expressions of equilibrium statistical me- 
chanics, as well as the very important difference that no constraint on the energy 
of the system such as would appear in, e.g., the canonical ensemble occurs here. 
Notice also the fact that in all of the above we have assumed the various mea- 

- surements to be simultaneous in the sense that each copy of the quantum system 
is submitted to the measuring device at precisely the same relative time subse- 
quent to its preparation 

In summary, then, Eq. (1.2) and (1.3) specify the density matrix of a quantum 
system subsequent to a single-time measurement according to the maximum en- 
tropy/uncertainty principle. Next, we shall tern to a discussion of the meaning 
of time and subsequently to the treatment of multitime measurements. 

2 TIME 
Time has always played a rather elusive role in quantum mechan- 

ics. The reason is simply that time is a parameter, and not a dynamical variable, 
for any system that obeys Hamiltonian dynamics. In quantum mechanics, for ex- 
ample, the change in the mean value of any dynamical observable A^ in the state 
p^ of a system with Hamiltonian fi is proportional to i tr p^[g, 21, for sufficiently 
small changes dA, with the constant of proportionality independent of A^. Hence, 
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for a pair of observables A^ and g, one has dA/dB = (tr~[~,~])/(trp^[~, 21) 
for the ratio of their respective rates of change. Clearly, it is natural as well as 
convenient to introduce a standard for this sort of comparison by parametrizing 
the evolution of the system in the usual way: dA = dt . i tr p^[f?, X]. The choice 
of this parameter is in principle an arbitrary matter, although any choice other 
than our present one (or a linear function of it) would appear odd and unnatu- 
ral to us (e.g., a healthy person’s heart beat would slow down indefinitely if we 
choose t’ = exp[t/ts] as the new parameter). 

Now it would be extremely convenient if we had an observable e for which dC/dt 
had a constant value independent of the state of the system. Indeed if there were 
such a C, we would use it (or a linear function of it) as the standard chronomet- 
ric variable and could thereby deal with time as simply another dynamical vari- 
able of the system. Unfortunately, such a state-independent universal C does not 
exist, so that time has to be dealt with as a parameter characterizing the evolu- 
tion of a dynamical system as described above. 

Having clarified the meaning of t, we will now proceed to find a precise measure 
of the accuracy with which it can be measured. Suppose we wish to measure 
the time of an event using a system in a state p^ as the clock and the value of 
a dynamical observable A^ as the chronometric variable. Now the expectation 
value- A = tr p^A^ is a function of time, giving us the required mapping A(t), or 

‘(ass.uming invertibility) its inverse t(A), for determining the value of t when a 
measured value of A is obtained. In general, the measured values of A will have 
a distribution, P(A) dA, so that one will have a corresponding distribution in the 
corresponding values of t given by P[A(t)](dA/dt) dt. In particular, the variance 
in the measured values of t will be given by 

w 2 = J dt P[A(t)](dA/dt)[t - 31” , (24 

where ? is the mean value of t with respect to the above distribution. Other mo- 
ments can be similarly calculated. 

To proceed, we must relate (St)2 back to the state of the system p^ and the oper- 
ator A^. To do so, we rewrite Eq. (2.1) as 

w 2 = J dAP(A)[t(A) - t]” , (2.2) 

and note that P(A) dA is simply the probability of finding the measured value of 
A^ in the interval dA. But then using Eq. (l.l), we have P(A) dA = tr pii( 
where F( dA) is the projection operator corresponding to the spectral interval dA 
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centered around A. Thus we can rewrite Eq. (2.2) in the form 

(bt)” = /[t(A) - f]” tr p^ii(dA) . (2.3) 

Since z%(dA) = Aii(dA), we can use the completeness property J ii = 1 to 
recast (2.3) into the final form 

(bt)” = tr p^[t(;i) - t]” . (2.4) 

Note that t(i), now a function of an operator, is itself an operator. Equation 
(2.4) is a remarkably simple formula expressing the dispersion in the measured 
values of time in terms of the clock state p^ and the chromometric variable A^. 

Can (St):! be made arbitrarily small? A precise answer to this question would of 
course constitute a precise statement of the time-energy uncertainty principle. 
To answer this question, we first use the Heisenberg inequality 

(2.5) 

_ and the identifications 5 = t(A), g = fi, to write 

2St SH 2 It&?, t(z) - ?]I . P-6) 

Next, using X to denote the right-hand side of (2.6), we seek to minimize it by 
requiring that its first-order variation vanish. This requirement leads to the con- 
dition [g, dt(&)/d&] = 0 for the optimal variable &. This last condition es- - 
sentially requires that either 2s commute with g or that dt(&)/d& vanish. 
The first possibility actually maximizes X, since in that case & would be a con- 
stant of the motion, resulting in a clock that is stuck on a fixed value! The sec- 
ond possibility forces t (2s)) or &(t), to be a linear function, so that tr ii&, is 
required to be a linear function of t. An immediate consequence of this linearity 
is that X = 1, and (Partovi and Blankenbecler, 1986a) 

In other words, when a quantum system is used as a clock, the dispersion in the 
measured values of the time of an event cannot be reduced below 1/2SH. In par- 
ticular, a quantum system which is almost in a stationery state would make a 
very poor clock. Conversely, a system required to measure time accurately must 
have a correspondingly large uncertainty in the value of its energy. 
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Note that the optimal chromometric variable & is precisely what we designated 
as e earlier and characterized as an ideal standard of time. We also stated that 
such an operator does not in general exist, a well-known fact that follows from 
the non-existence of a well-behaved canonical conjugate to the Hamiltonian op- 
erator. Strictly speaking then,‘the lower limit in (2.7) is not realizable (even in 
principle) in actual measurements. 

3 MULTITIME MEASUREMENTS 
In Section 2 we described how quantum systems may be used as 

clocks, and established the fact that one can in principle construct clocks of arbi- 
trary accuracy by allowing SH to be sufficiently large. Our next task is to gener- 
alize the formalism described in Section 1 to multitime measurements assuming 
the existence of such clocks of arbitrary accuracy. 

Let us consider a measurement of a quantum system involving the observables 
xv(tr), where v labels different observables as in Section 1, and where the addi- 
tional label t,” denotes the time at which the measurement was carried out. As 
before, the results of these measurements are summarized in a set of frequencies 
%, where 

Pi”, = tr [p^??y(t,“)] . (3.;) 

Note that p does not carry a time label as it corresponds to the reference time 
t = 9. Comparing (3.1) with (l.l), we see that the multitime measurement is 

+. m essence not different from the single time case, once the constraint conditions 
(3.1) are rewritten in terms of ?y E jir(O) so that all projection operators refer 
to t = 0. In terms of the evolution operator 6(t), defined by 

i g C(t) = ET(t), i?(O) = 1) (3.2) 
we have - 

q(t) = C+(t) ?$(t) ) (3.3) 

so that the constraint equations (3.1) now read 

P;“, = tr [p^f?+(t~)??YiF(t~)] . (3.4) 
We can now write the solution for the multitime case as a simple generalization 
of (1.2): 

with constraint equations similar to (1.3). Equation (3.5) gives the density ma- 
trix of a quantum system subsequent to a general, multitime measurement ac- 
cording to the maximum uncertainty/entropy principle (Partovi and Blankenbe- 
cler, 1986a). 
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To illustrate the use of (3.5), we shall apply it to another long-standing prob- 
lem in time-energy uncertainty relations: How accurately can the energy of a 
quantum system be determined if the measurement is to last no longer than T 
seconds? To answer this question, we shall consider a “canonical” measurement 
where the (z-component of the) position of a free particle is measured at two dif- 
ferent times, say -T/2 and +T/2. Thus the device is a position measurement 
apparatus which we take to have bins of uniform size A arranged symmetrically 
along the z-axis so that cyr = [(i - f )A, (i + f )A], i = 0, fl,. . . The density 
matrix resulting from this measurement is, according to (3.5), 

where X: are parameters related to the measured frequencies {P,‘} in the stan- 
dard way. 

We must now study the dispersion 

(cYH)~ = tr (p^H2) - (tr p^H)2 , 

and determine how it is related to T. More specifically, we will determine how 
small-SH can be made when T is considered fixed and the {P,‘}, and conse- 
quently the {XF} are varied so as to produce the state of lowest possible SH. To 
avoid technical complications, we shall outline the main points of the argument 
and leave the details to the literature (Partovi and Blankenbecler, 1986a). 

It can be shown that the state ,ps corresponding to the lowest possible SH has 
certain symmetry properties which imply the conditions &+ = Xf and XT = 
X$. These conditions in turn imply that p^s is self-conjugate under a Fourier 
transformation that sends Z into (T/2m)p^ and p^ into (-2m/T)Z; here Zi? and p^ 
are the position and momentum operators, and m is the mass of the particle. 
This interesting invariance in turn ca.n be used to show that the optimal state PO 
has an energy dispersion which is no less than l/22’. In other words, 

TSH 2 f . P-8) 

This result is a precise statement of the time-energy uncertainty relation in the 
form that was often used by Bohr. Note that T in Eq. (3.8) is not a dispersion 
or uncertainty but the time elapsed between the two position measurements, so 
-that it is. the duration of the canonical measurement which was performed to 
determine the state of the quantum system. 

We conclude by briefly discussing the result of applying the above formalism 
to the derivation of a limit known as the standard quantum limit (SQL). This 
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limit naturally arises in connection with the use of laser interforometry in grav- 
itational wave detection (Partovi and Blankenbecler, 198613). The problem is 
this: suppose one is trying to detect the presence of a very weak force (the grav- 
itational force resulting from the passage of a gravitational wave in the actual 
situation) by successively measuring the position of an otherwise free mass m 
and thereby the acceleration caused by that force. Under these circumstances, 
optimal sensitivity is obtained when the displacement (i.e., the change in the po- 
sition) of the mass is measured with the highest possible accuracy. The accuracy, 
e, with which the position of the mass can be measured for optimal sensitivity in 
the detection of acceleration (or force) is the limit referred to above, the SQL. 
Since this type of measurement is essentially the canonical measurement dis- 
cussed above, the results of our analysis can be applied here. Using these, we 
have shown that 

e 2 e, { xk, [&(Ax)~]}~‘~ , 
where T is the time elapsed between the two measurement, Ax is.the resolution 
of the device used to measure position, es = (T/2m)li2, and uh,[(Ax)(Ap)/2~] 
is the minimum possible value of the dispersion product SxSp for a measuring 
device whose position and momentum resolutions are, respectively, Ax and Ap. 

Clearly, the minimum value of ! in Eq. (3.9) is achieved for the lowest possible 
-value of Udn. But the latter is the standard Heisenberg result a, which is pos- 
sible when the resolutions Ax and Ap are essentially equal to zero. This gives 
us the absolute lower bound ! 2 es = (T/2m)lj2. For comparison, we note 
that SQL, the result previously quoted in the literature (and the subject of con- 
troversy previous to our work), gives an absolute lower bound equal to fi& 
(Caves, 1985). 
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